ALMA Test Correlator Control Computer Software Design
Jm Pisano

2001-03-27

Page 1 of 54

LIST OF FIGURES. ..o ottt sttt sttt ettt e st e e se b e s e se ke e e st e b e st e se e b e s e st e b et e st e b et e neebe st e st e bete st ntentenenne 4
LIS IO 1A = SO SSS 4
1 INTRODUCTION. . ..ciiiiteietisieisesieses e siesestestesessessesessessessasessassesessessssessessesessessasessansesessessesessensesessensesessesenessensessesesseness 4
1.1 Test Correlator HardWare DESCIIILIONcouireeieierieste sttt sttt st st ae e e et e b saeshe s e e e e seesbesbesbesaeaneenseseansaseesaens 5

2 ALMA TEST CORRELATOR SOFTWARE REQUIREMENTSccoi ittt 5
P20 A 1T = 2 o o OSSPSR 6

22220 ©Xo 1 o 1 = 1 o o 1 6

G T @ o= oV T oo 7

A @ o7 < VT oo 1Y/ o L= S 8

22801, o T o 4 o F S 8

B2 38 = (g 0T | oo S 9

A A ©o o 101070 T o] o TSP 9

2= B T 1 111 0o TSP 9

2.9 ENGINEEING / TESE INEEITACE.cueeeeeeeee ettt e e bt bt e aeese e e e eeseeebeebeeaeene e e e eeseesaeneas 9
P28 (O I O T = o] o TSP 9

3 CORRELATOR USE CASES ..ottt st e sttt et et e st s te s ese b e se st et essesesbesesesbessenesbeteneasensenenns 10
3.1 Use Case: Test Correlator INItTaliZAtIONco.oieiieeeeee ettt sae b e se e e et e seesee e 10

3.2 Use Case: COorrelator Data ODSEIVELIONc.oiueuiririeirierieeste sttt sttt ettt bt sbe e e e se st eneeb e st e e sseseenessesaenes 11

3.3 Use Case: Correlator Monitor INFOMMELIONccurieiririeiresieceie sttt st b et be st sneneenes 15
S Y = e = = o gl = = PRSP R 15

3.5 Use Case: EXecute DiagnNOStiC ChECKcci ittt st e et sb e re e e s e e eneesneneenne e 16

3.6 Use Case: Reguest CharaCteristic INFOMMELIiON.........ccviceeieriere e eee e ettt se e e e e seeseenne e 17

4 CORRELATOR CONTROL SOFTWARE OVERVIEW.....ccociiiiiet ettt sttt 17
4.1 Correlator Software System Packages and FUNCLIONal OVEIVIEWcoceeiiirieiiieeeeeeee e 18
I R A\ O O 0o g 1= ox 0] g =T = o L= USRS 19

O I AN g Y T = = Tex - T [TSSO 19
G T O O g T= T T gl = Tor = To USRS 19
4.1.4 Characteristic INformation PACKAGEcoeiiiieriieieee ettt et eae e seestesbesaesaeeneeneeneans 20
415 Command ProCeSSOr PACKAGE.........cccvieiiieeierieie st st st seeteeseeesteste s e sseese e e e tessestessesseeseeseesseseessessessessennsansesenns 20
4.1.6 Correlator Controller PACKAGE.viuiieieeieieese st sttt eseste st e e s testestesreeseeseesseseestestessesseeneensesenns 20
417 Data ProCESSOr PACKAGE. ccuereerieiteitistiseetiestesestestestessesseeaesessestesseaseessessessessessessesseesesssessessnssessessessenssnnsessnns 20
4.1.8 Data Collector CONNECION PACKAGE.cceuerieierisiesieseeeeeeeseste s e e s e e e e reste e sreese e e e sessessessessessesnsenseseens 20
e T = o) g o o 1 g o = U = T =SOSR 20
4.1.10 Integration Manager PaCKAQGE.........ccvvuiiiieeieeerese s e st s et e etesteste e re s e e e e seestesbesseeseeseesseseessessessessenneeneenenns 20
4.1.11 MOoNitor MAnagEr PACKAQJEcccoiiiiiteiteie ettt sttt sttt e e s bt b bt ebe et e e e seesbesbesbesaeaneaneeneans 20

LT 8 11/ OSSR 21
5.1 Timing SYNCHIONIZELION ISSUES.......ccueiueiieieitestesie st eteeee e st et e sbesbe et st e e e beseesbesbe s bt eaeeaeansessenbesbesbesbeeneene e e enbeseesbeseene 21

L I N I 7 I 1740 2 I 1 OSSR 22
6.1 INitialiZ€ COITElALOr COMPULEeiuieeeiieie ettt ettt e e et st e besaesbesbesaeese s e e beseeebesbesbeeaeeaeaneeseenbesbesbeebeeneeseesenbeseesbenaene 22

6.2 INitialize COrrelator HBITWEIEc.ouiiiieeiietire ettt bbbttt b et e e b e b et b e e e e s beneenes 22

7 OBSERVATION CONTROL ..ottt sttt sttt st s st se s be e st b e e st st e e e st s be e e st s bestenesbenbe st nbenteneees 23
A (= 7= (o g I {0 g="oo (8] ¢ 1o o - VO 25
7.1.1 Correlator Configuration ClasS........cicuuueeerierereseseseseeseeteseeseste e sseseeseessestessessessesseeseessessessessessessessesssensenes 25

7.2 Configure the COrrelator NAIAWEIEc.cceieriie ettt re e e e e e e e s tesaeereeneesee e enseseeneenreens 26

7.3 CONfIQUITNG DA PrOCESSING .. veveeverueeseeeeseestestestesseesesseeseessessessessessesssesesssessessessessessessesssessessessessessessesseessmssessessessensenes 27

7.4 Starting and stopping correlator integrationNS VIAthe LTA ... bbb 27

7.5 Retrieving and processing raw 1ag results from the LTA e 27

FARD L K- YA I = To N o TSRS 29

7.7 Transmitting Spectral Results to the Data COHECLON ..o e 30

Page 2 of 54

8

9

10

11

12

13

14

7.7.1 Correlator OULPUL DA SIZES.......ceceverueereereeieseestesestessesseeseeseessessessessesssessessessessessessesseessessessessessessessessesnsensenes 31

CORRELATOR HARDWARE INTERFACEceii ittt sttt sttt st sttt sttt 32
MONITOR INFORMATION ...ttt sttt sttt sttt se b e e se b et e se s b e b e st s b et enesbete st sbebenesbeneenenes 33
CHARACTERISTIC INFORMATIONttt sttt sttt sttt tesas e stesa st stesessessesessessassesessessssessesensessnnensen 34
[A €1 N[15 I 8 3SR 34
I O = ol oo o T Vo SRS 35
DY NAMIC MODEL ...octiiittiteietiste st sttt ste st st saesestesaesesteseesestesaesesteseesesteseesesteseesestessesestessesesseseasesbeseesestesensestesensens 36
2 R Y 10 =S T T 1, L= ISR 36
LIS N\ = L= RS PRRRORURRN 36
R - = (2T =TSSP 38
12.1.2 ACC COMMUNICALION TASKectiitieetirtireetesteseeteste sttt st sttt st st st se et st eseebesbeseebesbeseebesbeseebesbeseebesbeseebesbeseesestenennens 38
T T O @ (V-7 T 1= N = S 38
12.1.4 INtegration MaANAGEr TASK........ccueeeereeeereestestestestessesseseeseessessessessessesseeseessessessessessesseesenssessessessessessessensenssessenses 39
R = T I Vo S 1= 1 S 39
12.1.6 DAt PrOCESSOr TASK ...eeetiitireeuerterietesteseetesteseetesteseesesteseesesteseesesteseebesseseebeseeseebesbe st ebesbeseebesbe st ebesbeseebenbeseesentesennens 39
12.1.7 Data Collector COmMMUNICALION TASK........cccueieeiieirieiieiieesee et e steesteetesaeesteesteesteesteessesneesseesaeesseenseensesssesseessaessens 39
I Y o gL (o g (Y o= o T - S SRS 39
e T N g = VN T 40 S = RS 39
12.2 Correlator Computer TimMiNG ANBIYSISccuiiieieieeeee ettt e et seestesae st ese e e e eeseesbesbesaeeseeeeneeseeseeseeens 40
e I = Fo o N g To = g Lo [B L= o oot TSR 41
12,4 RUN-TIME SEAE INFOIMEBIIONeivieiteiteseetiste ettt sttt sttt st s b e s b et e seeb e st e neebesbeseebesbeseebesbeneereneeneas 42
L1241 AIOWEH SHALES... .o cueiteeetisteseete sttt sttt se ettt sttt st st e bt e e b e sb e s e ebe s b e s e eb e s b e s e ebe s b e seebe e b e seebeebeneebenbeseebesbeneebenbeneenens 42
12.4.2 AllOWED SALE TIANSILIONS.cuiitiieiiitirietiste sttt sttt st st sttt se bt s b e seebe st e seebe st e seebesbeseebesbeseebesbeseebenbeneeneas 43
12.4.3 Tracking the Correlator COMPULET STALEc..cceieieeeieeeieseese e e e e et e e e seestesresneereeneenaenaenes 43
COMMAND PROCESSINGccutiittiitirietiitesteeeste st este st seste st sestestesesse st esessestesessessesessesseneasesseseasessesessessenessessenessessenesses 43
13.1 Command ProCeSSING DESCIPLION.cciiieieriesesesteseseeseesee e ste s e st e sseeseesee e ssestessesseeseessentessessessesseesennsensessessensenns 43
13.1.1 RESET CORRELATOR......ccoctitiitetistestetestestesestestesesteseesestessesesseseesessessesestessesessessesessessesessessesessessesessessesessessesens 44
13.1.2 CONFIGURE_OBSERVATIONc.ciiiiietitisietistesiesesteseesestessesesteseesessessesessessesessessesessessesessessesessessesessessesessessesens 45
13.1.3 START_STOP_OBSERVING.......cccctiirietiitesiettstestesesteseesesteseesesteseesessessesessessesessessesessessesessessesessessesessessesessessesens 45
13.1.4 REQUEST ERROR LOG......cciiiirietiitirietistesieiesiestetesteseesesteseesesteseesessessesessessesessessssessessesessessesessessesessessesessessesens 46
13.1.5 REQUEST MONITOR DATA .. .o ctiesiettstestetestestetesteseesestesaesesteseesestessesestessesesseseesestessesesseseesestessesessessesessessesens 46
13.1.6 REQUEST _CHARACTERISTIC_INFORMATIONccocotiirietisiesietestesiesesteseesesteseesessesaesessesessessesessessessesessessesens 46
13.1.7 RUN_DIAGNOSTIC _TEST....c.iiiieeriereetestereetesteseetesteseesesteseesesteseesestessesesseseesesseseesessessesessessesessessesessessesessessesens 46
T g o T ac T e IS B 1 = o S 46
GLOSSARY OF CLASSES......o ottt sttt sttt st sttt e e st e bt s e e s e e b e s e e n e e be s e e n e e bt st en e e b e st eneebeneenesseseanennes 48
14.1 ACC _COMMUNICAEIONSTASKeuveveieeirisreseesieseesestessessesseeseessessessessessesseessessessessessessesseesssssnssessessessessemsemssessessessensenns 48
I O O (V=0 T= o (= g = RS 48
77 T @ @ 1 o o o] RS 49
I O O O - (- TSRS 49
SR Ol (= I (o (©o a1 1To 0= 1 o o ST 49
N I O o LYV ©o a1 ()| = R 49
A Ole (= - (0 g B Tz (0101 o SRR 50
I o (= = (0] 1Y, Koo R 50
14.9 Correl@aorMONITOIPOINTc.iiiieetiiereetiste ettt ettt sttt e st st e bt sbeseebesbese et e sbeseebesbeseebesbeseebesbeseesesbeneebesbeneesenteeas 50
14.10 Correl atorSCIENCED@IBRESUILScueiuereeiiitireetesie ettt sttt sttt et ettt ese et e s beseebesbeseesesbeseebesaeseereseeneas 50
14.11 DataCollectorCOMMUNICALTIONSTASKcueiveeeterierieteste st st sttt st s te st se et steseetesbeseebesbeseebesbeseebesbeseesesbeseesesseseesessenens 50
14,12 DABPIOCESSOITASK ..eveeetertereetirteseetesteseetesteseetesteseesesteseeseste st esesbe st ebesbeseebesbeseebesbeseebesbeseebesbeseebeabeseesesbeneebenbeneenenteneas 51
14,13 DAASELA CCUMUIBEON eveiteeeteeteseeteste sttt st seetesteseesesteseesesbeseebesbeseebesbeseebesbeseebeebeseebeebeseebeabeneebeabeneesenbeneebesbeneenentenens 51
LA, 14 DEIGYIMOUEoiueeetiiieieetesie ettt sttt sttt st s b st ekt s be s et e s b e se e b e e b e s e bt e Ee s e e bt e b e seebeebeneebeabeneebenbeneebenbeneebenteeas 51
7 LR oo @910 7= 0 o USRS 51
L = g (0] g I o <. USRS 51
I A €= e LTI o] I L TSRS 52

Page 3 of 54

14.18 MONIEOTMANAGEI TASK ...veveieeereeeeieseestessesseeseesees e ssessessesseeseessessessessessesseeseessessessessessesseesesssassessessessessessesssensessensensenes 52

14.19 INtEQratiONMANA0EI TASK ... ueeeereeriertesiesseseeseereestessestessesseeseessesessessessesseeseessessessessessesseesesssassessessessessessenssensessensensenes 52
S <= AV =, 52
14.21 TeStCOrrelaOrCOMMEANGccoiueieeiiiiieeeeee et e e e et e e e eebeeessbaeessabbeessassasessssseassbbeessassssessssseesasbbesssassnsesssbsessasbenessnns 52
15 REFERENGCES.ottt ettt ettt e et e e e et e e e te e e te s s eteesaeeseaessaessateessessbessasesssessasesssaesabessaseesasessasaesneess 54

List of Figures

Figure 1 — Correlator Computer System CompoNnent DIiagram..........ceceereeeerereeeere e esee e see e seeeeeseeseeeee e sseenes 18
Figure 2 — Test Correlator Package Diagram.........coceeciieeieeie ettt st sresre e e sbesreensesneeneenes 19
Figure 3 — Start Observation Timing SYyNChIONIZatiON............cviieieieeiere et 21
Figure 4— Synchronized Short TermM INEEGIatiONS.........ccveeiirrereee e 22
Figure 5 — Observation SeQUENCE DIBOIAIM.......ccci i ieeereeeene e ettt e et e e ee et e eesaeeeestesneenseseeeneessesseenseseeeneenes 24
Figure 6 — CorrelatorConfigUration ClaSS.........ccccuiiiieieiiieese st s et e st et e st ae e tesreesaestesreensesresnnenns 25
Figure 7 — INtegratioNManager ClaSS.........coii ettt sttt e et e et e saeeseeseeeneeseeseeenseseeeneenes 27
Figure 8 — Correl atorDalaPrOCESSON CIASSeeieieeieeese ettt e e et e st e saeeseeseeeneeneeseeeneeseeeneenes 28
Figure 9 — Correlator SCieCnNEDAtARESUILS ClESS.........c.eeiiiiiceece ettt et s reeae s reene s 30
Figure 10 — CHW _CONIOHEr ClESS........eiieiiiiieeieiteeieee sttt sttt st e s e st ae st s re e tesaeeaaastesnaentesteensestesseensesreennenes 32
o 10 = R O O /o gL (o o = = 33
o U e g (o] 0o [0 g = 35
Figure 13 — CONCUITENCY DIGOIAIM.......ccuiiieitecieeie st eeee st e et e e s te e st e st e e tesbesse e tesseeseestesaeeasesteensentesseensenseennenes 37
Figure 14 — Class Task HIBIAICHYooi ittt et e e st st e st e see e e seesreeneeseeeneenes 38
Figure 15 — Correlator Computer System State Diagraim..........coeereieeeere e ece ettt see e ee e enee s 42
Figure 16 — EngCommand base & deriVed CIASSESccuiieuiriiieeie ettt sttt sre et re e 44
Figure 17 — Correlator Configuration SCIEEN........cciieeieiieee sttt et re et e aaestesreeaaesbesreensesreennenes 47
Figure 18 — Correlator CONIOl SCrEENccuiieieeeeeie ettt r e e s e e e nneane e 47
Figure 19 — ALMA Test Correlator Class HIErarChyccoiuiiieie ettt st 48
Figure 20 — Test COrTElalor FIONE VIBWcc.cieeieie ettt s ettt s esbesaa e besreenaestesreensesneennenns 53
List of Tables

Table 1 — Test Correlator MONITOr POINESoiuiieieirisisiesie ettt sttt sttt sse b nne s 8
Table2 — ALMA Test Correlator Configuration MOES...........covieeiiiiiiiieeie et 26
TahDIEe 3 — OULPUL DELA SIZES......c.eeeeeieiieieeteeie et eee sttt et e sttt e s teste e eesteeneeseeaaeeeeseeenseseeeseensesseeneeseeaneeneeseeensenseeneenes 31
Table 4 —Test Correlator Characteristic INFOrMationcocoii e 34
I o L a SR = S Q= e T o) o o IS 36
Table 6 — Theoretical Minimum DUMP TIMES........coiiiieieieee sttt ea e tesaeesresreetesreeneenes 41
Table 7 —Empirical Data ProCeSSING TIMESocoieiiiieierieeesie et et e seesee e steeeeseeseeeeesaeeneesaeeneeseeseeensesseeneenes 41

1 Introduction

This document is divided into three sections. requirements for the test correlator software, use cases based on
those requirements and the test correlator control computer software design. Thisdesign is considered a “ compo-
nent design” which describes a specific component in alarger software system, i.e., the ALMA Test Interferome-
ter Control Software (TICS) (see[1]). The purpose of this component design is to describe the details of this
software from an object-oriented perspective such that it satisfies the use cases and requirements. Itsinitial in-
stallation is as a stand-alone application to be run in an engineering lab environment at the AOC and later in Tuc-
son. The interface components of this design don’t fully match TICS as the latter was specified much later than
this design. Future revisions will modify this design for a seamless interface with TICS.

A standard glossary of terms and acronyms used throughout this document can be found at [2]. Some of the
common acronyms used:

Page 4 of 54

ACC - “Array Control Computer” The computer located at the central control area and responsible for con-
trolling all array functions. It will be a Linux workstation.

CCC - “Caorrelator Control Computer” A real-time computer located at the central control area and responsi-
ble for the control and monitor of the test correlator.

CDP —“Correlator Data Processor” The functional part of the CCC that is responsible for extracting and
processing lags and transferring the spectral results to the Data Collector. The Data Collector is a computer
that accepts well-defined spectra, applies further processing (flagging bad data, etc.) and writes these proc-
essed results to adistribution format.

CHW —“Test Correlator Hardware” The test correlator.

The terms observation, integration, dumps and short-term integration are used throughout this document and war-
rant clarification. Thefirst three terms are defined in [2].

Observation — A set of integrations while the antennas compl ete an elemental pattern across the source, and
possibly while frequency switching, nutator switching, etc

Integration — A set of dumps, all identical in configuration (except for the antenna motion and some others),
that is accumulated and forms the basic recorded unit

Dump — The acquisition of datafrom the correlator corresponding to the smallest interval of time for which a
set of correlated data can be accumulated and output from the correlator.

Short-term integration — The integration that occurs at the correlator chip level during one correlator tick of
1.31072 ms. Multiple short-term integrations comprise a dump.

Thetest correlator will act as an interim device to assist in the evaluation of the prototype ALMA antennas and
the test interferometer while the prototype ALMA correlator is being developed. The scope of this software de-
sign reflects that purpose.

It isimportant to realize that the ALMA control software will not be fully available when this software is first
needed. In order to utilize this software, asimple “stand-alone” software application will be devel oped which can
be used by engineersfor lab testsinvolving the correlator.

1.1 Test Correlator Hardware Description

Thetest correlator is 1 quadrant of the GBT spectrometer. Its capabilities and interface requirements are listed in
[3]. Some of its characteristics include:

Supports 2 antennas

Supports 2 basebands per antenna

Maximum sampling rate per baseband is 1.6 GHz

Correlators are 2-bit, 3 level

Maximum delay of 10 psecs. at 800 MHz

Two bandwidths — 800 MHz and 100 MHz

4 polarization products available- RR, LL, RL and LR
A photograph of the test correlator appears in Figure 20.

2 ALMATest Correlator Software Requirements

In order to define the software requirements for the test correlator control software, requirements for the test cor-
relator are also listed here.

The ALMA test correlator contains the following cards:
1 System Monitor

Page 5 of 54

1 Correlator Control
2Long Term Accumulators
1 Data Tap (optional)

1 Sampler Distributor

4 Correlator Cards

4 Memory Cards

1VME Interface

The functions required by the ALMA test correlator which define the requirements for the test correlator control
software are:

I nitialization —when the correlator cold boots, the control computer needs to perform some rudimentary tests
and initializations
Configuration — before observations can begin, the correlator must define correlator integration parameters

Observing —this includes commands to start observing, process lags, deliver spectrato the Data Collector
and stop observing

Monitoring — the correlator hardware monitors its power supplies and temperatures for out-of-range val ues.

Error Handling — if the correlator hardware has problems, then warnings need to be sent to operators, infor-
mation status needs to be obtained, results of diagnostic tests, etc.

Communication —the correlator computer communicates with the ACC. Communication links need to be
established to the ACC and the Data Collector.

Timing — minimum dump times and synchronization with other array devices must be specified.

Engineering Testing — the test correlator will be used in alaboratory environment that allows for the testing
of the correlator hardware in a stand-alone fashion.

Sampler threshold check —sampler thresholds can be determined using the correlator.
2.1 Initialization

When the correlator boots up, there is a sequence of commands that the correlator computer must send to initialize
the correlator hardware. These initialization sequences shall configure the 3 cards:

Correlator control card
Long Term Accumulator card
System monitor card

Thisinitialization process also verifies that the cards' microprocessors are communicating with the correlator
compulter.

2.2 Configuration

In order to start an observation, afew of items of information must be received by the ACC.
The information required for correlator configuration shall include:
211 Correator system mode which defines the following (see Table 2 for details):
2.1.1.1 Bandwidth information either 800 MHz or 100 MHz
2.1.1.2 The number of spectral channels- 512, 1024, 8192 or 16,384.
2.1.1.3 Auto-correlation or cross-correlation mode.
2.1.1.4 Polarization products are fixed based on the correlator system mode. See Table 2 for details.
2.1.2 Dumptimes

Page 6 of 54

It takes ~46 msto read data out of the correlator regardless of the dump time due to the transfer rate
of the LTA to the VME computer of ~ 5.6 MB/sec and a quantity of data of ~256 KB per dump.
Note that this does not allow for any processing of raw lags, e.g., summing of raw lags, FFTs, etc.
When these data processing functions are added to the read-out duration, the minimum dump time
shall be ~70 ms.

2.1.3 Synchronized short-term integrations
The correlator shall be capable of starting a set of short-term integrations on the leading edge of a 48
ms timing event. There are 36.621... 1.31072 ms correlator ticksin a48 msinterval, so the correlator
performs 36 short-term integrations and blanks correlation for the remaining fraction.

2.1.4 The maximum dump time shall not exceed ~85 secondsin single dish mode which is fixed by the test
correlator hardware accumulators. For interferometry observations, the maximum dump time shall not
exceed ~1 second due to the coarse delay resolution of the test correlator hardware (D’ Addario, pri-
vate comm.,2000).

215 Theintegration duration shall be amultiple of correlator dumps. The minimum integration duration
shall be the minimum dump duration. The maximum integration duration shall extend to many hours.

2.1.6 Thenumber of integrations for an observation shall be specified.

2.1.7 One, two or four separate memory bins can be utilized for an integration with bin switching times
synchronized to 48 ms array-wide timing events.

2.1.8 DataProcessing Parameters
The correlator computer shall allow the following data processing options to occur on the raw lags
from the test correlator:

- FFT
van Vleck quantization correction
Hanning windowing function
Spectral averaging where a variable number of adjacent spectral channels are averaged together.
Spectral decimation: only every n-th channelsis retained.
Define asubset of spectral channelsfor delivery from the correlator computer to the ACC.
2.3 Observing

In order for an observation to occur, the correlator computer shall:

231

232
233

234
235

2.3.6

2.3.7

238
239

For interferometry observations, apply the coarse delay to the correlator hardware before the start of
an integration based on the delay model whose coefficients are received from the ACC.

Issue a start observing command to the correlator hardware.

Collect raw lag results from the correlator hardware with minimal latency after each dump via an ex-
ternal memory FIFO on the VME bus.

Process raw lags results for each correlator dump using specified data processing options.

Apply afine delay correction after the FFT (but before averaging or decimation) for interferometry
observations for each spectral data set.

Allow for multiple correlator dumps per integration. Thisis defined as adding together the spectral
results for the current correlator dump with other those results from previous dumps in the correlator
computer data processing unit before transmitting them to the Data Collector.

Time stamp each integration using array time that specifies the integration start.
Transmit each spectral data set to the Data Collector.

I ssue a stop observing command to the correlator after the preset number of integrations has been
reached or in response to an “stop observation” command from the ACC.

Page 7 of 54

2.3.10 The correlator data processing computer system should support the maximum data rate of ~160,000
complex spectral visibilities/second (~640 KB/sec) and a processing rate of ~4 MFLOPS. See [4] for
details.

2.4 Observing Modes

Thetest correlator shall support the following observational modes:
24.1 Interferometry mode using 2 antennas

2.4.2 Oneor two antennas operating in single dish mode. Note that due to limitations of the test correlator,
both antennas must have identical configurations and start integrations simultaneously.

2.4.3 180° phase switching shall be done externally before input to the correlator (see[5]).
24.4 90° phase switching support is a desired feature (D’ Addario, 2000, private comm.)

245 Testing of side band suppression using the LO’ s and separate baseband channels for each side band
so that both side bands can be observed simultaneously (D’ Addario, 2000, private comm.)

24.6 Beam switching modes shall be supported at a rate of 48 ms.
2.4.7 Frequency switching is adesired feature at arate of 48 ms.

2.4.8 Correlator bin switching synchronized to the 48 ms array-wide timing events shall be used for syn-
chronized switching with 2 or 4 bins shall be available.

24.9 On-the-fly mode shall be supported asit isfor the MAC spectrometer on the 12m [6]. Minimum
dump times shall be limited to ~70 ms.

2.4.10 The start of short-term integrations at the correlator chip level can optionally be synchronized to the
48 ms array-wide timing eventsin order to test system synchronization with other hardware compo-
nentsin the test interferometer. (D’ Addario, 2000, private comm.)
2.5 Monitoring

25.1 Thecorreator computer shall monitor the following voltages and temperatures:

Index Quantity Units Resolution
1 +5VDC Volts 5mV

2 -5VDC Volts 5mVv

3 -2VDC Volts 5mVv

4 +24\VDC Volts 15 mV

5 +15VDC Volts 10 mV

6 -15VDC Volts 10 mv

7 Temperature in degrees C Degrees Celsius | 0.1 degree

Table1—Test Correlator Monitor Points
252 Thepolling rates for these monitor values shall range from 5 — 30 seconds and shall not interfere with
other control and data collection and processing functions.
253 These monitor data shall be made available to the ACC.

254 The correator computer shall know the actual operationa state of the correlator hardware at all times
and make this information available to the ACC.

Page 8 of 54

2.6 Error Handling

26.1
26.2

The correlator computer shall know the error condition(s) of the correlator hardware at all times.

The correlator computer shall log any run-time errors and report them to the ACC when requested.

2.7 Communication

271
2.7.2
273

274
275

276

2.8 Timing

28.1

282

2.8.3

284

2.85

2.8.6

Communication to the ACC and the Data Collector will be via TCP/IP.
Transmitted spectral or lag data shall be single precision |EEE floating point values.

The correlator computer shall track the status of the connection with the ACC and the Data Collector
and set error conditions accordingly.

All transmitted data shall be sent in network byte order with no padding.

Except for reading lag results, the correlator control software shall communicate to the CHW via se-
rial communication using the following parameters: 57,600 baud, 8 data bits & 2 stop bits.

The datatransfer rate for lag results from the LTA to the correlator computer shall be about 6
MB/sec.

The correlator system tick is an exact value of 1.31072000... ms so al dump times shall be amultiple
of thisvalue.

The correlator computer shall have a physical interface to the 20.833... Hz array time (48 ms Timing
Event) asdefined in [7] for purposes of tracking array time and synchronization with the array.

Thetest correlator hardware shall utilize the 48 mstiming events as defined in [7] for synchronizing
integration starts.

The processing of lag results shall occur in a double-buffered fashion, i.e., whilea CHW isintegrat-
ing on the current dump, the lag results from the previous dump are being processed.

Dump times shall be controlled such that there is sufficient time to process the lags without overrun-
ning one set of lags with a new set. This duration limit shall depend on the correlator system mode.

Time critical commands shall be received from the ACC at least 72 ms before the specific Timing
Event to which the command applies.

2.9 Engineering/ Test Interface

291

292
293

294
295

2.9.6

A simple computer interface on a separate host computer shall be provided for testing the correlator
in “stand-alone” mode. This interface shall have the following functionality:

Act asasimple ACC to issue control commands to and view responses from the correlator computer.

Act as asimple Data Collector as to accept spectral results from the correlator computer for archiving
and viewing in a near real time fashion.

Allow the user to execute simple sequences of commands

Allow the user to view raw lag results and other information useful in debugging the test correlator
hardware.

A graphical interface for configuration, execution of tests and display of test results.

2.10 Calibration

210.1

A procedure shall exist to determine the sampling threshold value for each test correlator sampler.

Page 9 of 54

2.10.2 Water vapor radiometry will not be available for the baseline plan for the test interferometer so no
atmospheric correction isrequired.

3 Correator Use Cases

These use cases apply to the test correlator when used to eval uate the prototype antennas in single dish and inter-
ferometry modes. For engineering tests, there will be a host computer acting as a simple ACC and Data Collector.

The layout of use cases follows that used by ESO. See [8] for more information regarding this format. States
identified in these use cases appear in the state diagram in Figure 15.

3.1 UseCase: Test Correator Initialization

This use case describes the test correlator system initialization process. The correlator subsystem is comprised of
two hardware components that require initialization:

Correlator Hardware (CHW) which must be powered on before initialization of the correlator computer.

Correlator Control Computer (CCC)

Initialization of the correlator computer can beinitiated in three ways:
1) by turning on the power,
2) by pressing the correlator computer’ s reset button on the correlator computer front panel,
3) by areset command sent from the ACC.

States

DISABLED - Correlator subsystems have been turned on or reset via areset command or aphysical reset
switch and are in a state which requires an initialization sequence to be performed.

IDLE - Correlator subsystems are functioning correctly and the CCC is ready to accept commands from
ACC while the CHW is ready to accept commands from the CCC.

FAULTED — An error has occurred initializing a correlator subsystem thus causing that subsystem to be not
usable. Might require operator intervention.

Actors
Primary:
ACC
CCC
Data Collector
Human operator who can power up the CHW and/or the CCC.

Secondary:
Correlator Hardware (CHW)

Priority: Critical

Performance: N/A

Frequency: At startup and irregular intervals otherwise, such as after areset

Preconditions: State(CCC) = DISABLED | DON’'T_CARE. Power to the CHW & CCC must be on.

Basic Course
Subflow: Initialize Correlator Computer
Subflow: Initialize Correlator Hardware

Post conditions. State(CCC), State(CHW) =IDLE

Subflow: Initialize Correlator Computer
I nstantiate singleton objects

Page 10 of 54

Spawn tasks

Wait for connection from ACC client

Verify connection to ACC client

Exception Course: CCC initialization error
Wait for connection from Data Collector client
Verify connection to Data Collector client
Exception Course: CCC initialization error

Postcondition: State(CCC) = IDLE

Subflow: Initialize Correlator Hardware
CCC sendsiinitialization commands to CHW
Verify that CHW operational viatests
Exception Course: CHW initiaization error

Postcondition: State(CHW) = IDLE

Exception Course: CCC initialization error
Raise error condition and log error locally which can be polled by ACC
If ACC Connection error
Display error message on CCC console
End if

Postcondition: State(CCC) = FAULTED

Exception Course: CHW initialization error
Raise error condition and log error locally which can be polled by ACC
Execute Reset Correlator use case

Postcondition: Postcondition of Reset Correlator use case.

3.2 UseCase: Correlator Data Observation

This use case describes the execution of an observation using the correlator when the antennas arein single dish
or interferometric mode. Thisisamulti-step process comprised of the following: observation configuration, start
observing, obtain and process raw correlator lags, transmission of spectral results to the Data Collector and stop
observing. Recall that an observation contains one or more integrations and that an integration contains one or
more dumps.

States
IDLE - Correlator subsystemsinitialized, functioning correctly and ready to receive commands
CONFIGURED - Correlator subsystems are configured for an observation
CORRELATING — Correlator subsystems are performing an observation
FAULTED — An error occurred in a correlator subsystem.
Actors
Primary:
Array Control Computer (ACC)
Data Collector

Correlator Control Computer (CCC)
Correlator Data Processor (CDP)

Secondary:
CHW

Priority: Critical

Page 11 of 54

Performance: The CCC must keep up with the transfer of lags from the CHW within the specified dump time.
Exception Course: CCC misses one lag set

Frequency: Asneeded
Preconditions; CCC and CHW have been initiaized. State (CCC), State (CHW) = IDLE

Basic Cour se:
Subflow: Configure observation
If State(CCC) & State(CHW) = CONFIGURED
Subflow: Start observing
While State(CCC) = CORRELATING
Subflow: Process raw correlator lags from a dump
Subflow: Send spectral results per integration to Data Collector
If number of integrations reached OR Stop Observing command received from ACC
Subflow: End observation
End if
End while
End if

Post conditions: Dependent on subflow post condition

Subflow: Configure Observation
CCC receives observation configuration description from the ACC which specifies the following:
- dumptime
integration time
number of integrationsto perform
number of bins 1, 2, or 4 and bin switching time in 48 ms increments
correlator system mode (see Table 2)
If observing in interferometric mode
Geometric delay model coefficients for each antenna
End if
data processing options. Data processing options include:
Booleans to perform FFT, Hanning windowing, van Vleck correction
Spectral channel decimation
Spectral channel range
Spectral averaging
Exception Course: Correlator configuration invalid parameters
CCC sends observation configuration description information to CDP which the CDP utilizesin prepara-
tion of processing the correlator lags
CCC transmits configuration relevant information to CHW
If using 100 MHz bandwidth mode
Download 100 MHz FPGA imagesto CHW
Exception Course: Error configuring 100 MHz mode
End if
Exception Course: CHW not configured.
CCC sends CONFIGURED to ACC

Post conditions: State(CCC), State(CHW) = CONFIGURED
Subflow: Start Observing

Precondition: State(CCC),State(CHW) = CONFIGURED
Exception Course: Not configured for observation
CCC receives a“ start observing” command from the ACC specifying on which timing event to start inte-
grations (TEgay) €ither in synchronized mode or not.

Page 12 of 54

Wait until one timing event before TEg4: and then do the following:

If observing in interferometric mode
Evaluate geometric delay model and apply the coarse delay to CHW before the first dump of an inte-
gration starts. Due to limitations in the test correlator, coarse delays can only be applied before anin-
tegration starts and cannot change during an integration.

End if

Send start observing command to CHW so that it startsintegrations at TEggy.

CCC records array time of start of observation corresponding to TEga¢

CCC natifies CDP that observation start command received initializing integration results accumulator.

Send OBSERVING STARTED response to ACC after TEgar,

Post conditions: State(CCC), State(CHW) = CORRELATING
Subflow: Process Correlator Lagsfrom a Dump

Precondition: State(CCC), State(CHW), State(CDP) = CORRELATING
If first dump
Initialize integration accumulator.
End if
Wait for a set of raw lags from the CHW resulting from a dump

Exception Course: Cannot obtain raw lag results from CHW
Optionally calculate van Vleck, Hanning, and FFT
If observing in interferometric mode

Apply fine delay correction
End if
Apply spectral averaging and/or spectral decimation if applicable.
Add dump spectral results to integration results accumulator

Post conditions: State(CCC), State(CHW) , State(CDP) = CORRELATING
Subflow: Send Spectral Results per Integration to Data Collector

Precondition: State(CCC), State(CHW) = CORRELATING and integration duration completeflag set
Create header for spectral data block identifying correlator configuration, data processing that occurred,
integration time stamp, integration duration, bin number and dump duration.

If last integration
Flag last integration in header
End if
Append spectral data set to header
Send spectral results to Data Collector
Exception Course: Connection to Data Collector |ost.

Post conditions: State(CCC), State(CHW) = CORRELATING
Subflow: End Observation

Exception Course: Previous subflow step post conditions not met
- CCC either receives " stop observing” command from ACC or the number of integrations has been
reached.
Send STOP OBSERVING command to CHW
Record stop observation time
If “stop observing” command received
Process a possible partial set of raw lags via subflows: Process Correlator Lags from a Dump and
Send Spectral Results per Integration to Data Collector flagging last integration.
End if
Send STOP OBSERVING response to ACC which includes the stop observing time.

Page 13 of 54

Post conditions: State(CCC), State(CHW) = IDLE
Exception Course: CCC missesone lag set

This can occur if anew set of lags arrives before the current set being processed does not complete. This essen-
tially means that the dump time is too short.
- Flag error: New lag set arrived prematurely
Complete current data processing
Discard newly arrived lag set
Although the integration duration remains the same, the recorded duration is decreased by one dump du-
ration.

Post conditions: State(CCC) = CORRELATING

Exception Course: Correlator configuration invalid parameters
Flag error reflecting invalid parameter(s)
Return NOT_CONFIGURED to ACC

Post conditions: State(CCC) = IDLE (Note not CONFIGURED)

Exception Course: Error configuring 100 MHz mode
This exception occursif the CCC can't read the FPGA image from disk.
Flag error: Unable to configure 100 MHz mode
Abort remainder of configuration — unable to proceed with observationsin this state.
Return NOT_CONFIGURED to ACC
Note that 800 MHz parameters are resident in the test correlator and there is no fault detection at the CCC
level.

Post conditions: State(CCC) = FAULTED

Exception Course: Not configured for observation

This exception occursif the ACC commands an observation to start without being configured first.
Flag error that an observation was attempted to start without being in the configured state.
Return NOT_STARTED_OBSERVATION to ACC

Post conditions: State(CCC) = IDLE

Exception Course: CHW not configured
Flag error: CHW Not Configured
Abort remainder of configuration — unable to proceed with observationsin this state.

Post conditions: State(CCC) = FAULTED

Exception Course: Cannot obtain raw lag results from CHW
- Flag error: Unable to obtain raw lags from CHW
If successful inretrying retrieval of raw lagswithin atime limit that allows for sufficient time to process

results.

Post conditions: State(CCC), State(CHW) = CORRELATING
Else

Post conditions: State(CHW) = FAULTED
End if

Exception Course: L ose connection to Data Collector
Flag error: Data Collector connection lost
Notify ACC that data connection lost
Stop observing

Post conditions: State(CCC) = FAULTED

Page 14 of 54

3.3 UseCase: Correlator Monitor Information

This use case describes the polling of correlator hardware monitor data and the publishing of this data.

States
IDLE —Thisisavalid state in which monitor information is available
CORRELATING —Thisisavalid state in which monitor information is available
FAULTED — A correlator subsystem has encountered afatal error

Actors
Primary:
Array Control Computer (ACC)
Correlator Control Computer (CCC)
Secondary:
Correlator Hardware (CHW)
Priority: Critical
Performance: ~0.5 secs.
Frequency: once every 10 — 30 seconds
Preconditions. CCC, and CHW have been initialized. State (CCC) , State (CHW) '= FAULTED

Basic Cour se:
- CCC periodicaly polls CHW for al monitor data points
Deliver monitor data points with time stampsto ACC
If monitor data point(s) unavailable
Exception Course: Monitor values unavailable
End if

Postcondition: Monitor values sent to ACC

Exception Course: Monitor values unavailable
Log an error that the CHW is not responding
Deliver this monitor value flagging it as unavailable.

PostCondition: State(CHW) = FAULTED. This s because the CHW is not responding to commands from the
CCC and cannot be controlled by it.

34 UseCase: Correlator Reset

This use case describes areset of the CHW and/or the CCC. The CHW can be “warm reset”, i.e., it microproces-
sors can be reset. The CCC can be rebooted allowing the CPU to reload the OS, and reload and restart the corre-
lator control application.

States
IDLE — Correlator subsystemsinitialized, functioning correctly and ready to receive commands.
FAULTED — CCC or CHW does not recover from reset and transition to the IDLE state.
Actors
Primary:
Array Control Computer (ACC)
Correlator Control Computer (CCC)
Operator who can manually reset the CCC via power-on switch or the CCC'’ sreset button.

Page 15 of 54

Secondary:
Correlator Hardware (CHW)
Priority: Critical
Performance: N/A
Frequency: Asneeded

Preconditions: State(CHW) = Don't care, state(CCC) = Don'’t care unless resetting the CHW, then state(CCC) =
IDLE

Basic Course:
If CCC receives RESET command from ACC
If RESET iswarm reset for CHW
CCC sends warm reset command to CHW
ElseIf RESET iscoldreset for CCC
Cause CCC to reset
End if
Execute Test Correlator Initialization use case
Else hard reset is performed by operator physical switch
Execute Test Correlator Initialization use case
End if

Post conditions: State(CCC), State(CHW) = post condition of Test Correlator Initialization use case.

3.5 UseCase: Execute Diagnostic Check

This use case occurs when the ACC commands the CCC to perform a diagnostic check on the CHW components.
In addition, this use case covers checking the sampler threshold values. These tests include communication paths
between the CHW and the CCC and internally between correlator cardsin the CHW. Note that during a diagnos-

tic check, “normal” correlator functionality is unavailable.

States
IDLE - Correlator subsystemsinitialized, functioning correctly and ready to receive commands
DIAGNOSTIC — Reflects that the CCC is performing diagnostics and should not be interrupted.
FAULTED — CHW does not communicate with CCC

Actors

Primary:
Array Control Computer (ACC)
Correlator Control Computer (CCC

Secondary:
Correlator Hardware (CHW)

Priority: Critical

Performance: About a second

Frequency: Asneeded

Preconditions: State(CCC), State(CHW) = IDLE

Basic Course:
CCC receives run diagnostic check command from ACC
Set State(CCC) = DIAGNOSTIC
If performing sampler threshold check

Page 16 of 54

For each sampler S
For each bit B
Configure CHW configuration information for sampler Sbit B
CCC gtarts 1 dump
CCC returnsraw lagsto ACC
End for
End for
Else
CCC executes requested diagnostic tests on CHW
Exception Course: CHW does not respond to CCC
CCC returns results of diagnostic teststo ACC
CCC executes Correlator Reset use case with CHW warm reset
End if

Post conditions: State(CCC), State(CHW) = IDLE

Exception Course: CHW doesnot respond to CCC
Flag error and wait for resolution of problem by ACC

Postcondition: State(CCC) = IDLE, State(CHW) = FAULTED

3.6 UseCase Request Characteristic Information

This use case occurs when the ACC requests the CCC’ s characteristic information.

States
IDLE - Correlator subsystemsinitialized, functioning correctly and ready to receive commands

Actors

Primary:
Array Control Computer (ACC)
Correlator Control Computer (CCC)

Secondary:
N/A

Priority: Critical

Performance: About a second
Frequency: Asneeded
Preconditions: State(CCC) = IDLE

Basic Course:
CCC receives request for characteristic information from ACC
CCC returns requested characteristic information to ACC (see Table 4 for details).

Post conditions: State(CCC) = IDLE

4 Correator Control Software Overview

Figure 1 shows the main components of this design and their interfaces to external devices. The two components
are the Correlator Controller, which interfaces to the ACC and the CHW, and the Correlator Data Processor,
which interfaces to the Data Collector and the CHW. The term “ Correlator Controller” isintroduced which refers
to the correlator control aspect of the correlator control computer software and provides the distinction from the
physical hardware encompassed by theterm “CCC" .

Page 17 of 54

Array
Control i Correlator Controller (CC) RS-232
Computer TCP/IP

(ACC)
Test
Lab tests combi These 2 components Correlator
these in the test reside in the VME computer, Hardware
EngUl computer i.e., the correlator computer (CHW)

Data

Collector | VME
Computer TCP/IP Correlator Data Processor (CDP) Bus

Figure 1— Correlator Computer System Component Diagram

The correlator controller’s purpose isto provide an interface between the CHW and the ACC and to monitor and
control the CHW. The correlator controller also acts as a conduit for configuration and control information from

the ACC to the CDP. Note that the correlator control computer isa*dave’ device, that is, it only operates on the
correlator hardware when told and performs only the functions that the ACC instructsit to do.

The purpose of the CDP isto obtain the lag results from the CHW’s LTA (Long Term Accumulator), optionally
convert the lag results to spectral points and transmit blocks of spectral data to the Data Collector for further proc-
ng and storage. The correlator controller and CDP components reside in the correlator control computer.

The correlator computer isaMaotorolaMVME-2700 266 MHz VME single board computer (SBC). ThisSBC is
based on an MPC750 PowerPC microprocessor. The VME computer runs VxWorks RTOS ver. 5.4 with Tornado
I1. The engineering operational interface for the correlator computer isthe Tornado 11 hosted on either a Windows
NT or Sun computer. In addition, atest engineering user interface (TC_EngUI) application exists whose details
are described in 8§ 13.2 and assists with operation and debugging. There will be a period when the correlator will
runin a*“stand-alone” mode where the ACC and Data Collector computers will be simulated the TC_EngUl ap-
plication. This application can run on the same computer as the Tornado Il host or a separate computer.

There exists a set of C software routines for the MAC spectrometer authored by Jeff Hagen. Some parts of his
code have been utilized in the following design. There were two parts of the Hagen code, a set of test routines
which were used to perform a complete system test on the spectrometer hardware and a set of routines which per-
formed observations for the 12-meter telescope in Tucson. This software has been in operation for about 2 years
at the 12-m. The test softwareis used pretty much “asis’ to validate the test correlator hardware with modifica-
tions necessary due to a different real-time computer platform while only afraction of the operational part is used.

This document describes an object-oriented design that utilizes UML diagrams. If the reader is unfamiliar with
UML, then [9] provides an adequate overview to familiarize oneself with UML.

4.1 Correlator Software System Packages and Functional Overview

The correlator software has to perform following high-level functions:

Initialization of the correlator subsystems

Observation control

Processing of raw lags

System monitoring and error logging

Array time tracking and synchronization utilities

Maintaining characteristic information

Communication with external control and data storage systems
CHW diagnostics including sampler threshold checking

Page 18 of 54

Figure 2 shows the package diagram that defines the highest level objects of the correlator computer software .
These packages implement the above operations. As the correlator software is a real-time software application,
the description of these packages will include both the functional and time-critical requirements.

ACC Connection .
_| Data Collector Connection
CC Manager

Command Processor

Data Processor

Integration Manager Array Time Characteristic Information
) Error Logging
Monitor Manager Correlator Controller

Figure2—Test Correlator Package Diagram

4.1.1 ACC Connection Package

This package provides an interface layer between the ACC and the correlator controller . The command architec-
ture is considered master-slave in which the ACC initiates commands and the correlator controller responds. All
commands respond with either an acknowledgment in the case of a command or a response of requested informa-
tion thus enabling the ACC to quickly determine the command execution status. The connection protocol will be
CORBA.

4.1.2 Array Time Package

This package has two responsibilities: 1) to maintain array time within the correlator computer by counting the
external 48 ms Timing Events and to make array time available to all other packages needing array time services,
e.g., time stamps of monitor and spectral data and 2) to provide accurate internal timing events for synchroniza-
tion with the 48 ms Timing Events. The CC Manager and Integration Manager packages utilize the Array Time
package for these synchronization items.

4.1.3 CC Manager Package

Thisisthe highest level package whose responsibilities include:

Providing a single point of control, thus enforcing a master-slave architecture within the correlator computer
software

Interfacing to the ACC

Processing and routing of command objects from the ACC to other packages and returning responses from
them to the ACC (assuming a command-driven interface between the ACC and the correlator computer)

Maintaining the state of the correlator computer
Executing diagnostic tests

Page 19 of 54

Assists in coordinating events that must be synchronized to the 48 ms Timing Events.
4.1.4 Characteristic Information Package

This package provides correlator system characteristic information to the ACC. This characteristic information is
currently hard-coded into the software, but could be transparently transferred to a configuration database in the
future if any benefit could be derived from this.

4.15 Command Processor Package

The ACC Connection package uses this package as alexical analyzer of simple ASCII strings commands sent
from the ACC to create command objects. The ACC Connection package then transfers the command objectsto
the CC Manager which in turn delivers them to the appropriate package for execution. The intention isto replace
the ASCII string implementation with a CORBA interface. These details are well encapsulated and will not result
in magjor disruptionsin the software.

416 Correlator Controller Package

The Correlator Controller package provides an interface layer between the Integration Manager and the CHW via
aserial port connection. It encapsul ates the details of this communication link between the correlator computer
and the CHW.

4.1.7 DataProcessor Package

This package obtains raw correlator lag results from the CHW’s LTA, places the lagsinto the correct order, proc-
esses them into spectral results and delivers spectral data blocks to the Data Collector through the Data Collector
Connection Package. This package has a direct connection to the CHW viathe VME bus as show in Figure 1.
4.1.8 DataCollector Connection Package

This package provides an interface between the Data Processor package and the Data Collector computer. Note
that this connection is uni-directional, i.e., data flows only from the Correlator Control Computer to the Data
Collector. The connection protocol will be CORBA.

4.1.9 Error Logging Package

This package provides a globally accessible repository for run-time errors that occur in all of the correlator com-
puter’s packages. A listing of run-time errorsis accessible to the ACC.

4.1.10 Integration Manager Package

The primary responsibility of this package isto control observations using the Correlator Controller package. The
Integration Manager Package configures the CHW including downloading of Xilinx personalities used for 100
MHz modes (the 800 MHz modes are resident in the CHW and don’t require downloading), starts and stops inte-
grations, and helps coordinate the starting and stopping of integrations with the starting and stopping of the data
collection process performed by the Data Processor package.

4.1.11 Monitor Manager Package
This package manages the correlator hardware monitoring and relays monitor information to the ACC. It obtains

information through Correlator Controller package and uses the ACC connection package to deliver monitor data
to the ACC.

Page 20 of 54

5 Time

There are two basic time constants important to the test correlator system: the basic tick of the correlator hardware
(1.31072) and array time which is obtained by reading a master clock that counts 48 ms (20.833... Hz) timing
events (TEs). Timing event pulses will be available to al devicesfor highly accurate timing including the corre-
lator computer and the CHW. TEs are counted internally in the correlator controller to increment array time which
isinitialized viathe array time master clock. The correlator controller will utilize an on-board watchdog timer to
detect if any timing event is missed. An discrepancies between array time in the correlator controller and the
master clock will constitute a serious fault which will require resynchronization with the master clock. Thereisno
need for test correlator to keep track time at afiner resolution than 1 ms. See[7] and [1] for details regarding ar-
ray time.

Correlator integration times are divided into three levels, bin switch time, dump time and integration time.

The bin switch timeisan integral number of TEswhich the correlator uses to switch short-term integrations
into separate memory bins. Each bin switch occurs on the leading edge of a TE alowing for synchronized
frequency or nutator switching.

The dump timeisthetimeinterval at which lag results are available to the correlator data processor. An inte-
gration is a set of dumpsthat are converted to spectral data and summed together internally in the correlator
computer before being delivered to the Data Collector computer.

The integration time isamultiple of correlator dump times.

Time stamps also use array time. This applies to time stamps that mark integration times and for monitor point
values.

5.1 Timing Synchronization | ssues

Synchronization of the correlator computer and CHW with the rest of the array is provided by the 48 mstiming
events. Time-critical commands from the ACC to the correlator controller are time stamped with the array time at
which they are to be executed at the hardware device level. Synchronization is required only when starting an ob-
servation. It will be incumbent on the ACC to deliver the start observation command far enough in advanceto
allow for latency in the network and in correlator controller to process the command and then issue a start ob-
serving command to the CHW. Figure 3 gives an example of this where the ACC sends a “ start observing” com-
mand with atimetag of t., so that the CHW starts observing on the leading edge of timing event m. In practice,
the correlator controller must receive the ACC' s time-tagged start observing command by timing event t,,, », that
is, two timing events before the actual CHW starts correlating to ensure that the correlator controller has enough
time to process the start observing command.

Start Observing cmd. sent
to CHW here, (after t
Start Observing cmd from

m-1)

ACC processed here Start Time, Hardware
i Action Performed Here at
Time Tagged (t = m) Specified Time tag

Command Sent Here

Timing Events

ti ti+1

Figure 3 — Start Observation Timing Synchronization

t.

i+2 £

t t t

m-2 m-1 m m+1

Short term integrations at the correlator chip level can be synchronized to array TEs. In this case, 36 short term
correlator integrations occur and then blanked until the leading edge of the TE. The starting of integrations is
identical to the non-synchronized case.

Page 21 of 54

Figure 4 shows the timing of synchronized short-term integrations using two bins with a bin switching time of 48
ms and adump time of 192 ms. It also shows the short term integrations being blanked for a fraction of the 48 ms
leading to a correlation minor inefficiency. Also the dump duration is 96 ms as each dump transfers 2 bins' worth
of raw lags. All signals are shown as positive logic.

48 ms
TEs

term it I |

Bin 1

Bin 2

Dumps (Bank
switches)

Figure 4— Synchronized Short Term Integrations

6 Initialization

Sections 6 through 11 detail the classes that contain the various functions of correlator initialization, operation and
data processing and follow the functional layout described in 8 4.1. These functions are then controlled by higher
level task classes described in section 12. A class glossary in section 14 shows the relationship between these two
sets of classes.

Initialization is a set of procedures the CC Manager performs at correlator computer power-up or reset. There are
three areas that are addressed at initialization: correlator hardware initializations, internal systems and connec-
tion(s) to the ACC and Data Collector. After initialization is performed, any possible initialization errors are re-
corded locally and are available to the ACC except afailure to connect to ACC.

6.1 Initialize Correlator Computer

Correlator computer initialization performsinternal checks to ensure that all packages are functioning correctly,
e.g., tasks are correctly started, objects are instantiated, communications among the packages are okay, correlator
hardware initializations were successful, etc.

Initialization of the ACC Connection and Data Collector Connection packages start processes which allow for
connections from the ACC and Data Collector clients. If errors occur with the ACC Connection package, then
they are displayed on the VxWorks console asthereisno means of transmitting these errorsto the ACC.

6.2 Initialize Correlator Hardware

The CC Manager performs CHW initialization using the Correlator Controller package. The following are re-
quired to initialize the test correlator hardware:

Load initialization sequences into the correlator control, LTA and system monitor control cards.

Perform simple system checks on each control card to ensure that the serial connections between the correla-
tor computer and the embedded microcontrollers are valid. Do asimilar check for VME bus-connected de-
vices.

If any errors occur, record them and set the state to FAULTED. Thiswill require rebooting or further diagno-
Sis.

Page 22 of 54

7 Observation Control

This section discusses the steps to configure, start, process lags, and stop observations. All the packagesin Figure
2 are utilized except for the Monitor Manager and Characteristic Information packages. Control for an observation
addresses the following areas:

Preparation for acquiring data involving the reception of configuration information from the ACC, setting up
internal data structures describing the observation and relaying relevant configuration information to the CDP
and configuring the geometric delay model evaluator as needed.

Configure the CHW in preparation for an observation.

Applying a coarse delay as needed when using interferometry mode.

Starting integrations.

Retrieving raw lag results from the LTA which is afunction performed by the CDP.
Processing correlator results done by the CDP, i.e., FFTs, fine delay adjustments, etc.
Transmitting the spectral resultsto the Data Collector.

Repeating the above 3 steps until integrations are stopped..

Figure 5 is a sequence diagram for an observation which shows the main flow of control between the two external
system actors, the ACC and the Data Collector, and the internal correlator subsystems actors, the correlator con-
troller , CHW and CDP. Messages flow in from the ACC as commands and are received and handled by the CC
Manager which distributes them to the appropriate handlers for further processing. Spectral results flow out of the
CDPto the Data Collector. A complete discussion of all these processes follows.

Page 23 of 54

Configure Observation

Perform observiation

CC Manager Integration Manager CorrelatorController DataProcessor

] ! T
| ! :
| |
AdIC | : CI-IIW i Data Cl:)llector
|
|
sethbservationDesc() : : | ! |
» configureObservation() : : :
: ! configureObservation() : | : |
N
| : | | configureObservation() | : |
I | L I
| : : configureObservation() | : |
| ' 1 N
! ! ! | ' |
| | | !
| ’ | | | | |
sendModelCoefficients() : | !
I ! BN} !
| : applyCoarseDelayValue() | : |
) ! L 1 N |
| startObserving() | | ! [| |
I
. I | |
: startObserving() \: startObserving() : | : |
f N |
			startCorrelatorintegrations()	l
: : :	getRawLags() :			
l	l !			
. ! :	.			
	stopObserving() can com !			
: from A(?C cmd or Whgn # of		: processLags()		
		integrations/observation		1
I	reached I !			
:				
I	sendSpectralResults			
sopobsening	’ :	— y		
stopObservin				
P 90, I	stopObserving()	!		
! stopObserving())		1		
l	: :			
! I				
	! stopObserving() !			
	; \: stopObserving()			
[t [
E ! stopObserving()	E			
Il 1				
i				
: :	sendSpectralResults()			
) .				
! ! |
! | I

Figure 5 — Observation Sequence Diagram

Page 24 of 54

7.1 Preparation for acquiring data

The CorrelatorConfiguration class represents the current configuration of the correlator. This configuration is provided in
the observation configuration description sent by the ACC. It isimportant to note that the test correlator contains one ac-
tive configuration parameter set for the entire correlator. Therefore multiple frequency bands, resolutions, dump times
etc., cannot be configured for different antennas.

7.1.1 Corrdator Configuration Class

CorrelatorConfiguration

+m_integrationTime : int
+m_dumpTime : int
+m_corrMode : CorrelatorMode
+m_numberintegrations : int
+m_numBins : int
+m_binSwitchTime : int

CorrelatorMode

+m_modelD : enum
+m_correlationType : enum
+m_bandWidthResolution : enum
+m_numberPolnProducts : int
+m_numberLags : int
+m_numberSpectralPoints : int

Figure 6 — Correlator Configuration Class

The CorrelatorConfiguration class contains the following information:
Dump Time
Thisisthe correlator dump duration represented as the number of correlator ticks (1.31072 ms)
Integration time
Aninteger representing the integration duration as a multiple of the dump duration.

Number of integrations

Thisinteger specifies the number of integrations to perform. When this quantity of integrations is reached, the cor-
relator controller commands CHW to stop observing and the correlator becomesidie.

Number of correlator bins

This defines the number of correlator memory bins which can be 1, 2 or 4. Multiple bins alow for synchronizing the
correlator short-term integrations with the 48 mstiming events. Multiple bins would be used for 90° phase switching,
frequency switching, nutator switching, and testing of side band suppression by integrating each side band into a
separate bin. Spectral results for each bin are separately sent to the Data Collector, as each bin has an entire set of
raw lags.
Bin switch time
When multiple bins are use, the bin switch time defines an integral number of 48 mstime intervalsto be spentin
each bin. For example, if 2 bins are specified with a bin switch time of 2, then every 96 ms a bin switch occurs.
Correlator Mode
The CorrelatorM ode object encapsulates the correlator system mode information in Table 2. A CorrelatorMode ob-
ject can be constructed with aMode | D which avoids having to specify each member variable.

ModelD

The mode id identifies the configuration setting allowing one to set an aggregate of mode parameters that include

auto or cross correlation, bandwidth resolution, number of lags and polarization products.

Correlation Type

Page 25 of 54

This enumerated value specifiesif the mode is an auto- or cross-correlation mode.

Bandwidth Resolution

This enumerated value defines the observing bandwidth as either 800 MHz and 100 MHz.

Number of Polarization Products

This specifies the number of polarization products for a given correlator system maode which can be either 2 or 4.
Number of Lags

Based on the bandwidth resolution, this integer defines the number of lag results which is either 1024, 2048,
4096, 8192 or 16384. See Table 2 for details.

Number of Spectral Channels

Thisisthe number of final spectral channelsthat is based on the number of lags and correlation type, which is
either 512, 1024, 4096 or 8192.

CORRELATOR | BANDWIDTH | POLARIZATION | LAGS DELAY DELAY

MODE ID PRODUCTS RESOLUTION | RANGE

1 (cross-products) | 800 MHz ORX 1R Q) 512 Leads & 512 Lags 5ns 10 mrs
OL X 1L (2
OR X 1L (3)
OL X 1R (4

2 (cross-products) | 800 MHz ORX 1R (5) 1024 Leads & 1024 Lags | 5ns 10 s
OL X 1L (6)

3 (self-products) 800 MHz OR X OR (7 1024 Lags N/A N/A
OL X OL (8)
IRX 1R (9)
1L X 1L (10)

4 (cross-products) | 100 MHz ORX1IR (11 4096 Leads & 4096 Lags | 20 ns 80 s
OL X 1L (12)
ORX 1L (13)
OLX1R (14

5 (cross-products) | 100 MHz ORX 1R (15 8192 Leads & 8192 Lags | 20 ns 80 s
OL X 1L (16)

6 (self-products) 100 MHz ORXOR (17) 8192 Lags N/A N/A
OL X OL (18)

7 (self-products) 100 MHz IRX1IR (19 8192 Lags N/A N/A
1L X 1L (20)

Table2-ALMA Test Correlator Configuration Modes

One important validity check for correlator configuration parametersis to ensure that the correlator dump time is suffi-
ciently long to allow for extracting the raw lags and processing them to spectral results. Thisare discussed in § 12.2.

7.2 Configurethe correlator hardware
The IntegrationManager classis the primary class contained in the Integration Manager package. It is responsible for
configuring the CHW based upon the active CorrelatorConfiguration object and for controlling observations at the CHW.

The IntegrationManager utilizes the CHW_Controller (see § 8) to convert the datain the CorrelatorConfiguration object
to serial commands understood by the CHW.

Page 26 of 54

IntegrationManager

+startObserving() : bool
+stopObserving() : bool
+configureObservation() : bool
+setCoarseDelay() : void
+loadXilinxFPGA() : bool

=

CorrelatorConfiguration

+m_integrationTime : int
+m_dumpTime : int
+m_corrMode : CorrelatorMode
+m_numberintegrations : int
+m_numBins : int
+m_binSwitchTime : int

Figure 7 —IntegrationM anager class

The data members of this class are:
m_cor relator Configuration — the correlator configuration for the observation

The member functions associated with configuration
configureObser vation() sends the appropriate configuration or integration control commands to the CHW

setCour seDelay() sends the coarse delay value based on the DelayModel in the CorrelatorDataProcessor object if
thisis a cross-correlation observation.

loadXilinxFPGA () manages the download of the FPGA images for the 100MHz narrow bandwidth modes. Due to
their size, the FPGA images take about 40 seconds to download to the CHW during which no other correlator func-
tionality can occur, i.e., the correlator controller is blocked.

7.3 Configuring Data Processing

The next step in configuration for an observation is to configure the CorrelatorDataProcessor object for data processing
options (see 8 7.5 for details). These configuration values come from observation configuration description and set the
appropriate data members of CorrelatorDataProcessor. The CC_Manager transmits this configuration information to the
CorrelatorDataProcessor object.

7.4 Starting and stopping correlator integrationsviathe LTA

Once the correlator is configured for the observation, the correlator controller waits for a“ start observing” command
from the ACC which it then commands the CHW to start observing via the IntegrationM anager::startObserving()
method. If the CorrelatorConfiguration specifies cross correlation mode, the correlator controller first evaluates the delay
model and applies the coarse delay value to the CHW again utilizing the IntegrationM anager class.

Stopping observations happen when 1) the number of integrations specified in the active CorrelatorConfiguration are
reached or 2) the ACC sends a*stop observing” command which completes the current integration or 3) the ACC sends
an “stop observing” which immediately halts the integration returning any partial integration results.

7.5 Retrieving and processing raw lag resultsfrom the LTA
Data processing is a multi-stage process within the Data Processing package. Lags are obtained from the CHW, con-
verted to spectral points and summed into an integration accumulator, a header identifying the spectral resultsis attached

to the results (defined by the CorrelatorScienceDataResults class) and then spectral results are passed onto the Data Col -
lector. All of these functions are managed by a higher-level task asdiscussed in § 12.1.6.

Page 27 of 54

Completion of these time-critical functions must occur before the next set of lags are dumped from the LTA. If the data
processing tasks are not completed within the allowed time, then an error islogged, the newly arrived lags are ignored
and the total integration time is decreased by one correlator dump period. The way to prevent this overrun situation is
empirical —first calculate the data transfer and data processing timesin tests and then use these values to establish the
minimum correlator dump times. Note that this situation is not fatal, it means aloss of observing time. Checks of inte-
gration and dump times can be made in the configuration stage to avoid overrun problems. Estimations of data process-
ing rates are discussed in [4] which shows that the maximum processing load is approximately 2 MFLOPs. The MVME-
2700 VME computer has an estimated rate of approximately 250 MFL OPS which is more than sufficient to handle the
output data rates of the test correlator. Preliminary timing analysis has shown that it takes at about 3 msto process 1K lag
results and that the CPU has attained arate of ~170 MFLOPS.

Once a set of raw lags from an LTA dump has been obtained they then are processed by the CorrelatorDataProcessor
class. The two processing options are: 1) convert the lagsinto spectral points with the following steps (some of which are
optional), or 2) pass the raw lag results directly onto the Data Collector (which is usualy reserved for debugging). The
possible processing steps occur in the following order:

van Vleck correction.

Hanning windowing function.

FFT.

Fine delay correction.

Average the spectral channels.

Spectral channels decimation.

Accumulate the spectral data set into the integration accumulator (handled by a higher-level task).

CorrelatorDataProcessor

+m_doVanVleck : bool
+m_doHanning : bool
+m_doFFT : bool
+m_spectralAveraging : int
+m_startSpectralPoint : int
+m_stopSpectralPoint : int
+m_decimation : int
+m_lags : vector<unsigned long int>
+processLags() : bool
-doVanVleck()
-doHanning()

-doFFT()

-doAveraging()
-doDecimation()

T

DelayModel

+m_modelCoefficients : vector<float>
+m_antennalD : int

+applyFineDelay() : void

Figure 8 — Correlator DataPr ocessor class

The information to perform these various steps is obtained from the observation configuration description sent by the
ACC and held in the CorrelatorDataProcessor class whose members are:

Lags
This array hold the raw lag results from a dump as 32-bit unsigned integers.

A set of Boolean flagsto perform data processing functions
van Vleck Correction

Performs the van Vleck quantization correction of the data in the lag domain which corrects for the discreet clip-

Page 28 of 54

ping of the input signal.

Hanning Smoothing

Performs a Hanning windowing function on the lag results.
FFT

Performs an FFT using the MIT FFTW library (see http://www.fftw.org for details). If thisflag is not set, then
raw lag results are sent to the Data Collector (as a diagnostic tool).

Delay Model
The Delay Model object holds the geometric delay model coefficients for an antennain the correlator configuration
for interferometry observations. It is assumed that the delay model is applied to one antenna while the other antenna
is“fixed”. The DelayModel class has the following members:
- antennalD
Thisis the antenna number to which the model coefficients apply. The delay model, as described in § 7.6, applies
the delay correction on an antenna basis.
model Coefficients

Thisisan array of floating point values which hold the coefficient values for the given antenna.

Decimation of Spectral Points

This integer number defines which spectral pointsto discard, or decimate. The values can be O - no decimation, 1
every other point discarded, 2 — one point every two points, 3 — one point every three points, etc., up to 10.
Spectral Averaging

Allows the spectral pointsto be averaged together. The values of 2, 3, 4, etc. refer to the number of adjacent chan-

nels averaged together. The number of spectral points decreases accordingly with the average, e.g., ¥2 the channels
result for an averaging of 2.

Starting/Stopping Spectral Points

This selects the spectral channels of interest either for spectral or lag points to be delivered to the Data Collector after
all data processing steps have been performed.

7.6 Delay Tracking

When the correlator is operating in interferometry mode, the delay in the signal paths must be adjusted. This delay ad-
justment is time-dependent and is applied in two steps. The coarse delay is applied to the CHW before an integration
startsand is valid throughout the integration keeping in mind the one-second integration limit in interferometry mode. A
find delay adjustment is made on the spectral results for each dump before they are accumulated in the integration accu-
mulator.

The DelayModel member object of the active CorrelatorDataProcessor object contains delay model coefficients for a
specific antennain the baseline — it is assumed that the other antenna s delay is zero. The delay model coefficients are
provided by the ACC using the delay model server from Benson which is based on the Mark 111 analysis software
(CALC/SOLVE) from Goddard [10]. Evaluation of adelay model equation provides the necessary delay correction and
is of theform:

dt (t) = Do + Dyt + Dot? + Dgt® +D,t*

where D, - D, are coefficients that depend on the baseline between the two antennas and their pointing positionand t is
the current time relative to the start of the integration.

The coarse delay sent to the CHW before an integration startsis of the form:

Deoarse(n) = round(Dosr(n) + dt(N, to + teiay/ 2) / tresolution) 1)
where:
Dcoarse(N) the coarse delay for antennan
Doti(n) aconstant delay offset for antenna n which reflects cable length differences for antennan
to the start time of the integration interval

Page 29 of 54

tdelay the delay setting interval, i.e., theinterval of time for which the coarse delay isvalid
which isnominally ~ 1 second

{resolution the delay resolution time (either 5 or 20 ns)
round() anearest integer function.

Asthetest correlator hardware is based on an auto-correlator, a modification was made to alow cross correlations. This
modification requires that a delay offset be programmed for the correlator hardware so that the lags from one antenna are
shifted such that they line up correctly with the lags for the other antenna. Consequently, each Dgoar s SENt t0 the CHW
has this delay offset value added to it which is afixed quantity relating to the number of lags for a given cor-
relator system mode.

Once the lags are converted to complex spectral values, the fine delay adjustment is made. Thisinvolves evaluating the
delay model equation which provides a high-resolution value for the geometric delay at a given point in time. Thefine
delay is simply the difference of the delay model equation (dt (t)) and the coarse delay determined abovein (1) (
Deoarse(N)) and then applied to the spectral data as a phase shift before being summed into the integration accumul ator:

Drine(N) = dt (t) - Deoarse(N)
Another way to view the delay isthat it’ s a phase adjustment of 2 complex numbersC; & C:
C]_ i C2 - Ri R] e i(71+72)

7.7 Transmitting Spectral Resultsto the Data Collector

Once the results are processed, they are transferred to the Data Collector. For each integration of an observation, the re-
sults are provided with a header identifying information that describes the data sets of an integration. Many of these
header items are copies of the configuration parameters used by the CorrelatorDataProcessor class. There is one set of
spectral data results for each polarization product and each bin of an integration.

CorrelatorScienceDataResults

+m_integrationStartTime : TimeStamp
+m_integrationDuration : long
+m_binNumber : unsigned char
+m_resultsType : unsigned char
+m_polarizationProduct : unsigned char
+m_spectralAveraging : unsigned short
+m_startSpectralPoint : unsigned short
+m_stopSpectralPoint : unsigned short
+m_spectralDecimation : unsigned short
+m_lastDataSet : unsigned short
+m_numOfChannels : unsigned short
+m_spectralResults : vector<float>

+prepareResults() : vector<float>

Figure 9 — Correlator SciecneDataResults class

The data members of the CorrelatorScienceDataResults class are (all but the last item define the header with the last item
being the data):

Integration Start Time

A time stamp in units of array time that records the start of the first dump of the integration.

Integration Duration

The actual duration of the integration taking into account any missed dumpsin units of 100 nanoseconds.

Polarization Product | ndex

From Table 2, column 3 this is the number in parentheses which uniquely identifies the polarization product6 for a
given integration.
Correlator Bin Number

Page 30 of 54

Each bin is a separate data set with this 1-based number identifying the bin.

Results Type
This set of bit-wise flags tells what processing steps have been performed, i.e., FFT, van Vleck correction and/or
Hanning windowing.

Number of Channels

Thisisthe number of datavalues of raw lags or complex spectral points.

Spectral Averaging

Reflects any averaging of the spectral points. Thisis copied from the CorrelatorDataProcessor class.
Starting/Stopping Spectral Points

Reflects the starting and stopping spectral points. Thisis copied from the CorrelatorDataProcessor class.
Decimation of Spectral Points

Reflects any decimation of spectral points. Thisis copied from the CorrelatorDataProcessor class.

Last Data Set

A boolean value flagging this as the last set of results for an observation.

Spectral Results

These are the results as either raw lags or spectral points whose quantity is specified by the appropriate correlator
mode.

7.7.1 Corrédator Output Data Sizes

When the Correlator ScienceDataResults are transmitted to the Data Collector as a block of binary data, Table 3 summa-
rizesthis data and their sizes. The number of data points, N, represents the 2 times the number of channels for spectral
results as each spectral point isacomplex value with real and imaginary components, or it equals the number of channels
for lag results.

Description Data Type Size (bytes)
Integration Start Time as Array time long long integer 8
Integration Duration long long integer 8
Polarization Product I ndex unsigned char 1
Correlator Bin Number unsigned char 1
Results Type unsigned char 1
Number of channels unsigned integer 2
Spectral Averaging unsigned integer 2
Starting Spectral Point unsigned integer 2
Stopping Spectral Point unsigned integer 2
Decimation of Spectral Points unsigned integer 2
Last Data Set unsigned char 1
Number of Data Points (N) unsigned integer 2
Spectral/Lag Data Results uingle-precision float Nx4

Table 3-Output Data Sizes

Page 31 of 54

8 Corrdator Hardware I nterface

The interface between the high-level classesthat control the test correlator and the correlator hardware is encapsulated in
the CHW_Controller class. It utilizes two other classes, TestCorrelatorCommand and Serial Driver, to transmit viaa se-
rial port, the specific bytes required by the test correlator hardware for its control. Asthis class provides a hardware inter-
face layer, there is only one instance of it whose access is guarded with a semaphore to avoid errors having multiple tasks
communicating to the CHW.

CHW_Controller

+m_corrConfiguration : CorrelatorConfiguration
+m_cmd : TestCorrelatorCommand
+m_cmdSemaphore

+configureObservation() : bool
+startStopObserving() : void
+reset() : void

+initialize() : bool
+sendXilinxFile() : bool
+requestMonitorData() : bool
+sendCoarseDelay() : void

1 1
1
TestCorrelatorCommand
+m_cmdAndData : vector<byte> SerialDriver
+m_cmdType : enum +m_rawlnputBytes : vector<char>
+m_cardAddress : enum +sendCommandy() : bool
+cmdAsVector() : bool +waitForResponse() : int
+sendXilinxFile() : bool

Figure 10— CHW _Controller Class

The CHW_Controller class contains the following data members:

Command Semaphore

Thisisthe VxWorks semaphore which controls access to the sending of commands via the serial connection to the
CHW.

Correlator Configuration

A copy of the IntegrationManager’ s CorrelatorConfiguration object defining the current correlator configuration. It is
used to configure the correlator mode and dump duration.

Test Correlator Command

This class encapsulates all of the specifics of the test correlator commands as described in [14].

SerialDriver

This object isthe low-level interface to the serial port. It contains knowledge of the command protocol utilized by the
test correlator and provides functions to send TestCorrelatorCommands, wait for responses from the CHW and to
download Xilinx personality images when changing from wide to narrow bandwidth modes.

Besides these data members, the CorrelatorManger has many interface functions which control the correlator hardware.
Each of the following functions are translated to one or more instances of the TestCorrelatorCommand class. They are:

initialize()

Initialize the CHW after a power up or soft reset, loading default configurations into various hardware cards.
configureObservation()

Allows configuration of the CHW utilizing a CorrelatorConfiguration object

startStopObserving()

Starts integrations with short-term integration either synchronized or not to the 48 ms Timing Events or stopsinte-
grations.

Page 32 of 54

requestM onitor Data()

Requests monitor data from the test correlator.

reset()

Performs awarm reset on the CHW.

applyCoar seDelayValue()

Sends a coarse delay value to the correlator hardware.
sendXilinxFile()

When changing bandwidth modes from 800MHz to 100MHz, thisloads the Xilinx FPGA image from adisk fileto
the CHW.

9 Monitor Information

Thetest correlator’ s system monitor card provides the monitor information that can be retrieved by the correlator con-
troller . These monitor values appear in Table 1.

The class that holds monitor data has a simple format. There is one instance of an CorrelatorMonitorPoint for each of the
itemsin Table 1 and they are held in an vector by the CC_Monitor class.

The polling rate of monitor datais doneis 30 seconds. The ACC requests specific monitor values from the correlator
controller returning the most recently obtained values. The polling processis managed at a higher level. Monitor values
areretrieved by getM onitor Data() and placed into the vector of CorrelatorM onitorPoints.

CC_Monitor

+getMonitorData() : bool

1

CorrelatorMonitorPoint

+m_availability : bool
+m_rawValue : unsigned short
+m_SlIValue : float
+m_timeStamp : TimeStamp
+m_scalingFactor : float

Figure11 - CC_Monitor class

The data members for CorrelatorMonitorPoint are:
availability
Availability indicates that this point can be read. In normal operation thiswill be true.
rawValue
Thisisthe actual raw value of the monitor point as a 16-bit unsigned integer.
Sl Value
Thisisthe raw value converted to Sl units as afloating point value. These units are listed in Table 1.
scalingFactor

This provides a scaling factor to convert the raw value to Sl units which are essentially the resolution valuesin Table
1

timeStamp
Thisisthe array time when the monitor point was polled.

Page 33 of 54

10 Characteristic I nformation

Characteristic information refers to data that describe the correlator's operating parameters. These do not change for the
correlator, but provide a simple mechanism for external devices such asthe ACC to query the correlator controller and
determine its basic operational information. These informational items are nominally strings unless otherwise noted. This
information is held by the Characteristic Information package to which the CC_Manager has access and provides to the
ACC on request.

Index | Item Description

1 Cross-correlation tick | Number of milliseconds of one correlator tick in cross-correlation mode. This
time valueis 1.30172.

2 Auto-correlation tick Number of milliseconds of one correlator tick in auto-correlation mode. This
time valueis 1.30172

3 Maximum data rate The fastest rate at which data can spew out of the correlator in units of re-

sults/second. Raw lag results will be 32-bit integers while spectral points will be
32-bit floating-point numbers

4 Bandwidth modes A list of the available bandwidth modes. These are 800 MHz and 100 MHz. An
asterisk next to the mode indicates that a Xilinx FPGA personality image needs
to be downloaded for this mode, e.g., “100MHz*".

5 Mode Change Time This describes the time (in seconds) it takes to perform a correlator mode
change. For 800MHz mode, the value is 100 ms and for narrow band mode
(100MHz) the value is 40 seconds.

6 Minimum Dump Time | Thisisthe shortest dump time (in milliseconds) for the correlator hardware.
Thisvaueis 96 milliseconds for synchronized short-term integrations and ~70
milliseconds for non-synchronized integrations

7 Computer Type Thisisasimple string identifying the correlator computer type. It is*“Motorola
MV 2700 MPC750".
8 Monitor point list A list of monitor points names, refer to Table 1 for details.

Table4 —Test Correlator Characteristic | nformation

11 Diagnostics

Diagnostics refer to tests that can be run on the CHW to verify that it is operating correctly. Each test returns a success
or failure flag with any errors being logged to the ErrorLogger (described below). In most cases the correlator computer
must be reset after diagnostic tests complete. The execution of diagnostic tests are managed by the CC_Manager.

These diagnostic tests include:

Read and write to scratch memory (up to 1024 bytes) on the system monitor, correlator control, and LTA cards. This
test validates the serial links between the correlator computer and the system monitor card, and between the system
monitor card and the other correlator cards.

Check that the FIFO memory on VME interface card can be read. This ensures that the VME addressis correct and
the bus handshaking between the VME interface card and the VME computer is being done correctly.

An additional diagnostic check isthe check of the sampler threshold levels for the plus and minus bits. To do this
check, aspecia corréation system mode is set, a short integration is made and the zero channel of the raw lags are

sent to the ACC. This check is performed eight time, once for each bit for each of four samplers. Thisisthe only test
which does not require the correlator computer to be reset.

Page 34 of 54

111 Error Logging

Error logging is accomplished by all objects having access to a single instance of an ErrorLogger object. As other soft-
ware objectsin the system encounter run-time errors, they log the errors with the ErrorLogger. The ErrorLogger main-
tainsacircular buffer of ErrorLogEntrys enabling it to keep track of errorsfor alimited period of time. This circular
buffer prevents unlimited memory usage and is adjustable in size. This error history can be retrieved by the ACC getting
the entire circular buffer or just the errors since the last retrieval —referred to as “ new errors”.

ErrorLogger
#m_errorLogSize : int

+printErrorReport() : string
+printNewErrors() : string
+logError() : bool

1

*

ErrorLogEntry

+m_subSystemID : int
+m_errorCode : int
+m_timeStamp : long
+m_plInfoString : string
+m_reported : bool

Figure 12 —ErrorLogger Class

When an error occurs, ErrorLogger::logError() creates an ErrorLogEntry object and placesit into the m_errorHistory
vector. The members variables of the ErrorLogEntry are:

M _subSystem| D —which isauniquely generated identifier for each object that logs an error. This subsystemidis
based on a name-lookup so that the object calling ErrorLogger::logError() supplies a characters string name which is
then converted to an integer

m_error Code - thisis the subsystem specific error number.
m_timeStamp — the array time when the error islogged.
m_plnfoString —thisis a pointer to a string which contains optional error information.
m_reported — a boolean which determinesif this error item has been reported via ErrorLogger::printNewErrors()
allowing oneto only access new errors that have occurred since the previous request.
The ErrorLogger class members are:

m_errorHistory — the vector of ErrorLogEntryswhichisacircular buffer to avoid growing forever. Entries can be
overwritten.

m_errorLogSize —the size of the m_errorHistory array which can be varied allowing for resizing of the error his-
tory. The default size is 500 entries.

logError() —theinterface to log an error. Input parameters are the subsystem name, the error code and any optional
information specified using a C printf variable argument string.

printNewErrors() —theinterface to obtain an error report of new errors. A new error is one which has not been pre-
viously obtained.

printErrorReport() —alows oneto obtain an error report of any group of errors. The group can be all errors, errors
for a specific subsystem, and errors before or after a specific time.

The format for each line of the error report is:
Sys: Subsystem Nanme Code: Error Nunber Tinme: Array Tinme Additional info

Page 35 of 54

12 Dynamic Model

The dynamic model for the test correlator control software utilizes a multi-threaded architecture which allows for concur-
rent execution of control, monitoring and data processing functions. This section details this functionality. Much of this
analysisis based on the ADARTS (Ada Design Approach for Real Time Systems) model as outlined in [11]. The main
goals of the ADARTS design methodology are twofold: to structure the system into concurrent tasks and to utilize the
reuse of software through information hiding.

121 Multi-tasking M odel

Table 5 depicts the various tasks envisioned for this design. There is asingle instance of each task. The first two columns
show the task name and purpose. The remaining columns pertain to the results of arate monotonic analysis to determine
if these tasks are schedulable which is further discussed later in § 12.2.

Task Name Purpose Execution | Period | Utilization® | Cumulative | Priority
Time(C) | (T) ms Utilization (de-
ms Creasing)
ArrayTime Process 48 ms Timing 0.5 48 1.04 1.04 10
Events
GetRawlL ags Obtain raw lags from 46.0 70 65.71 66.76 20
CHW
DataProcessor 2 Processraw lagsto 10.0 70 14.29 81.04 30
spectral results
DataCollector Transfer spectral results 4.1 70 5.88 86.92 40
Communications’ | to Data Collector
ACC Communi- | Bi-directional communi- 1.0 48 2.08 89.01 50
cations cation to/from ACC
IntegrationMan- | Configure and control 20 96 2.08 91.09 60
ager 2 CHW
CC_Manager? Coordinate ACC cmds. 50 96 521 96.30 70
& responsesto other
tasks
MonitorManager | Update monitor data 5.0 2500 0.20 96.50 80

Table5—Task Description

Figure 13 shows a concurrency diagram, which follows the model used by [12], to provide aview of the tasks of the en-
tire real-time system. It is an elaboration of a collaboration diagram, but shows the communications between the tasks. It
is based on a Data Flow Diagram which tracks data as it moves through a system. One can envision commands coming
in from the ACC and flowing through to various tasks for processing.

A task isidentified by a parallelogram with lines between tasks. The lines represent communications with the arrows de-
fining uni-directional messaging. A bold line implies communication between atask (or device driver) and some external
interface. As many tasks can have multiple blocking mechanisms, e.g., VxWorks pipes, event triggers, and semaphores,
the specific blocking mechanism is omitted except in the case where a single, specific trigger allows atask to execute.
VxWorks pipes allow a specific task to wait for multiple messages of different sizes from other tasks. The priority of a

! Utilization is defined as the ratio of execution time to period, i.e., C/T;

2 Aperiodic task which is assumed to have a pseudo-period defined by the deadline time

Page 36 of 54

task is show in each task parallelogram as P-1, P-2, or P-3 for high, medium, or low priority. A small box with two flags
represents semaphores. Events are small rounded-edge boxes with asingle flag.

There are four external systems shown that are outlined in bold, rounded rectangles: the ACC, the Data Collector, the 48
ms array-wide timing events and the correlator hardware. Communication flow is shown between these devices and the
tasks that interface with them as wide arrows. The three communi cation mechanisms shown are TCP/IP, e.g., ACC to
ACC Communication task, serial e.g., Serial task to the correlator hardware, and VME memory accesses e.g., correlator
hardware to the Get Raw L ags task.

48 ms Timin
ACC 9 DataCollector
ACC Communication Task Event
-
HW Interrupt
48 ms Timing
Signal
ISR
4 WaitFor48msPulse
A
Data Collector
cCarager Array Time Task Communication
Task
p-2 P-1 Task

P-2

Sy

A A

IntegrationManager

/ T;_szk

4 4
MonitorManager < &
Task ’ . 5 Test Correlator
» CHW_Controller g
P-3 = Hardware
o
]
Serial Driver
Access control
HW Interrupt
GetRawLags Task
./ DataProccessor Task o P-1
p-2 d <
Wait for
lags ready

Figure 13— Concurrency Diagram

These tasks are implemented as classes which provide a wrapper around the VxWorks RTOS functions and enable them
to contain instances of objects described in the preceding sections. This approach of encapsulation eliminates the need
for global variables, alowsinitialization of task information in the task object’s constructor and facilitates the modularity
of tasks. Also many of the tasks implement the “manager” class functions described in earlier sections so one can see the
paralels between, for example, the CC_Manager and the CC_ManagerTask. A description of each task follows.

Page 37 of 54

TaskBase

+m_createdTasks : TaskBase

+createAndRun() : int
+virtual run() : void

I
CC_ManagerTask

DataCollectorCommunicationsTask

+virtual run() : void ArrayTimeTask

-processEngCommand() : void

ACC_ConnectionTask +virtual run() : void _ _
+closeClientConnection() : bool +virtual run() : void
-writeResultsToHost() : bool
-openServerSocket() : bool

GetRawLagsTask +virtual run() : void

+*m_pLags : unsigned int
+*m_plntegrationCounts : unsigned int

+virtual run() : void
-retrievelLags() : void DataProcessorTask

+m_dataProcessor : CorrelatorDataProcessor
+m_corrScienceDataResults : CorrelatorScienceDataResults
+m_dataSetAccumulator

IntegrationManagerTask MonitorManagerTask “rvirtual ran() - void
-packageAndSendIntegrations() : void
+virtual run() : void Tvirtual run() : void -configureDataProcessor() : bool
-configureObservation() : bool| [+setMonitorPollingRatelnSeconds() : void
-loadXilinxFPGA() : bool +getMonitorPollingRatelnSecondsy() : int
-setCoarseDelay() : void -updateMonitorData() : void

Figure 14 — Class Task Hierar chy

12.1.1 TaskBase

All tasks are derived from this abstract base class which has the pure virtual function, run(). TaskBase contains alist of
tasks objects which have been instantiated and started via the VxWorks task spawning function task Spawn(). It utilizes a
static member function to passto task Spawn() to deal with the differences of C and C++ when passing function pointers.
A one-time instantiation of a special class, StartTasks, constructs the TaskBase-derived classes and starts their execution.
StartTasks a so performs some system-wide initializations.

12.1.2 ACC Communication Task

This task receives commands from the ACC viaa TCP/IP connection which it manages. As commands arrive, they are
converted to EngCommand-derived objects (see § 13) and, if valid, sent to the CC_Manager task for processing. Re-
sponses to information requests are routed through this task to the ACC.

12.1.3 CC_Manager Task

Thistask serves many roles, it:

Acts as delayed handler for the ACC Communication task by being a distribution point for command processing and
provides a conduit for command responses.

Receives EngCommand-derived objects. This EngCommand object is sent to the appropriate task for further proc-
ng, e.g., observation configuration, retrieve monitor data, etc.

Assists in the coordination of the starting and stopping of observations among multiple tasks, namely the Integration
Manager and Data Processor tasks.

Launches diagnostic tests. Request for diagnostic tests arrive from the ACC with the CC_Manager task executing the
tests and returning the test results to the ACC.

Handles characteristic information requests and returns ErrorLogger report requests.

Page 38 of 54

12.1.4 Integration Manager Task

The Integration Manager task performs configuration and execution of observations. It receives configuration commands
from the ACC viathe CC_Manager task which it uses to configure the correlator hardware using the CHW_Controller
including downloading of Xilinx FPGA images for 100 MHz modes. These images reside on aremote file system acces-
sible either through NFS or FTP. If there is a network failure and the IntegrationM anager Task can’t download thefile, a
error israised and the correlator controller is set to an IDLE state.

The IntegrationManager Task al so receives start and stop observing messages from the CC_Manager based on start and
stop observing commands from the ACC. Thusiit acts as a delayed handler of commands for the ACC Communications
task.

12.1.5 Get Raw Lags Task

This high-priority task is responsible for retrieving the raw lags from the correlator. Each time a set of 1024 raw lags
(there are 64 sets per dump per bin) isready to transfer to the correlator computer, an interrupt handler istriggered. This
interrupt handler unblocks a semaphore which the Get Raw Lags task waits on alowing it to perform a DMA transfer to
an internal buffer. Once all of the lags are retrieved for the current dump, a pointer to the raw lagsis sent to the Data
Processor task for processing.

12.1.6 Data Processor Task

The Data Processor task coordinates the processing lagsto spectra. It does thisin many steps:
It waits for a pointer to the raw lags from Get Raw Lags task.
The lags are then converted to spectra using its configured CorrelatorDataProcessor object.

If there are multiple dumpsin an integration, the spectral results for the current dump are accumulated with previ-
ously accumulated results.

Once the integration time, i.e., the number of dumps, has been reached the accumulated results are package into a
CorrelatorScienceDataResults object and sent to the Data Collector Communication task for transmission to the Data
Collector.

Thistask has a hard deadline which it must meet before the next set of lags arrive from the GetRawL ags task.
12.1.7 Data Collector Communication Task

Thistask waits for a pointer to a CorrelatorScienceDataResults object sent by the Data Processor Task and transmitsit to
the Data Collector via TCP/IP. This tasks al'so monitors the link to the Data Collector to ensure that it is valid, flagging
any errorsif the connection is down.

Similar to the Data Processor task, this task has a hard deadline which must be met before the next set of spectral results
arrive from the Data Processor task. Buffering of multiple sets of results allow for delays due to Ethernet loads or for
temporary, short-term breaksin network connections. This task contributes to the minimum correlator dump time, but its
impact is not as severe as the Data Processor task and can be simply calculated by the block size times the data rate. Note
that this does not account for non-determinacy with arrival of the data to the Data Collector due to Ethernet loads.

12.1.8 Monitor Manager Task

Thistask requests all CHW monitor data on a periodic basis and populates a vector of CorrelatorM onitorPoint objects
which are then available for delivery to the ACC.

12.1.9 Array TimeTask

The Array Time task is responsible for tracking array time in the correlator computer. Array timeis set by a command
from the ACC upon startup. After that, timing event pulses are accessible viaadigital I/0 card on the VME bus. These

Page 39 of 54

pul ses generate interrupts which are then counted in the Array Time task updating the correlator computer’ sinternal ar-
ray time clock. Thisarray timeis made available to other software components in the correlator computer.

The Array Time task also plays arolein synchronization. It can receive messages to notify other tasks to execute some
functionality, e.g., start observing, at agiven timing event.

12.2 Correlator Computer Timing Analysis

Timing deadlines identify the “hard real-time” aspects of areal-time system. For the test correlator and the MVME-2700
CPU these critical deadlines are few.

One critical deadlineisthe data processing. The raw lag results must be extracted from the LTA, converted to spectral
results, integrated and queued to the Data Collector Communication task for delivery to the Data Collector within the
dump time. This process defines the minimum dump time.

When the LTA has completed a dump, it sends an interrupt to the VME computer signaling the correlator controller to
transfer 64 4096-byte blocks. The speed of this DMA transfer is controlled by the VME interface card, which is ap-
proximately 6 MB/sec leading to a duration of ~46 milliseconds.

Next the raw lags are sent to the Data Processor task which converts them to spectral results. According to [3], process-
ing of 1K lags takes about 550 KFLOPS and the MV ME-2700 can execute about 170 MFLOPS which resultsin a dura-
tion of ~3 — 25 milliseconds depending on the size of the FFT and the number of FFTs to perform for a given correlator
mode.

The other time factor is the transmission time of a spectral results block from the correlator computer to the Data Col-
lector. The spectral results block has a 24-byte header plus 1024 single-precision complex floating point values for atotal
of 8216 bytes and using a 100 Mbit Ethernet link the transmission time will be less than 1 millisecond, although Ethernet
can be highly variable asit is non-deterministic. Therefore the entire duration from the time the correlator controller
starts extracting lags to when they arrive at the Data Collector computer should take about 70 milliseconds.

It isimportant to note that these time estimates are for one correlator bin. If multiple bins are used, then these durations
for DMA transfers, data processing and transmission must be multiplied by the number of bins' worth of data, i.e., either
2or4.

Columns 2 — 6 of Table 5 show the results of arate monotonic analysis to determine the schedulability of these tasks us-
ing the example of processing 1K lagsin an auto-correlation mode, correlator mode 3. | followed the method of RMA
outlined in [13]. Columns 4 and 5 are the most important. The utilization is the percentage of CPU time taken by a spe-
cific task and is ssimply defined as Utilization = (execution time/ period) * 100%. The cumulative utilization shows the
sum of utilization of the current task and higher priority tasks. A bold dividing linein Table 5 after the Data Collector
Communications task shows all of the tasksin use during the correlation process. From this analysis, one adjusts the pe-
riod values in column 4 to define the minimum correlator dump time such that the cumulative utilization is less than
100%. In the case of the example shown in Table 5, since the cumulative utilization is less than 100%, all tasks are
schedulable.

One caveat with this analysisis that RTOS system overhead is not accounted for, e.g., task context switching times. If we
assume a reasonable value of 1 ms per second, thisisanegligible load of 0.1% (VxWorks advertises a value much
shorter than 1 ms/second).

Using this analysis, the theoretical minimum dump times for each of the correlator modes appear in Table 6.

Page 40 of 54

Correlator Mode | Minimum Dump Time (ms)
1 60
2 60
3 70
4 100
5 100
6 100
7 100

Table6—Theoretical Minimum Dump Times

To ensure that time-critical functions meet their deadlines, two schemes are utilized. First, deferred handling allows for
time-critical functionsto occur at high priorities and then pass off the further processing to lower priority tasks and sec-
ondly, buffering is used. For example, the GetRawL ags task obtains the raw lags at a high priority. Once it has the lags,
they are sent to amedium priority task, DataProcessor Task, for conversion to spectral results via a message queue which
can hold pointers to many raw lag sets.

Some tests were run to determine actual data processing and transfer times. These total times are shown in Table 7.
Comparing them to the theoretical values shows that they are within reason and validates the RMA model.

Correlator | #of Pol’'n Prod. | Processing Time | Processing Time | DMA | Ethernet Total Time
Mode per Dump per Pol'n Prod. per Dump Time | xfer. Time

1 4 2.5ms 10 ms 46 ms 0.3ms 58 ms

2 2 51ms 10.2 46 ms 0.4 ms 59 ms

3 4 4.2ms 16.8 46 ms 1.0ms 69 ms

4 4 12.2ms 48.8 46 ms 1.0ms 102 ms

5 2 19.1 ms 38.2 46 ms 1.5ms 98 ms

6 2 19.1 ms 38.2 46 ms 1.5ms 98 ms

7 2 19.1 ms 38.2 46 ms 1.5ms 98 ms

Table 7 —Empirical Data Processing Times

Another critical deadlineisto ensure that the CHW starts an integration on a specific timing event. Thiswas discussed in
§5.1. Aslong asthe ACC provides the start observing command at least 96 ms (2 timing events) beforehand, there
should be no problem meeting this deadline. If this deadline is not met, then an error islogged.

12.3

The correlator computer software must deal with hardware and software blocking. Hardware blocking occurs at three
points which specify the time-critical blocking for the correlator computer (deadline times specify the timeout expiration
value):

Blocking and Deadlocks

Waiting for the 48 mstiming events, deadline = 48 ms
Waiting for the raw lags from the LTA, deadline = dump time
Waiting for aresponse on the serial port connection to the CHW when requesting data, deadline = 0.5 second

All three of these are monitored via watchdogs which raise darmsif they have timed out past their deadline time.
VxWorks have watchdog functions that run at interrupt-level and are specifically designed for this type of application.

Software blocking occurs when atask waits for messages from other tasks. All tasks in this design wait indefinitely for
messages avoiding problems when a message doesn’t arrive in agiven time. Problems only arise if atask cannot meet its

Page 41 of 54

processing deadline before a new message arrives. RMA and timing tests are used ensure that each task can meet its
processing deadline.

Deadl ocks occur when access to shared resources are not properly guarded. The only shared resource that fallsinto this
category isthe seria connection between the correlator computer and the CHW and when two tasks want to use this port.
A VxWorks mutual exclusion semaphore which can correctly protect against priority inversion is used to arbitrate the
access to the serial port.

12.4 Run-time State Information
The correlator software contains state information corresponding to its execution. A simple class, CCC_State, tracks the

state information of the correlator device and allows (or prevents) transitions from one state to the next. Refer to the state
diagram in Figure 15 for the following discussions of the correlator computer state machine.

. Uninitialized

Cold
Disabled
Faulted Diagnostics
Complete _ '
Detect Diagnostic
Fault Enable
arm Dia Rnli)r;tics
Reset | g
ldle \ - —
Detect) Exit Application
Fault Stop
Observation Configure Correlator/
Data Processing
Start
Observation

Correlating '%' Configured

Figure 15— Correlator Computer System State Diagram

12.4.1 Allowed States

DISABLED — The equipment is in power-off or rebooting state.
IDLE — The correlator computer is ready to accept commands and isbasically idle. Thisisthe “ready”
state.

CORRELATING - The correlator computer is correlating, i.e., integrating, processing lags and sending them to
the Data Collector

CONFIGURED —The correlator computer has configured itself and the CHW for an observation.

FAULTED — A serious unexpected run-time error has occurred requiring operator intervention. Note that
thisis not the same as an error returned by some task or software function call.

DIAGNOSTIC —Thisisaspecial state which allows for diagnostic tests to be run on the correlator computer.
Normal operational commands are disabled.

Page 42 of 54

12.4.2 Allowed State Transitions

ENABLE — moveinto the IDL E state with a power-on reset or from a cold boot asin the case of a
transition from the DIAGNOST I C state. Exiting action of DISABLED istorunini-
tialization functions.

RUN DIAGNOSTICS —move to the DIAGNOST I C state from the disabled state when unable to move to the
idle state due to some fault. This transition from the DL E state can also occur under
command from the ACC

DIAGNOSTICSCOMPLETE —thistransition to the DISABL ED state always performs a power up reset.

CONFIGURE CORRELATOR
& DATA PROCESSING —thistransition occurs as the result of acommand from the ACC to configure the cor-
relator controller for correlation.

START OBSERVATION —thistransition to the CORRELATING state occurs when an observation starts.

STOP OBSERVATION —thistransition occurs upon exiting the CORREL ATING state and returning to the
IDLE state.

DETECT FAULT —thistransition to the FAUL TED state occurs when any serious error (alarm) is en-
countered requiring areset.

COLD RESET —thistransition to the FAUL TED state isdue to afatal error and requires full initializa-
tion of the correlator computer and CHW.

WARM RESET —thistransition allows for areturn to the DL E state without resetting physical hard-
ware.

12.4.3 Trackingthe Correlator Computer State

The allowed states and transitions are managed by a simple, globally accessible singleton class, CCC_State. CCC_State
ensures that transitions are valid before they are made and provides an error reporting mechanism if they aren’t allowed.
CCC_state can provide current state information to the ACC upon request.

13 Command Processing

Now that the static and dynamic designs have be presented, it istime to discuss the actual commands to and responses
from the ACC. Thisdesign isan interim onewhich will be replaced by a CORBA interface that will be utilized through-
out the test interferometer control software.

13.1 Command Processing Description
Command processing is performed at two levels, first by the ACC_Communications task and then by the CC_Manager
task. The command travels from the ACC as an ASCII byte stream to the ACC_Communications task where an Eng-

Command-derived object is constructed using a static member function that parses the ASCII byte stream. This Eng-
Command abject is then passed to the CC_Manager for distribution to the correct task for execution.

Page 43 of 54

EngCommand

+m_cmdType : enum
+m_cmdTimeStamp : long

+registerCommands() : bool
+runParser() : EngCommand
+executeCommand() : bool

T

RunDiagnosticTest ResetCorrelator SetTime RequestErrorLog RequestMonitorData|
-m_testToRun : int -m_resetLevel : int| [-m_time : long double -m_level : int -m_monitorPoint : int

— 1

RequestCharacteristicinformation Start_StopObserving ConfigureObservation

-m_infoltem : int -m_startStop : unsigned char| |-m_corrConfiguraion : CorrelatorController
-m_dataProcessor : CorrelatorDataProcessor|
-m_FPGAFilelnfo : string

Figure 16 — EngCommand base & derived classes

Figure 16 shows the command hierarchy with each specific command derived from the base class EngCommand. Com-
mands can have request and response information. Request data correspond to parameters needed by a given command.
Response data include an acknowledgement that the command was correctly (or not) processed and can include re-
guested information. Any error information is recorded in the ErrorL ogger as described earlier. A description of the
members of EngCommand are:

m_cmdType

An enum which defines what command thisis. This alows for correctly constructing the derived command from an
ASCII byte stream in runParser().

m_cmdTimeStamp

Thisisthe timetag of when the command was received by the ACC_Communications task.
runPar ser ()

This static function converts the command from an ASCII byte stream format to a EngCommand-derived object. It
returns areference to an EngCommand-derived aobject to be passed onto the CC_Manager task.

executeCommand()

Provides a mechanism for the CC_Manager task to perform a syntax check on the command and sets the specific
child object’ s data members.

The next section lists the specific commands. The format of the description for each command listsits ID, then a brief
description of what the command does, any optional request data sent to the correlator computer, optional response data,
and finally a description of specific errors.

13.1.1 RESET_CORRELATOR

Description: This command resets the correlator computer and/or the CHW. Any initialization sequences are
executed for the given device. The CHW reset is a command which resets the microprocessors
on the correlator cards.

Request Data:
byte:
1 reset CHW (“warm boot”)
2 reset correlator computer (“cold boot” which reloads the VxWorks OS, test correlator applica
tion and starts execution)
3 reset correlator computer & CHW

Page 44 of 54

Response Data: OKAY/ERROR
Errors
The CHW is unresponsive after reset. If so, then human intervention is required.

13.1.2 CONFIGURE_OBSERVATION

Description: Configure correlator and data processor for an observation. This allows a one-shot configuration of all
the parameters required to set up the correlator to commence observing.
The dump time is an integer representing the number of 1.31072 ms correlator ticks
The integration duration isin correlator dumps.
The integration duration, i.e., the number of integrations to perform.
The bin switch timeisin units of 48 mstiming events as bin switches occur on these boundaries

Request Data:
- dump time: uint16 1- 21
integration time: uint32 1-2%1
integration duration: int32 -1 - 2°%-1 (-1 means forever)
number of bins byte 1,2o0r4
bin switch time uint16 0- 21
correlator modeid: byte 1-7 (seeTable?2for details)
FFT byte 0-—1 (faseltrue)
Hanning smoothing: byte 0-—1 (faseltrue)
van Vleck correction: byte 0-—1 (faseltrue)
spectral averaging: byte 0—1 (falseltrue)
starting spectra point: uintl6 0-N-1
stopping spectral point: uintl6 0-N-1
decimation of spectra: uint16 0-10
delay model coefficients
Antenna D byte 0-1
Coefficients float[5] -FLT_MAX —+FLT_MAX
Response Data: OKAY/ERROR
Errors

Invalid values for numeric parameters.

13.1.3 START_STOP_OBSERVING

Description: Starts or stops the correlator integrations — recall that configuration of an observation specifies the stop-
ping time of the correlator integrations. Short-term integrations can be synchronized to the 48 mstiming

events.
Request Data:
Start/stop type: byte 1 start observing —non-synchronized
2 start observing with short-term integrations synchronized to the 48 ms TE
3 stop observing at end of current integration
4 abort observing immediately returning partial results
Start/stop time long long Array time at which the integration isto start/stop.
Response Data: OKAY/ERROR

Errors
Correlator not configured for an observation (start observing error)
Correlator state is not observing (stop observing error)
Start (or stop) time has passed — in this case, integrations still start (or stop)

Page 45 of 54

13.1.4 REQUEST _ERROR_LOG

Description: Aserrors are recorded by the correlator controller and/or CDP execution, they are preserved in an error
history log. The contents of thislog may be retrieved via this command.

Request Data:
Error type: byte 1=getnew errors, 2 =get al errors
Response Data: OKAY/ERROR. If OKAY, then return the requested error messages according to desired sever-

ity
13.1.5 REQUEST _MONITOR_DATA

Description: Get the current monitor data for the correlator. Note that this command is only implemented for testing
purposes. It requests monitor data whereas in the actual test interferometer control software, monitor datawill be
“pushed” via CORBA functionality.
Request Data: Monitor point index 1 — 8 (see Table 1 for details)
Response Data: OKAY/ERROR. If OKAY then the requested monitor point isreturned. Each valueis afloating
point number in the appropriate units.

13.1.6 REQUEST_CHARACTERISTIC_INFORMATION

Description: Obtain correlator characteristic information.
Request Data: Dataindex, 0 — 8 where 0 meansreturn all following points, 1 — 8 acts as an index into the fol-
lowing list of characteristic information and allows one to request characteristic information for
one specific item (see Table 4 for details):

1 - Cross-correlation tick time 5 - Mode Change Time
2 - Auto-correlation tick time 6 - Minimum Dump Time
3 - Maximum datarate 7 - Computer Type
4 - Bandwidth modes 8 - Monitor point list
Response Data: OKAY/ERROR. If OKAY then the appropriate characteristic information inis returned.

Errors
Invalid characteristic information index

13.1.7 RUN_DIAGNOSTIC_TEST
Description: This command runs diagnostic tests on the CHW.

Request Data:
Diagnostic test uint16: 0 Run dl tests
1 Run CHW check read/write memory test on correlator cards.
2 Run read lag results test.
3 Run sampler threshold check.
Response Data: OKAY/ERROR
Errors

Thetest result failed. A request of the log error provides more details of the failure.

13.2 Engineering Test Interface

The schedule for the ALMA test correlator software is such that it will be available before TICS[1] to which it inter-
faces. Thiswill allow the test correlator hardware and software to be used for lab tests with other electronic components.
In this capacity, the test correlator will runin a“stand alone” fashion.

The Test Correlator Engineering User Interface application (TC_EngUl) allows testing of the test correlator control soft-
ware by ssimulating the ACC and Data Collector computers. The TC_EngUl alows for testing and debugging of func-
tionality described in this document including command processing, timing issues, data processing, load testing and gen-
eral execution correctness. TC_EngUl also allows for testing of the test correlator hardware to ensure that modifications
made for the two-antenna ALMA test interferometer are correct.

Page 46 of 54

A typical testing environment isto have an external noise generator be input to the samplers and integrations can be con-
trolled to collect lag results, process them to spectra and viewed in near real-time. This setup comprises a system test for
the correlator control software. The main interface is designed around the commands outlined in §13.1. Screen shots for
correlator configuration and control appear below.

o]

F‘—“”ﬂ Tl Conedsls

mreng |mlefaces

dllbinel]k

Configurabion i MoritonCiagnnstes | Cepugang]| contal]

corr. Cump Tims: 11-13[! MUI'I’IIJEFIJI'DUMIJBZ] 1 E | 1939 rezaration Tras (9202
Numbarn‘rahs:ii = | Bin Ewitch Tma:ﬁ

Tokal Ghsematon Duration: |1.339 SHCE,

St Corralator Systorm Mote: Sadart Data Procassang Configuration Opeiors
1800 WHz Crogs Cor §12 Chan. | [varieck Epectral deer:

23 A00 WHT Chosg Carr 1k Chak.
Decimadion: 5

3800 KiHz At Corr. 1K Chan,
4100 MHE GroEs S0 4K Ghan Firet Chahrel: ||3
Mumber Chan: {0234

Humker of Flegralions: 1

R

I Hannirg Windos
¥ Parfomn FFT

Connecied (o OO

U R

| Fane: Diglay Addjysmernt:

Blart Speciral Chan M) E

COC commecied o
Test Conralator

5100 MHz Grosa Corr BK Ches,
Se1Range

fi 100 MHE Ao Com . Bk Chan

7100 MHz Adlo Corr. Bl Chan.
L m T e e WL S T T A R ey S I ST __J
S001-02-06 18;: 5032, 8500 3 Proce=sing coomand; stact =

ampler Check O +hilm - hlabs | SlopSpectsl Cran 'NHII;S
e
2001-02-08 13:50:51.1000 TTC: Peofasalbng oookasd!
T
e

STAKL
2001-02-08 19:04r22.0000 1 Pecpessing Jommand|
S001-02-06 19:05: 03, 7000 : Procesping coomand;
2001-02-08 19:05:32.8E00 TTC: Peosasaing oookand!
2001-02-08 19:D051d4d. 7000 TTCy Peopressing Jonmand]
SO01-02-08 19:06:25.2000 TTC; Procesping command;
2001-02-08 19:06:56.2500 TTC: Peofessipg Coohanid!
2001-02-08 13:D07:27.4000 TTC: Frocessiog coomand;

i

e

i
1
aTAET 1
atact 1
ararr 1
aTart 1
otact 1
atart 1
atact 1
atact |

cowflgacan 1430 1 1 2 1 23714000

S001-02-08 19: 0800, 8000 Proce=ping command;
2O001-02-08 19:0d:06.9000 Procesalng cobmand!
10Z3 0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0

E001-023-08. 19504 : 36. 5500 TTC: Processlng coomand: aTart L

[l

Figure 17 — Correlator Configuration Screen

Fx‘} T est Coarelelion Engmeering Urer Intedace
File Help

configurstion | MonterDiagnostics] Detugdng ':-:-mml!

o]

_ Fint Saipctian REsEL Conkal
o Piot Diate " Faset Micros
& Samper 15 Sampder o Initisize

[Simchronized nbegrations

LR 'u'l"al:m Femsei
G0 Cold Reboot
GCD B o Regel

[B8

Wl Fiol Fhase Data

Cormelaior Bn Seleciion
mEn1 W8Nz
ZhEml mAEnd

o oemectad to GG

BekZCC Tma |

LCC cantacted fn
[Test Carrelatar

L A R - L T R k2 T k=]

200l-02-13 L6:41:25.1500 UTC: Froceselng coommsmd: acart L :I
2001-02-13 LA:41:55.7500 TUIC: Frocesalng conmemd: confloacen 1480 L 571 2 3710040
Bl3l 0 0,0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 192,131.232.9 hlackhole di /dev ama/datewllineg
A0l=0E=13 LA;A1: 5685000 UTT; Frooce=ssing conmsmd: stsct
200Ll-02-13 L:42:10.4000 UTC: Frocezslby conmand: acaet
2001-02-13 1642263000 TIC: Frocesslng commsnd: ACAET
2001-0Z-13 LE142544.6000 UTCt Frocessing coamand: ScaEt
200l-02-15 Le;49: 00,5000 UTT: Prooce==ing commsmd: stact
2001-02-13 L6:43:16.2500 UIT: Procezalny conmand: aCact
Z001-0E-13 LE:43:34.7000 UIC: Frocessing conmsnd: configqacen 1480 L 071 23710000
glal 0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 192,131.232.8 bhlackhole d;/de=vsaoa/deta’cllio
2001-02-13 LA:;43:36. 5500 UIT: Processing coomsnd: =bact 0

2001-02-13 LE:SH:4L_ 9000 TUIT: Proca=malbhg conmand: aACop

aoco oo o

£

Figure 18 — Correlator Control Screen

Page 47 of 54

14 Glossary of Classes

This glossary lists the classes used in this design with a brief description and their relationshipsto other classes. Thisre-
lationship includes the multiplicity. Figure 19 shows the class hierarchy graphically.

CC_ManagerTask
ACC_CommunicationsTask /C . CCC_sState

IntegrationManagerTask

EngCommand

q_CorrelatorCom‘iguration

MonitorManagerTask

[

GetRawLagsTask DataProcessorTask
D— CHW_Controller 1
1
CorrelatorMode
1 [KK] 1
1 1 1
CorrelatorDataProcessor CC_Monitor 11 1
1 SerialDriver TestCorrelatorCommand
1 ;
0.# r DataSetAccumulator *
DelayModel - -
CorrelatorMonitorPoint ErrorLogger
1

ErrorLogEntry

CorrelatorScienceDataResults| ~DataCollectorCommunicationsTask

Figure19—-ALMA Test Correlator ClassHierarchy

141 ACC_CommunicationsT ask
ACC_CommunicationsTask encapsulates communications between the correlator computer and the ACC and the Data
Collector.

ACC_CommunicationsTask communicates with:
CC_ManagerTask

ACC_CommunicationsTask uses:
EngCommand to parse flatten ASCIl commands and construct EngCommand-derived objects.

142 CC_ManagerTask

CC_ManagerTask acts as a central distribution point among other tasks for command execution. Functions that it doesn’t
send to other tasks are execution of diagnostics, reporting of error logs and providing characteristic information.

CC_ManagerTask communicates with:
ACC_CommunicationsTask

Page 48 of 54

DataProcessorTask
IntegrationM anager Task
CC_ManagerTask uses one instance of:
CCC_State
EngCommand-derived object
CC_Monitor to retrieve current monitor points

143 CC_Monitor

CC_Monitor holds all the current monitor values.

CC_Monitor isused by:
MonitorManager Task to store the current monitor values.
CC_ManagerTask to retrieve monitor valuesto send to the ACC.

CC_Monitor uses:
CorrelatorMonitorPoint to hold an individual monitor, i.e., there are multiple instances of CorrelatorMonitorPoint.

144 CCC_State

CCC_State tracks the state of the CCC and defines valid state transitions
CCC_Stateis used by:
CC _ManagerTask

CCC_State uses:
No one

145 Correlator Configuration

CorrelatorConfiguration encapsul ates observation configuration information.

CorrelatorConfiguration is used by:

IntegrationM anager Task to manage integrations for the current observation. A IntegrationManager can have 1 Cor-
relatorConfiguration.

CHW__Controller which controls the CHW for the current observation. A CHW_Controller can have 1 Correlator-
Configuration which is a copy of IntegrationManagerTask’ s CorrelatorConfiguration.

CorrelatorConfiguration uses:
CorrelatorMode

146 CHW_Controller

CHW_Controller isasingleton object which encapsulates control of the CHW and provides an interface to the CHW.
CHW_Controller isused by:
MonitorManager Task
IntegrationM anager Task
CHW _Controller uses:
CorrelatorConfiguration for the current CHW configuration defined by the IntegrationManager.
TestCorrelatorCommand for commands to send to the CHW.
SerialDriver for sending TestCorrelatorCommands to the CHW.

Page 49 of 54

14.7 Correlator DataProcessor

CorrelatorDataProcessor processes correlator lag results for each dump.
CorrelatorDataProcessor is used by:
DataProcessorTask contains the single instance of the CorrelatorDataProcessor for processing lags.

CorrelatorDataProcessor uses:
CorrelatorMode defining the current correlator mode configuration.

DelayModel A CorrelatorDataProcessor can have 0 or 1 DelayModel objects to apply fine delays to each spectral
data set.

148 CorrelatorMode
CorrelatorMode encapsul ates the mode information for a current CHW configuration which includes bandwidth, polari-

zation and the number of lags.

CorrelatorMode is used by:
CorrelatorConfiguration contains the single instance of the CorrelatorMode
CorrelatorDataProcessor contains a single instance of the current CorrelatorMode

CorrelatorM ode uses:
No one.

149 Correator Monitor Point

CorrelatorMonitorPoint holds an individual monitor value.

CorrelatorMonitorPoint is used by:
CC_Monitor

CC_Monitor uses:
No one.

14.10 Correlator ScienceDataResults
CorrelatorScienceDataResults encapsul ates the spectral results of the correlator after processing of the lags and includes

header information identifying the integration sent to the Data Collector. The actual data structureis shownin Table 3.

CorrelatorScienceDataResults is used by:

DataProcessorTask contains alinked list of CorrelatorScienceDataResults objects, one for each spectral set per inte-
gration.

DataCollectorCommunicationsT ask receives areference to each CorrelatorScienceDataResults object from Da-
taProcessorTask for transfer to the Data Collector.

CorrelatorScienceDataResults uses:
No one.

14.11 DataCollector CommunicationsT ask

DataCollectorCommunicationsTask manages the transmission of spectral data sets to the Data Collector.

DataCollectorCommunicationsTask communicates with:
DataProcessorTask from which it receives the spectral data sets.

DataCollectorCommunicationsTask uses:

Page 50 of 54

CorrelatorScienceDataResults which holds the spectral data set for a correlator integration.
14.12 DataProcessor Task
DataProcessorTask coordinates the processing of correlator lag results for each dump and transferring the spectral results

for each integration to the DataCollectorTask.

DataProcessorTask communicates with:
CC_ManagerTask for configuration and control
GetRawL agsTask to obtain the CHW’ sraw lags
DataCollectorCommunicationsTask to transfer spectral data sets to the Data Collector.

DataProcessorTask uses:
CorrelatorDataProcessor encapsulates the functionality of spectral processing of lags.
CorrelatorScienceDataResults encapsul ates the spectral data plus header to be transmitted to the Data Collector.
DataSetAccumulator to sum spectra from multiple dumps.

14.13 DataSetAccumulator
DataSetAccumulator sums spectra from each dump of an integration into an integration accumulator. When the integra-

tion completes, the accumulated spectra are sent to the Data Collector

DataSetAccumlator is used by:
DataProcessorTask

DataSetAccumulator uses;
No one.

14.14 DelayModel

DelayModel encapsulates geometric delay model information and evaluation for an antenna.

DelayModel is used by:
CorrelatorDataProcessor can have 0-1 DelayModel objects.

DelayModel uses:
No one.

14.15 EngCommand

EngCommand is a base class which encapsulates commands from the ACC (the derived classes are not shown in Figure
19).

EngCommand is used by:

ACC_CommunicationsTask which contains 0 or more EngCommand -derived classes.
CC_ManagerTask to execute the EngCommand-derived command.

EngCommand uses:
No one.

14.16 ErrorLogger

ErrorLogger is a globally-accessible singleton class which records run-time errors and provides access to the ACC.

ErrorLogger is used by:
All objects which can flag errors.

Page 51 of 54

ErrorLogger is uses:
ErrorLogEntry holdsindividua errors.

14.17 GetRawl agsTask

Obtains the raw correlator lags viaDMA transfer.

GetRawL agsTask communicates with:
DataProcessorTask notifying it when raw lags are available for processing.
An interrupt service routine which notifies GetRawL agsTask when lags are ready to be transferred from the CHW.

GetRawL agsTask uses:
No one.

14.18 MonitorManager Task

MonitorManager Task manages the monitor points.

MonitorManager Task communicates:
No one.

MonitorManagerTask uses:
CC_Monitor to hold the current monitor values.
CHW_Controller for interfacing to the CHW

14.19 IntegrationManager T ask

IntegrationM anager Task controls and configures CHW for observations.

I ntegrationM anager Task communicates with:
CC _ManagerTask

IntegrationM anager Task uses:
CorrelatorConfiguration for the current CHW configuration.
CHW_Caontroller for interfacing to the CHW

14.20 SerialDriver

SerialDriver isasingleton object which provides an interface to the CC’ s serial port for communication with the CHW.
SerialDriver isused by:
CHW_Controller

Seria Driver uses:
No one

14.21 TestCorrelator Command

TestCorrelatorCommand encapsulates the CHW commands for control of the CHW. See [14] for a complete listing of
these commands.
TestCorrelatorCommand used by:

CHW _Controller

TestCorrelatorCommand uses;
No one

Page 52 of 54

Figure20—Test Correlator Front View

Page 53 of 54

15 References

[1] Glendenning, B.E., et. a. Test Interferometer Control Software Design Concept DRAFT: 2001-02-15
http://www.mma.nrao.edu/devel opment/computing/docg/joint/draft/TICS Design.pdf, (2001)

[2] Schwarz, J., ALMA Software Glossary,
http://www.mma.nrao.edu/devel opment/computing/docs/joint/draft/Glossary.html, (2000).

[3] Emerson, D.T., Baars, JW.M., ALMA Test Interferometer Project Book, Chapter 9 — ALMA Test Correlator,
http://www.tuc.nrao.edu/~demerson/almapbk/test_int/chap9/chap9.pdf, (2000).

[4] Pisano, J.A., ALMA Correlator Output Data and Computer Processing Rates, ALMA Computing Memo 008 (1999).

[5] Emerson, D.T., Baars, JW.M., ALMA Construction Project Book, Chapter 8 — Local Oscillators,
http://www.tuc.nrao.edu/~demerson/al mapbk/construc/chap7/chap7.pdf, (2001).

[6] Mangum, J.G., On the Fly Observing at the 12 Meter, http://www.tuc.nrao.edu/docs/oftdoc.ps, (1999).
[7] D’ Addario, L.R., Timing and Synchronization, ALMA Memo 298, (2000).

[8] European Southern Observatory: http://www.eso.org/projects/vit/sw-dev/oowg-
forum/AT S/atcsdoc/M odel/UseCases/Hel p/* .html (1999)

[9] Fowler, M., UML Distilled: Applying the Standard Object Modeling Language, Addison Wesley Longman, (1997).

[10] Markham, D., et. al, The Mark |11 analysis software (CALC/SOLVE) , http://www.sgl.crestech.ca/l VS-
Analysis/software tools/calc_solve/ivs calcmain.htm

[11] Gomaa, H., Structuring Criteriafor Real Time System Design. Proc. 11th International Conference on Software
Engineering, (1989), pp.290-301.

[12] McLaughlin, M.J., Moore, A., “Rea-Time Extensionsin UML”, Dr. Dobb’s Journal, December 1998.

[13] Briand, L.P., Roy, D.M., Meeting Deadlines in Hard Real-Time Systems — The Rate Monotonic Approach”, IEEE
Computer Society, (1999).

[14] Escoffier, R., Serial Communication and Control of the ALMA Test Correlator Serial Commands, Internal memo,
(2000-08-31).

Page 54 of 54

