The basic instrusent used in rgdio astronomy, tite radio telescons, is s diractiva aerial syaters ta whel a sensitive res*iver or reesivers are consected: the oxcellence of its perforsance is detorained primarily as mifh onticat telescopes, by the size of the aperture \quad Ideally it ghotald:-
(i) Collect a 3 ufficiently large susple of the radiation to מake possible the setection of very faint sources.
 is the effective collectimg area at wavalength λ. The area shoulit thorefore be as large as possitho, and if it is refloctizg surface ene departures frow tbe correct shame should be less than 3/8th of the shortest Waveruch at which it is to he ugot.
 or purts of an extended gource, to be gelacted soparatoly for obscryation.

The ansle, e, betweer two sources which cap fust be separato by a telencopa is Eiven by $\lambda / 0$ racitang, or $\frac{353 \text { äd }}{5}$ winutes of axc, where 1 is the width of the nperture. This magle is us:aliy referred to as the besamidth, and I5 ayproxíately the vidti of tion min lobe of the response pastern betueen the half-nover points. as illustrated in Fify. 1. As an example, a parabojic reflecting dish of sperture 10 metras haz a bean uidel oti fust over ξ° when usod at wavelength of 10 ers. The resolvtion requitenents therofore incitcute that the aตfint should be as large za possible.
(1iL) Se capable ci being usec over a wite range of wavelerctis without major modification (other tam chancing the receiver).

This feature is desirabiofor detertining the spectre of seurces, end for search for and obsorving entgsion at
frǫ̣uencios whoss exact value is not known - o.g. because of Doppler shifts, or proviously undetacted radio froquency lines.
(iv) Do abla to bo pointod at will over a large fraction of the 3ky, and to track, oz zollow, a celestial source with procisiom.

This is sssantial Eor deternining the characteriztic of sources whosa ouspat fluctuates, and to achievo maximum sensitivity by silowing the receiver output to be integrated for sxtondod periods.
(v) Be suitable for fistoreining the poiarisation of the incosing radio waysu.

The ferm of racio telascop which is a ciose analogue of the opsical tolescopa is the filled-apertura doylce in which all tho onergy falling upon te from a particular (sharply dafined) direction is brought to a comion focus and componded to form an image. The simplest कnd most compon form of such a dovice is the paraboloidal refiector or "dish", 此e ossenzial foature of the parabolic shape being that paraliel rays felling upon it are brought to asiggle peint focus, independent of wavelength. The paraboloidal reflector possessas most of the cesirabie features listed sbove. Kertz wisg the first to use a reflecting dish, in his early experiments with electronagnetic wavas, and the first to use such a rafiector in radio astronoay yas Reber. Paraboloids originally designed for radar purposes mere common In the early days, with diameters ranging from of to 20 feot, but sizas have gradually increased over the yoars, the cost recent and largest belng that of 335 ft . at the lam Planok Institute at the University of Bonn, Hest Cormany. However, the most inportant aspects of the performance of a radio tolescope aro determinsd by its aperture mensured in terms of the wavelength at which it is to be used, and tho relatively long wavelengths usod in radio astronony inevisably set a limit to the size of the roflecting dish mich it is practical
or econowic to conssruct. thore is thus a lisit to tho resolution - and Alst the gain - that it is feasible to obtain wist a singlo Eilled-aperture device. Evan today no radio telescepe has a resolution which is gubstantially Detter than shat of the naked eye at optical mavelengths about 2 vinuq of arc. The nees for bet娄er performance. particuarly higher ragolution, at the longer wavelengths กะs besn มet by devices which sre knom ss interieromoters, because their operation is based on the interference between signals which reach the receiver by different paths.

Interigerometors

An interfaroneter in radio astronomy is a devict which makes use of two or mere separate but interconmacted aerials In such a way as to achieve a resolution equivalent to that of a complete or filied aperture of which they can bo considered as gart. Figure 2 illustrated diagrananticaily a giapio interfarowatar in which two aerisis separatod by a distance bare connocted to a receiver midway between show. Signsis aryiving from a direction at right angles to the base isne will reach the roceivor tegether and reinforce each other. Those arciving at an sugia mili only arrivo at the raceiver in step it the differsace in path longth, $4 \sin 6$, is an incegral number of wavelengths. Likewise, at angles where din sin is an odd number of half wavelengehs the signals will reach the rat caiver axactly out of stap, and will thus cancal each otian out. The rasponss diagram of such a device is thorefore a matin fingernd lobe pattern in which tho angip between separate maxima is given by D sin 0 ph where pol, 2, 3 etc. For smadi departures frow the line at right anglos to the base line, the separation betwoen lobes is $\frac{\lambda}{D}$, or if the spacing between geriais is n wavelengths, sinem the beax widh is $\frac{1}{n}$ radians.

Eigure 2 shows the rosponse from the recelver as a point source moves through the lobe patern, and also that froz a source which is large onough to be resolved, i.e. shows an
appresiable disk. In the latter case when part of the source is in the central part other parts w111 be if the adjacent regions of zoro response, so the amplitudes of the naxisa are Teduced and there will be no zeros between then. The series of maxima and minima in the receiver response are referrest to as fringet, and the zatio of tho amplitutes at mininua and maximuw, known ss the fringe visibility, provides inforalation about the angular size of the source. If tho source is a large naiformly bright area maxima from some parta of it will coincide with oiniag from other parts and tho fringe patterm vil2 be saoothed out and way disappear.

The width of tio central lobe of an interforometer is a small praceion (NA) of that for the component aprials usad indivicually (A/n where the aerials aro a waveleagths apart). As at oxample, a dish of aperture 10 metres ans a beas widfh of approximately 8.5° when usec at a wavelength of 1.3 而etres, but for two such dishes used as sn interferometer with : spacing of 1500 setres (1000 waveleagths) she batamicth is Feduced to 3.4 配nutes of arc. The position ef gevrees can thus be deterained much mpre precisely by weane of an interforometer. A major difixculty, howpytr, is to decisk when the sourcs lies in the main (centrai) labe, ame ehis dieficulty is considerably acceatuated when several sources aro present in tho region of sky being observed. Soaz of the enrly catalogues of radio sources derived from surveys carrive out with inserferometers contained many erroneous entrics from this cause. Hevertheless a number of ingontous devices based on intezference principlos have been developad which provide outstanding resolution - alaost invariabiy howerer at the eapense of reducod performanco in other respacts.
 Mere used in radioastronony was in tha axperfacnts of pargey and his associated near Sydnay in 1947 when radia waves from the rising sun reached their clief top aerial by tro paths,
 of the soa. Ehis 1s ililustrated in flgura 3, from which It can be sean that the latqer signels are equivalant to Those which מould ho recelyed by a mecond sexial as a mipror 1mape of that At the cliff top. Tho dovico tinus acts as a tro-nerial intorictanger of spacing twice the height of the cliff。

Australian radio astronosers inve ande on nuber of outstinding contributions to the design of radio telescopes. On of tho first of these was tio cross-shapod antomaz syssen developad br B.Y. xills at the C.S.I.R.O. Padioplyats Laborevory, Sydaey, in 1952, to provido an approximate rencil beaz for survey work at motro wavelongtis; ft has becoso univergally knomp as tho HijIs Cross. It consiats of two long arrays of Afrolo migials in tho fora of a cross, as hown in Fig. 4. These are comnected to pacelver chrough sultch which joins thes altornatoly in phase and out of pasas. Tise outputs xre conpoumded and tho nat Fosult 1y tiat the maly signajs recorded sTc those from the small area where the toass overlap. The device thus producs an effective "pomeil bean", wich csa ko "IPcered" in decilaation by garying the condecilons to the dipoles in the w-S arm. The primelpio of tha M111s Coss has beer followed in m muber of stigy major fastallations, fraCludiag a layger version of the Cross by Mills himself and
 pags ara ulasa , [See Images 1-3]
 Sydnoy, usod tho pinciple of alifraction grating in his "stating latarfaromezar (lg55) to preyide a geans of meannin: the Sun axd fo disteraleimg the brightnesg variations ectoss its diak. fils orighal instrument used 32 swall disaos in Iino but a later version unown as the crossed srating interfercastor affectivoiy ccabimed the principle of the grazing wish that of the silils Cross. It consisted of 64 parabololds
cf dismezer if fist ariayou fit tha form of symatyienl canss,

 Mills Crosg, 30 tiat ondy tin signals from the intorsectigg "pericil 引ean" tras uTe recordod. The staring of tho aorials

 the gystem of beazs is thess odjuseas so that an mifacent strip
 (ses Fis. 5). Thls ws the fitst radio tolescont th produce

 Of the Crosseris Grating Intity
 In \& devico lntancin for cosmic studiog ahich has tota eractoo near Sydney by the Derattmant of miectrical Engizasting of the Univeratity of Sydnay (s由e page and plate). [See Image 4] Radio telescefo yyters ia mindes stacec mofials are

 earth. Inficied apartare tevices can ba divitus inso two broad sypes secording to whethar thay praxuca an lyag roint-by-fognt (1.0. by (mage synthosis) Ey by compoundizg tae Envier compoiients derivod by obsarvisg et \rightarrow gexici of different sjacingg (apertur symthosis). The chief chatactesistiea of Eillos arid diluto aperture aniale will now be describad, with 11Iustratiens of tyoleal examiles.

Filioc-Aporture Instruees.s3

(i) The first of theso cericus disignod osmectidiy for 5adiositronoxy was that tuile hy Grote Relier in tho beckyard
 page ：it was sitarab 3 a paranolic reflector， 31 et． In $\begin{aligned} & \text { ilanetar and focussaid tho radiazion on to dipoie at }\end{aligned}$ its focus．Aevials 蹻 \＆\＆is \＆ypo are simpla ejoctricaily and can be used at any watozangth zecroly by changing the
 soupce being roceived，so the guality of the 解解O and the
 theit circulat symasty makas ther suitasie for polarization msasuranomss．Parabolic dishos havo therafore bean widoiy

 surfact accuracy move beea builz．The cost howaver In＊

 ware incorporated，ara thorefore unlinely to bo built uthess
 associated with the iaw of wifght progertional to the tubo

Some of tho outssanding radio ascronogy instaliationg usiag large reflecefag dishes ars as followst

Jodrell Bank．The first of tho Larga stearabig dishes vas the 250 ft instrument of the University of 保anchestar at Joctell benk，buile in 1956，and origimaily designos for metre－wave observations．Seg modifieations vere introducad following the discovery of the hydrogen line，but the dish is of linited use bslow 21 cns ．Its disitngusshing feature is solidmetal raflecting turface of very short focnl length．A MEII reflector of much baighor surface accuracy was comploted at Jodrodi jank in ：this 1z elatpticai
in thapa
Partes, Auseralit. largo dishes is the 210 fit paraboloid of the Australian
 it wes cemmigioned in 1961 ard has bean shown to porform with sood officiancy to at least ocas wavalencts. A noval feature of the design is ust for the İrst time of
 accurately in lina with that of a fretision cquatorellydriven sxis. This has proved so successful that number Df largit dishos constructed sinco trat timio (e.g. EuD tolescopes of dian 210 ft butit by tho U.S. Netional Aeronautics and Space Adelalgtsation) have iscorporated this aneor equatorisl contral systan. Grembank. Yest Virginfa, Por many jenrs the largest faraboile disin in sxistence was ihe son ft instruront at
 Greshbank, completed late in 196る. This is a trangit
 seanalig in riyat ascension being proyicled iy the earth's delly rotation.

A hish-precision dish of dipmeier 240 fe was brougite into operation at Greenbant in : this has been used with good efficiency at wavelengths za ghort as [See. Images 5-7] Sonn, West Gormany. What will be for some years to come at lozst, the iargest seeorable racio tolescopo anywhere In the world is a lof mate (333 ft) dizil is tho sparsaly populatad Eifal Nountains, south mest of senn, Test Geramy. It is opsrated jy the Astronomical Institute of Eman infverisity afd is due to to completed in 1970. The surfaca Accuracy ia tho contral region 60 wotres lan elinerter is suitable for ogoration at a wavelangts of 3 crs nad efficient operation over the full parture is pesalile dows to 5 cas. The whole structure turns in azisuth on a singls
circular track, as for the Jodrell Bank Mark I instrusent . It is 1llussrated in plate [see Images 8-9]

fon-Stegrable noflectors

Cat migroach to reducing tho cost of lasg risinceing telesceyos has beed to use a fixod roflecting guxface which can bo aupported from tho sround ft many poluts, rotsilch of tho arth Gefing used to provide for ongerving st difierent rifht ascensions.
 nointing spherical reflectoz l6u0 ft in djarbter has voen constructed fn gatural bowl-stapec bollow ín tie spound, suspended abore the surface ly relatively short simports (sen plato VIII)dimage loj tho spherical surface allows the tase to b刀 moved up to 30° from tho とmaith by aoying the faec, but the latter neads to be a vary complicqtsd dovic to remoro te siphoticil sberfation which is Ichareat withe roflecter of this sisaro.

Anothor \&ievico 1n oforaziov at ike triversity of Illizois 1s built 1 a maturai gully, wita thg raflscting mesh placed Mirectiy on the ground. fitis is 3.2 tat inter of parabolic
 círculat disi ef diemeter ijí rotrest ajd intendod as a survey
 can bo swiag olterficaily betzeen deazingtions $10^{\circ} \%$ and $70^{\circ} \mathrm{s}$. tho earth's rozaticn providizg sweafini in right asconsion.

Anotimr apjroach to filled apareures is that figst introduced oy J.D. Kraus af tho Enjvatsity of Ohio in i95s. This makes use of lafge flat rezlocting surface which can be tiltoc so as to difoct the radio waves frop tho dosired sourco on to a vortically-pounted soctor of a farabolic wirror milct has a collzcting device ot its tocus. The width of thy refiector is mutia less ther its hoight 50 tia bers is finn sinaped. A dater vijsion of this eypo is in operation at hisncoy. Eranco. \qquad and is suitable for operation tows to shout 13 cme kisvalonath. The flxed reflector 15115 fe theh and 1000 it lomp. Agother fore of this typo is at the fulkopo Obsorvitory, sid usas cnly
ont railacting surface, which is maio up of a large nuwber of

 Ant can ba usis kous to wavelengzhs as short as 3 cms .

Gehax Bypas

 but are जmsuitable vhen high directivity is desired because of the exerowe cospifcaticas involved in the olactrical problams associatta with commettizg tit sillions of individual dipoles \&hat would bo reupurit. Norms of isrga dikbanions are very erponsive to coastruct, bat thair directivity can be calculated
 refarnee standarez or caniswators.
(ii) Unfillad Apotsures. - Inage oynthesis.

 solur radio freamsncy radiation and sunscots was fitscovered

 atove sea level, together with iza igagg in the geaboiow. The equivazent apezête wis taus 556 foet. In amneuncing theiz tiscoyory tha saze authory pointea out that it is pessible, in principle, qo werive tho batgetnass distributicn, i.t. an fizage, of a saurce by synthegis of the Fourrier congonsats produced by varying the geacing botween
 Sun खas Staryiter in 1950.

1818s Cross.

The fifte wnitilot aycrture fadio telescope to protuce
affacively g yencil bean was tho originai Milis Cross, Aoveloped by a. Y. Mills at the Australian nadiophysics

4

 as a herizontal cuass acch arm todo fan-3inayod ropponse and Whes the ot:tue ne hetb; was wultirlied the resulant resporse
 leter vorsion of tifs lovice - the Volonglotross - has feen constructeat * "

 anet has a resolutict of cinutcs of are 3t 73.5 cas. It is
 servations cat recori u; to 11 moints simuttanemusiy.

 onerates at waveleneth ates wish aros i s. lons ated las a rosolution of minuts of noc: the latter sas a resotution of

The Criveort aticuction-ab

 for detailuc studies of the an. \#..is consists of se soparate steerable yaraiolic aorials atrang\& around the merientex of a
 of arc at its aperation wavelent? of 5.75 betres (30 M 2) see Plate x. tts stocial fouture iv tiat, under the control of an intuilt corutar, the nerigls tre consmected to 4 , receivors

 then fade to sweon ravidly in ar cast-wost Ainection, taling
 thus roduces a tho dimensional picture of the sun serives fren the raster of $48 \times 0=2880$ points recoried each second. This facility of allowing rapiciy-varying pbenomena on the sun to be cbserved has made fossillo mafor advances in our moderstanding

Transcribed in 2022 by Miller Goss to improve legibility
Page 11 of Chapter 3 "Instruments and Methods of Radio Astronomy" by A J. Higgs, draft of never published book Radio Astronomy, September 1968
....Laboratory in 1952. This operated at a wavelength of $31 / 2$ metres as a horizontal cross, each arm had a fan-shaped response and when the output of both was multiplied the resultant response was that of the part of the sky common to the two beams. A later version of this device- the Molonglo Cross- has been constructed by Mills at Hoskinstown near Canberra, with arms in the form of cylindrical paraboloids one mile long (see plat IX). It is designed to operate at 73.5 cm and 2 metre and has a resolution of 3 minutes of arc at 73.5 cm . It is fitted with a number of receivers and when used for transit observations can record up to 11 points simultaneously.

Other examples of the Mills Cross type have been built at Bologna, Italy and Puschino in the USSR. The former operates at wavelength 73.5 cm and with arms 564 metre long and has a resolution of 4 minutes of arc; the later has a resolution of about 3 minutes of arc at metre wavelengths.

The Culgoora Radioheliograph: A novel form of unfilled aperture has been developed by J.P. Wild of the Australian Radiophysics Laboratory especially for detailed studies of the sun. This consists of 96 separate steerable parabolic aerials around the periphery of a circle of diameter 1.9 miles and has a resolution of 4.3 minutes of arc at its operating wavelength of 3.75 metres (80 MHz). (see plate X) Its special feature is that, under the control of an intelligent computer, the aerials are connected to 48 receivers (with appropriate phases) so that 48 beams are produced simultaneously along a north-south line. This line of points is then made to steer rapidly in an east-west direction, taking up 60 different positions in each second. The radioheliograph thus produces a two-dimensional picture of the sun derived from the raster of $48 x 60=2880$ points recorded each second. This facility of allowing rapidly-varying phenomena on the sun to be observed has made possible major advances in our understanding....
of conplex processeg in operstion in the solar ataosghare (sbe Chapter).
Unf1lled aporturos - Agerture Synthesis
Anothor variation of the spaced-aorial sechaique which manos possible the construction at reasonable cost of radio eqlescopes of even blaker resolution than those sascribed abovo is that in mifch a fired atrisi is comblued with one which is sovable and can take up large nusber of other spacings and orienestions. Tho wovable aerial thus occupioz different parts of the full anorture at different times and the complets fange is bulit up by synthesis of the nocessaty pourier componants. The nano "aperfurt systhesia" was first given to an antana systan of this kind developed by hyls and Howish. To sinulato the resolusion obsainabla with eilled aperture devico of diaxetor D the rovablo aerial must traverse in ssquence a semicircuiar ares of radius D cantred on the fixed axtial. thy patteras of arplitude and phase being acsasured and rocoried at each position for compounding with those derived at all other positions. With this device aluost tulimited resciution can be attained with p sufficientiy lesge. A severe linitation, hewever, is that synzhesis of the full imnge is tikely to teke an fnordinatoly loug tine, ever though in practice the povablo aerial מeed not take up oyery possible position vithin its jange.

The Cambridye Aperture Synthesis Tolescore

A namber of intorferozetor instruments fall in the aptrture synchesis category but tho historic ancenal of this find is that constructed at Cambridge, Sagland, By fyle and liowish in

- It consistad of a flzad cyindrical paraboloid 1450 ft x 65 ft ond a smaller aertal $150 \times 65 \mathrm{ft}$ which was novable on railray tracks at right anglas to tho fixed unit. A lator yorsion of the aperture synthesis instruase being used by fyls and his

 boing flxed ane the thira sovelite on rails. The rotstion of the carth is ugsis to swosp tho basaline through 190° in 12 houta: kDowt 50 dieferent mpacings on 50 sifferent days aro moeded to cotyleto the inaga of a togien of gay about ${ }^{\circ}$ across, The resolution is equivalont a filiod aperture of elisptical shape whose sajor axis is 5000 Et, i.e. 29 geconds of atc at 21. cne axvolencth in the optamua direction [See image 12-13]

The Christiansen Cosnound Interfervacter

\$y the adcition of four fuliy steersble paraboloid
 interfereseter ef 6 i 19 ft paraboloidg degcribed on page Chriatiansen has procucai a devico capsble of producias a

 synthesis instruzunt. The outpues from cach ara of the orig* \{nal crosa eogethor aith that frem the $45-$ ft dishes aro foc to an oleetronic comptise where they are approprigtty compoundad to protuce the information from which the final conteur man

The 症esarbort Array [See image 15]

 has subsequanziy bovn corried through entirely by the jother1ands is due to com into oparation in 1970. This enploys a
 a base line of length $\overline{\mathrm{S}} \mathrm{h} 0 \mathrm{f}$ feet and the other two aro movable on eracts at right angles to the buse ling. Tha ierge collecting area of the 12 Gishos wili give enja radio teluscope the highest sonsitivity of any of the existing installations,

5 yndanay

The stawrablo parabolodual refloctor yiolds high quality images which are indepencent of sive sise and comploxity

Of the gsurcus belag absigrved is complotoly flexibla; aza is suitabic for all types of radloastroacmy observation, the only qualification beang thas comsidaration of cost and wochanical reasibilizy sot an urner timis to cke aperture suct heace the gaik and resolusion that cam be atcoluoc. yarger
 Hibher rosolution but with aose of mochanical and (wnually)

 15 so mecharical lisit to the sperturez possible, wut the *1*ctronic coselexitiqs increas rapidiy at the nuwher of separate refiectors involved.

Tho unflllen aperture ※rays ars at: priso requirpangt 1.5 high rasolution for suryeytag venk wources of smail angular dizension. Whe hishogt raselution possible Can bu provitac ky weans oz apmrture aygthenis provisod an
 devices is the very low ratu of boservation, cetermined Sy the tine requiry to synthesise mil fan gecessety fourian components

Recolvers

The radiation coliected by even a ange aerial systov is ainost mivays to weak to be lotected at tha fcciss mad so a receiver is reauirad to provide sumficiant anplificasicn

 oxtramely low and often sing below the "tux unit" used by
 siagrable suplification is usually required. Thare is little ditficulay in achievisg this with the eloctronic tevicas now availeolo, anci without lems of esmont ial infornation mbort ghase ans gpectrum contained in the incouing signals. A Hise vantety of Fadio receivers is usad in gadiesseronomy, most of thes

 distincuishande In guality Erom tho tintanted naiso signata genoratod by the randors moticat of the alectrons za tha coizonents

 a Iintit to tho axplification that cars be usea, and to tie sous-
 be discinguishad. Exeas aivancos fin receivor design thst hava eccurred turing tho past dectio have come fron ratuctions In Inturnal recelver hoiso, and have quef yessibie the stazinment or highat seảioivities et some yatola

 can so catcoctad; when enis point is rasehat no apece sources
 may bo.

No13e Fiuctuatsons

Then a ratis tolesccpe is pointed at source the output of its esgociated rectivor wili contain centributions not only fron the souree swing observed, but frop fiuctuztion

 Other scurces too faint to bo resolves and atso tras the
 the finctuation moise within a resigiantl at eengerefure fon
 it is unval to specify the gignal comporants in taty of the
 Would give the san cutput: tho soxial tamperncurs dus 60 gha
 as a systess noise temporature T_{K}. The chlef component of tho
lateor is almost alwayz that arialag within tha raceirer．The
 ature wist glionid obviousiy be as low as gossible：meny of the early बiscoveries in radio astronemy hira wace vith recolvers baving noise tamporatares or $5000^{\circ} \mathrm{y}$ or ge，in warkee consrast

 netual power output fron tho secelyer to tian whitch be given by Bn ldeal notselosis recaiver（in wisch that only output would be thet from the fluctuation noise in its serial\}.

Tha＂fanted＂ 3 ignatis from the source aro indicated by an increase in the toral power output fros tho roceiver when the source is in tho beam．This levol is constanely fluconatiane howevar，in particular bocsuse of tho random character of the various conpoasats contributive to 领o totaz output，and there 15 21解t to the minimm signal that can bo distinguishod， tetorminec by tha applitude aif tho fituctuations bbout their mean lavel．Somot of thiuctuaskons may ba tua to variations In the overall ampizication of the recoiver and a great deal of care is taken to 解縕ize chese by stabilizing tho power supplies and esorating critical componentg as constant romperaturo．An

 Amput is switched rapinly（a，ig．at so to timen per seconal）bermeen the atorish and a Luvay rasistanco or othor calibrating noise
 so that only the dityormnce shenni is wecortod．The fiucemations thitch rosain grs tuo alaost entivoly to the rancion nature of the colisisicns botwsen electrons which axa respansibie for ehe original

If the tecelvar accasts on band of frequancios a cycles per second then the dotector output consitts of mpproxinatoly 5 independent contrabutlons per secona．Tho fiuctuations can be

5ubztantimily roduced by averaging or intenrating thes (by adsing a conconsar across the outpnt) over suitable paricus, which can vary from gocomis eo winuten as long as tho santod signals are not of a trombient nature. By this zeans the residwal reot-poan-squaze fluctuations can be reducad by a
 takes place.

As an mxaple, tidt a receivar of bantuidth $20 \mathrm{He} / \mathrm{s}$
 syssem wiera the sky backrowitd is 2° and the ground spiliover 10° (2.e. a ectas systeman nose tenporatize of 262°) the r.t.s. fluctuations can be reduced, by integration over 5 secomeds. by a foctor of $\frac{1}{\sqrt{20 \times 10} \times 5}$ f.e. 1000 . The sealiegt signaz that can be reliably detected in the prosonce of noise is ustally taken to be abeut three thmes the r.m.s. fluctaztions, i.e, with the receiver used as abeve this souid bo about. $0^{\circ}{ }^{\circ}$, It may sean renarisole that signals can be detacted when their leval is such a swall fraction of that of the asolent ausse, but this is a comsonplaca in radio astroneby.

Tyees of Recoiver

Radicastronewy began in the metre and decimetre wave* bands, waing sensitive receivers developed for radar uso during
 neceszary techatques and components nere developed. Tho need for exerokely semsitive recelvers at thone wavelengehs hes inded provided a ranistic stamius to sesigners - and this has led to romarknte aivances milck, of courso, will ultizately berafit the - lectronic incustry as a whole. A varicty of technaques is needad to cover the rango for 5 sm to 300 zatres.

For observations in the continum the need to reduce notse fluesuations calis fer wide bancyidths ma figures t tens to bundreds of megnoortz csm profitabiy be nsed, assocfated with time constants that provide inzegration times of 10 seconds or more. Receivers for spectral 1 in observations, on the
othat bame nibed to secopt signala ovor a vary puch narrower band wose vidth is doternaned by the apactral resalution Tequitea, Spectrai linas quvaliy shom Depplaz shlfeg cerrospondinh to the velocity of the sourca in the line ef sight, and
 requires bendwidths as narxat as 1 kitz. It the best recejvers

 techniques are espioyed. $\eta_{\text {m }}$ continuup recelyers the Tecelver 13 suifchat rapidy between the norial and a reference noise soturc and onlyh -tho dityonence 3 \&gnal rocorded; while in spectrai lint recatvers the timing elternatas rapidly between two treǫuencies, ene within the IFne prosita and the ather in

Superhequredyat zecelvers dovajoped for radar worb

 Where tha cosnic noisa lavel bacones pronrassivoly lower was上et inisially by the Eevalogrant of iov-nolse ariades and later

 3implicity and good stalility.
 Gวvo tubes sado possible good sensitivity at centimetre wave-
 travelisng wave tubes. Those tubes havo not becone pepular,
 s:ability in thezr inteqaal strucgure gal bonco of rabucing gain finctuations to an aciequately low lovez to ealie usa of tho *ide buntwidth availablo. A sithor step Forward cage wiet the iniroduction G f devicas which explelt linkerett low-naist propertics rather that bandudctis. These are basez on tha use of physical principlag not preytousiy appliad to the cosign of ampliciers. gat draw their power \#rom a radio-frequancy source coilcct the

Abstract

"ap" snd wsually bitget $2 n$ frequency than the 3hgal to be Qadiatien ame she "paramotric moplifisw": both maka use of tho special propaztitg zvailabla in solds-stato sievices.

Ti.2 Mases

The opergetion of the paser can be axplained fa terme of the cquantus thenry, In accoriance oith which the anergy of an aton is restriceod to 3 number of discrete levels. When it changes from one level. to the next higher ongery leval a quatum af energy is sbsorbed; If it sovest to a lower energy level radiation is enfted. 般adiation quanta of apprapriato valuz

 at the higher level to egat raciations which wijl be in phase

 the upper, but in a packy the sction of the "ragy" is to provide quanta which will incFonse che population ca the upper levels so that yhon tho mantmal signals pass through the raterial scme of

 produce apllyication.
 have enargy leveks which can be aspa in this wny, ono of the sost

 gon lina frequencies arsund 21 cas. Ono of tho grazt disadyantages of the maser nowever is that it is necessary to oparate at very 10w tevporgtaras if gutfai smplification is to be obtaiged. This Is because tho notwo temzerature of the naser and the bancomidth characteristics are better when the degree of population of tho
highor levals is greatest, which occurs at liquid helium temparatures. The whole device is usually immersod in a devar flask containing liquid halium and the peoblems involved in arranging for the necessary facilities have lisited the application of masers, particulariy since parametric devices are capable of comparable performanco. Masex receivers have been constructed with a noise temperature of and with a travelling wave version down to , which is approaching tho ul timate perforaance at microwave frequencies.

Paragatric Anplifiers

The paraaetric awpilfier is not dopendent upon
quantum theory: it derives its name from the fact that rhythmic variation of one of the recelver paramaters (usually a capacitance) is used to produce anplification. The action is analogous to chat of child who is building up his motion on a Swing: he raisos his centre of gravity by straightening his legs each Eine the suing passes through ites rest position (thus increasing the amplitude of that oscillation) and lowers Dis centre of gravity when he reaches the end of that swing. Tho energy acquired by the increased amplitude of swing is provided by the boy himself and is applied ewice per cycie, i.e. gt double the frequency of the swing's oscillations.

In a paramotric amplifier the swing is replaced by an electrical circuiz consisting of a capacitance C and Inductance L : connected in paraliel the condenser is alternately conarged from and discharges into the inductance, at a frequency L.C. If the capacitance is suddenly rodaced when it is fully charged this will increase the voltage across it, thus increasing the energy in the syotern. If the capacitance is increased to its former value when the condenser is cischarged, i.e. when there is no voltago across it. no change in total energy of the systor occurs. The onergy is the system can thus be increased by varying tho capacitance at double the Erequency to which the circuit is tuned. In practice the resonant circuit is tuned to the frequency of the
sifnals to be amplified and the capactiance valed olectronically in one of a nupber of way3, the nost offoctivo being by the uso of seaiconductor diodes, called "varecters" in which the dusired variations are fuaction of tho bias on the dilode.
parmetric anpliffore aveld wany of the difficalties Found with pasors and gre widy tsed in rationstronony; in the docimetre range ther proyde a perforpance coaparsiblo with that of naser systeas st a Fraction of the cost and thich at iongor wavelengths seots post of tho requiroments. At roca tewperatures noise terporatures below $50{ }^{\circ}{ }_{8}$ can be whiovet, while cooliaz - ith lieqid nitroeson has reduced noise in the grplifict to below $20^{\circ} \mathrm{K}$ and fur ilquid keliur to still Iover Yalues. In post cases however tbe noise contributed by other receiver compatats Fssontlal for stalility, tenether with thy background ana ground rachation, will exceed that generated withln tho amplifier itself. Reprosencative values for a gow parasetrie gaplifior for use at 21 cms , coied in liquid altregen are:- amplfler moisa temper-
 50°.

Tunnel Yiedos

The thanel diode is a seri-confuctor duvice which has the attractive festure of develoring a negative reaistance characteristic mersly by the apylkction of a low power D.C. bias voltage. It is thws suitable for usc in negative-tesistanco anglifying circuits withont the nised for the purp-supply required for assers and pazametric andifiers. Its nelsw tenrerature at alcrowava frequeacias houevor is relatively ingh ($\sim 250^{\circ}$) but the shaple efrcuitiag involved maies it atcractivo, perticularly for use when the ziy bachground eaporature is high. It is also usotul ss a wixer where, In contrast with a convontional crystal in this application, it con Eivo apprecialie conversion gain.

 in wse, particuiarly th angeciation vith quitahle digital cos-

 ere combunc with apyroprista phase dedays and Eulsiplies 30 as

 the sty. This techrique is used extensively in zperture syn-

 Bina receivery s. 3 , as developad by kedwiei at tho U. S. Naticnel
队utgut is auto-correlated, the necessary zelayg teinin tierived
 resuitant cutput is the spectrum of qivo recaiver noiss plus thet

Frectse zocation of radio Sovrees

The domand for precise postticz fixing of redio govzces cane with the reslitation tiat there are other sourees in tie 3מies besices the sun, mad that these are pet associatec with any of the bripht stars. Progress in olucidating the nature of fing saxices and tive processes which result in the eanission of radie waves so wwch more strongly than light waves was onviously depencest wen dacntifying some at loast of tian wisch could 2180 be tudisd by ontical tochntques. Fhe first zuch fisntificationg with tho צemains gf a supermova sna with two scncyhat mousual gataxias vero pronising saough, hut a kifor Stinulus came two yearg dater whan the stroneost source in the s上iog cygnus A mas Eound to be cojncidont with a strange object

An essधमtial requirament for accurats location of /2
radio sources is thet searchaing jevice should have bigh rosolution, 1.e. a vary narroy "poncil" beam, preferably eircular in section arther than fan-shange, and recelve energ from no other directions, 1.0. have nogligislo side lobes. Associsted with this should be onough sensitivity to bring a reasonabla nusbar of fainter sestces within range of dotection. Both chesa re-
 large steersble parabolic dishes but, ss wi have saen abova, prectical considerations linit the perforance that chn be achleved to spag 5 whutes or arc at 10 ca vavelengths, and to nithutes at 1 zetre. Some of the best survey and idenelfication work hes been dene with the parkes 210 ft dish, in the course of which a grid of calibrator sources has beon produced from thoso of ossonetaliy potit disensions whose ldontificstion vith optical obfectis is regirded as cortain. The position of the calibrators is thus knows with jiga pracision, and they gerve as posolute reforeace points agelngt which tho posfeton of ather sources can bo decerained bith comparsole aceuracy.

For bigher reselution at longer wavelengths, it is genersily nocessary 20 use interfarezeter devicos. In addition to considerable olectronic cosplexities inhereat fa the more sephisticatod exemples of this type of redso tolescopa are the uncortaintles of asing a device wiose bean la not circulazly symatrienl snd can have more than one prosinent lobe. Grant care is eherefore needet in specifying positions as darived with thes* instruments: zese of the early surveys includsd a auaber of ofrozs from this canso.

A ecchnique wheh dees not suffer irom any of thege cesects and is yet canoblo of the highest precision is one which is baswd en the accultztion of souresz by astronomical bodfoz whoso poatition is tnown with high aceuracy. This method convenientiy providea by sature has boon confinod almost exclusively
 Backoy yith the 210 fe paryas Telescope to obsorve the quasz 36275, in 1362. The observation consists of noting the times of fumarsion and emersion ant recording the signal strengths. If this be cions the Moon's pesition is knom well enough to onatie that of the souree to te spectiod to within secomes of ac. Io eddicion, the Hoon daso acts as a diffracting ejge
 Quarges from ocligso can provide inforation about soure struczare shit the 3 izo of tho cospongnts (see Figure 5). By this means the myterfous qusser 3c, 73 was fixst located with suff icisat precision to mable it to be itontifisd, and shown to have a compotite structure which matchori that of its optical counterpart (sse Cheptar).

Angular siza of Souress

The eariy duentification of a fow of the discreto sources with ngbuiae but none with vistbio stars suggested that the wajority, perbaps, wara not of stellar dimensions. The sixst radio evidence of this case in 1951 during a gurvay by Milis in Syancy at a wavelongth of 3 metres: he found that soveral sources geve a smaliar respense on a widely-spaced inzor* forometer then on harrow one, indicating an extont of about a tegree far these scurces. Pldifiggen and kifnett, also in Sydney, discovered about the same time the oxistence of another somece in Cygnus thet ans toout 2 degrees by 7 degraes in exteat - tisy called it cygnus to distimguish it irom boiton's Gygnul A somze. ircepencent evidesce to the sizo of sevaral of the brightar radio seurces came fa 1952 frow observers ath Cambidgo anc Manchester. Siace then isterferometer heasurewentr at :ntadualy incroasing base lines have succetiod in puting dinenstens on a late propertion of the hacus radio sources.

Ey 1062, hewever, at zall nwer of sources had been
found for wheh tho cerrespendiag object on a star chart for

Chat aros appeared to be of gtellar divensions. Thoza ojjects
 cussod in sore cctsil in chapter - The problea of scecusifng
 to determizo thetr engular size. A number of eitat objects Showsd zo gign of belng regolved by furerforomatwr zystens of

 essary to soparate them by intercentinontal Aistances: this
 and has only beon zade posisible by tho availability of atomic clocks (particudurly asize catsium and mubidink) which are capable of raintaining e gufficientiy constant rate eo scrve pg tiformazking devicos nt oach enc of tho chosen baso itna. The outpuss frog very stabjo rerojverg at each station wich
 al\%owiag for the difecting fonplet shifts at tho two fintions due te the earth"
 two tapo sto subseqtantiy syo thronised tuith the ajd of the
 a ansa conventional interfarmantax, if the sourca dinamsions are less than the resolution cormespendiag to tat stativn syactang.

The procautions nocessary for success in Y.L.B.I. wogk ste onomaushy more complix thas indicatect in this simplo วutizas but this technique has axtandy bess used successfully ver Pantes, Austraila, and calfformia and Grasnoant is the

Final paragraph of Higgs page 25, transcribed to improve legibility by Miller Goss, 2022

The precautions necessary for success in V.L.B.I work are enormously more complex than indicated in this simple outline but this technique has already been used successfully between Parkes, Australia and California and Greenbank in the US and Ottawa, Canada (see Fig 6) i.e. over baselines comparable to the maximum length that can be obtained on earth. [See Images 16-17 for images of OVRO, a major component of the US VLBI Network.]

