

Atacama
Large
Millimeter
Array

ALMA-SW-NNNN

Revision: 0.4

2002-11-17

Software Arch

J. Schwarz

Software Architecture

Software Architecture

J. Schwarz (jschwarz@eso.org), G. Chiozzi, P. Grosbol, H. Sommer

ESO
D. Muders

MPIfR

Keywords: software architecture design ALMA
Released by: Signature:

Institute: Date:
Approved by: Signature:

Institute: Date:
Author Signature: Joseph Schwarz Date: 2002-11-17

ALMA ALMA Software Architecture

Revision: 0.4 Page 2 of 54

Change Record

DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION
REMARKS

2001-12-21 J. Schwarz Integrated all contributions 0

2002-01-25 J. Schwarz Section 5 0.1
Rewrote & simplified Tech Arch chapter; expanded prototype
2002-06-14 J. Schwarz 0.2
General revision of all chapters, esp. functional & technical architecture
2002-10-23 J. Schwarz All 0.3
Interim version w/changes resulting from reviewers’ written comments
2002-11-17 J. Schwarz Sections 4 and 5 0.4
Release for IDR; reworked Functional Architecture; updated Tech Arch

ALMA ALMA Software Architecture

Revision: 0.4 Page 3 of 54

Table of Contents

1 Introduction...4
1.1 Purpose .. 4

1.1.1 Status of this document .. 4
1.2 Scope.. 4
1.3 Definitions, Acronyms and Abbreviations... 4
1.4 References ... 5
1.5 Overview... 5
2 Architectural Representation..6
2.1 Functional and Technical Architecture ... 6
2.2 Global Information Flow.. 6
2.3 ALMA System Overview... 9
3 Architectural Goals and Constraints ...13
3.1 Runtime Requirements... 13

3.1.1 Functionality.. 13
3.1.2 Performance ... 14

3.2 Development-time Requirements ... 15
3.2.1 Distributed development... 15
3.2.2 Modifiability ... 15

4 Functional Architecture...16
4.1 Global Subsystem Structure... 16
4.2 Summary of individual subsystems .. 19

4.2.1 Preparation Subsystem .. 19
4.2.2 Instrument Operation Subsystems ... 21
4.2.3 Data Reduction Subsystems .. 23
4.2.4 Archive Subsystem... 24
4.2.5 Administration Subsystem .. 25
4.2.6 ACS Subsystem.. 26
4.2.7 Interaction between subsystems .. 27

4.3 Mapping of packages to the WBS .. 27
4.4 Priorities of package development ... 28
4.5 Critical issues.. 29
4.6 Deployment view .. 30
5 Technical Architecture...35
5.1 Container-Component Model ... 35
5.2 Definition of entity classes .. 38
5.3 Generating classes from XML schema... 42
5.4 Interprocess Communication and Serialization 42

5.4.1 Entity Objects in the Instrument Operations Subsystems 45
5.5 Persistence... 45
5.6 Versioning... 48
5.7 Languages .. 49
5.8 Bulk data throughput .. 50
5.9 Security... 51
5.10 Technical Prototype.. 51
Appendix A. Scheduling Block Design: A first sketch52

ALMA ALMA Software Architecture

Revision: 0.4 Page 4 of 54

1 Introduction

1.1 Purpose
This document provides a comprehensive architectural overview of the ALMA software
system, using a number of different architectural views to depict different aspects of the
system. It is intended to capture and convey the significant architectural decisions that
will shape the system.

This document is intended for a technical audience including, but not limited to, ALMA
software management, ALMA software developers and members of the ALMA Software
Science Requirements Committee. It should be read by every software worker new to the
ALMA project, or intending to develop pieces of the ALMA software system, because
only by sharing the vision conveyed by this document can developers distributed over
two or more continents construct a system that meets its functional requirements in a
coherent and effective way.

The reader of this document is assumed to be familiar with the contents of the Science
Software Requirements Document [SSRD] and the Initial Software Analysis [ISA]
referenced below. The present document will be difficult, if not impossible, to follow
without such familiarity, since most of the information contained in the preceding
documents is not repeated here. A future version of this document will incorporate that
portion of the [ISA] that remains valid and is relevant for the architecture.

1.1.1 Status of this document
This document, even after review and approval, remains a work in progress. That is,
many of its principles and details will be subject to change and revision during the
lifetime of the ALMA software development project. Much architecturally important
information cannot be added without the collaboration of subsystem developers who are
experts in their individual domains. More changes will arise naturally 1) as subsystem
developers encounter the concrete problems of building their subsystems and integrating
them into ALMA as a whole; and 2) as the High Level Analysis and Design (HLA) group
learns more about the developing system. In particular, a revision of this document
should be anticipated for PDR.

1.2 Scope
This document applies to all application- and domain-level software developed for the
ALMA project. It affects future versions of the ALMA Common Software (ACS), since
it implicitly levies new requirements on the ACS that go beyond those currently
implemented or foreseen in the ACS Architecture Document [ACSA].

1.3 Definitions, Acronyms and Abbreviations
A few key terms are defined here. For a complete list of definitions, acronyms and
abbreviations, the reader is referred to the Glossary (Appendix XX).

Term Definition

Architecture “…the structure or structures of the
system, which comprise software
components, the externally visible
properties of those components, and the

ALMA ALMA Software Architecture

Revision: 0.4 Page 5 of 54

relationships among them.” [SAIP]
Package A grouping of (usually related) classes.
Component A coarse-grained unit of composition with

contractually specified interfaces and
explicit context dependencies only. It
requires a runtime environment and must be
remotely accessible.

1.4 References
1. Lucas, R. et al, ALMA Software Science Requirements and Use Cases,

Revision 3, ALMA-SW-0011, 2001. [SSRD]

2. Schwarz, J. et al, Initial Software Analysis, undergoing revision, ALMA-SW-
xxxx, 2001. [ISA]

3. Fowler, M. and Scott, K., UML Distilled, Second Edition, Addison-Wesley,
2000.

4. Bass, L., Clements, P. and Kazman, R., Software Architecture in Practice,
Addison-Wesley, 1998. [SAIP]

5. Chiozzi, G., Gustaffson, B. and Jeram, B., ALMA Common Software
Architecture, ALMA-SW-0016, 2001. [ACSA]

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995. [GOF]

7. Scott, S. and Myers, S., Momose, M., Data Rates for the ALMA Archive and
Control System, ALMA Technical Note, 2002. [SMM]

1.5 Overview

The ALMA software system is designed to transform user input into an approved
observing proposal, to perform the observations specified therein, and to deliver
calibrated data (often including further data products such as images and spectra) to the
user and to an observatory archive. From the information retained in this archive, not
only the original observer, but also other interested astronomers, can do further research
and refined analysis of the observational data.

Software to manage and administer proposal preparation, instrument operations and
archival use is included in the scope of the software project.

ALMA ALMA Software Architecture

Revision: 0.4 Page 6 of 54

2 Architectural Representation
The main objectives of the architecture are to present the organization of the software
system, describe its structural elements and their behavior, and compose these structures
into larger subsystems. The general architecture has been driven by the high-level Use
Cases defined in the Software Scientific Requirements document [SSRD]. The main
structural elements of the system have been identified in the Initial Software Analysis
document [ISA], which was based on these Use Cases. For this reason, this document
does not include an explicit Use Case View of the system.

2.1 Functional and Technical Architecture
Software Architecture has two facets: one is the functional architecture, describing the
components, their responsibilities and interfaces, and their primary relationships and
interactions. The technical architecture on the other hand describes technical aspects,
such as remote access, streaming, threading, activation, and transactions. Both are
architecture: two different views that go hand in hand.

The description of each part, however, is directed towards a different audience. The
technical architecture must be understood by infrastructure (container/ACS) developers
while the functional architecture needs to be understood by the application developers. A
programming model will be extracted from the technical architecture in order to show
application developers how to use the provided technical infrastructure.

The detailed descriptions of these two aspects of the architecture are presented in
Chapters 4 and 5, respectively. A high-level description of the system, with emphasis on
the functional aspects is given in the following sections of this chapter. A generic
deployment view is provided in Chapter 4 as part of the functional considerations.
Explicit process and implementation views are not given at this stage and will first be
defined in detail at the subsystem level.

In the logical view, several common high-level design issues are considered. This was
done to outline global architectural and design decisions that must be accommodated by
all subsystem designs.

2.2 Global Information Flow
The ALMA software system is envisioned as an end-to-end data flow system, which
handles the information and operations required to conduct all tasks from the time an
astronomer creates an observing proposal until the resulting data are returned. This type
of end-to-end observatory system was pioneered by Space Telescope Science Institute for
HST and European Southern Observatory for VLT. The experience with these systems
has been used as a guide for the ALMA system architecture. A schematic representation
of the system is given in Figure 2-1, where its main elements are shown.

ALMA ALMA Software Architecture

Revision: 0.4 Page 7 of 54

Figure 2-1: ALMA System Dataflow (Schematic). The outer solid lines show the logical data flow; the dashed
lines directed to/from the Archive indicate that a) all data is saved in and can be retrieved from the Archive; and
b) that the logical data flow may—when appropriate—be handled by the Archive rather than via direct process-to-
process communication. Note also the feedback of, e.g., pointing, focus and phase calibration results from the
Calibration Pipeline to the ALMA Observing Process.

One may view the system either from the perspective of an end user (i.e., an astronomer)
or an observatory. The astronomer is interested in how an observing project flows
through the different parts of the system, as illustrated by the outer set of lines in Figure
2-1. The user (shown as the actor symbol on the leftmost side) initiates the cycle by
creating and submitting a proposal for ALMA observing time to Phase I Preparation.
After the proposal has been reviewed and (hopefully) accepted it is turned into an
Observing Project/Program and goes to Phase II Preparation where the actual
observations are fully specified by creation of Scheduling Blocks (SB).

Once each SB has been defined it is stored in the Archive and considered for scheduling
whenever available observing conditions and array resources make its execution feasible.
If all other factors are equal, the ready-to-run SB with the highest scientific ranking will
be chosen and executed/observed by the ALMA Instrument Operations subsystem. The
execution of an SB generates a set of raw data, which is both saved in the Archive and
forwarded to the Calibration Pipeline (in the case of data to be used for calibration)
and/or the Reduction Pipeline for processing. The Calibration Pipeline processes, among
other things, focus, pointing, and phase calibrator data, feeding the appropriate results
back to 1) the ALMA system to modify observing parameters in near real time; 2) the
dynamic scheduler to allow it to select the next SB to observe (this latter feedback is not
shown in the Figure). It saves these and other results in the Archive for use by the
Reduction Pipeline.

ALMA ALMA Software Architecture

Revision: 0.4 Page 8 of 54

The Reduction Pipeline is responsible for producing the quick look and final images
and/or spectra, applying whatever corrections are necessary. Finally, the astronomer
receives the results of the observing project in the form of calibrated images and/or
spectra together with associated information (e.g., logs). As data accumulate in the
Archive, Quality Control performs trend analyses of them. The results can then be used to
e.g., correct final data products or initiate maintenance actions.

Proposal
Preparation

Phase I

Science
Evaluation,
Simulations

Refereeing
&

Review

Observing
Program

Preparation
Phase II

Procedure
Specification
& Validation:
Observation,
Simulations

Evaluation
&

Scheduling
[rating]

Observing
Project/
Program

Observations
[Real-Time]

Dispatcher,
Hardware
Resource
Manager

MODES:
- Dynamic
 Scheduling
- Interactive
- Manual
- Technical

Observing
Program w/
SBs

Image
Reduction
Pipeline

- Quick Look
- Standard Image
- Stand alone

Image,
Science
Data

Calibration
Pipeline

- Temperature
- Gain
- Bandpass
- Flux scale
- Delay
- Polarization
- Pointing
- etc.

Correlator Data,
Monitor Data

Final Results

Images & Spectra

Raw uv-Data,
Monitor Data

Derived
calibration
parameters

Derived calibration parameters

Cal.
Pipeline

Archive

Phase I

Instr
Ops

Admin

Phase II

Quality
Control

Program

Red.
Pipeline

Scheduler

All “r
eady“

SBs
“best“ SB

Cal.
Pipeline

Archive

Phase I

Instr
Ops

Admin

Phase II

Quality
Control

Program

Red.
Pipeline

Scheduler

All “r
eady“

SBs
“best“ SB

Derived Cal Params

Figure 2-2 ALMA Online Dataflow, with a more detailed view of the processes. The arrows indicate flow of data;
the five tall boxes represent major logical groupings of functionality. Although all data is stored in and retrieved
from the Archive, this fact does not alter the progressive flow of data from Proposal Preparation to Final Results.
The term “Standard Image” is used to indicate that observatory-specified procedures are used to produce the
image that is normally delivered to the PI. For simplicity, the Archive itself is omitted from this figure, but the
relationship with the preceding diagram is shown at the top.

Another access route for a user is archival research, where requests for data are made
directly to the Archive (possibly after some review). In case raw data are requested they
may be passed through the Pipeline to yield images and/or spectra, benefiting from
calibration and processing techniques that may have been improved since the original
data were acquired. Figure 2-3 shows the general flow of data for this case.

ALMA ALMA Software Architecture

Revision: 0.4 Page 9 of 54

Archive

- Raw data
- Calibration data
- Equipment logs

Image
Reduction
Pipeline

- Quick Look
- Final Image
- Stand alone

Image,
Science
Data

Final Results

Images &
Spectra

Data Retrieval
(ALMA Staff/

User)

Calibration
Pipeline

-
Temperature
- Gain
- Bandpass
- Flux scale
- Delay
- Polarization
- Pointing

Data Reduction
(ALMA Staff/

User)

Calibrated
Data

Raw &
Calibration data

Proposal/
Request

Science
Evaluation

Refereeing
&

Review

Archive Access
Project

Observation
Preparation
(ALMA User/

Reviewer)

Optional (step may be bypassed)

Figure 2-3 ALMA Archival Research (using “Offline System”). As in the previous diagram, arrows represent
data flow and tall boxes represent logical groupings of functionality.

The observatory has a somewhat different view of the flow of information, as its prime
interest is to optimize the efficiency with which it can process a large collection of
observing projects and at the same time guarantee that all scientific requirements are
fulfilled. This view is directed principally towards the Archive, which is the central
repository for observing projects, data acquired and status and availability of equipment.
The main functional elements (i.e. Phase I/II, ALMA, Pipelines, Quality Control and
Administration) all interact with the Archive to obtain and deliver data but can otherwise
operate as independent peers. To ensure high global performance, each element must be
optimized individually and have adequate access to the Archive.

The ALMA real-time system should be the only one that limits the total system
throughput, that is, all other elements must be carefully programmed and scaled so that
they do not constitute bottlenecks. Besides operating the functional elements, the
observatory monitors the overall performance of the system through the Administration
and Quality Control elements. They provide tools to assess the status of observing
projects and to analyze trends to determine data quality and performance of individual
parts of the system.

2.3 ALMA System Overview
The general structure of the ALMA software system was derived from the requirements
and data flow considerations given above and consists of 5 top-level subsystems with the
following responsibilities:

ALMA ALMA Software Architecture

Revision: 0.4 Page 10 of 54

1.Observation Preparation: includes the Phase I and II preparation of observing
projects and the associated peer review process. It is the main interface for
astronomical users to the ALMA facility and provides them with easy to use
Graphical User Interfaces (GUIs) for the detailed specification of observations. The
main product generated is Observing Projects with their Scheduling Blocks, which
contain all information required to perform the corresponding observations.

2.Instrument Operation: is responsible for the actual observations specified by
Scheduling Blocks and is the only subsystem with true real-time behavior. All
observing hardware at the ALMA site (e.g. antennas, receivers and correlator) is
controlled and monitored by this subsystem. It is the focus of the system since it
acquires data. Although it can work automatically by using dynamic scheduling, it
will normally be supervised, or at least checked regularly, by a human operator.

An important goal of instrument operation is to reconcile the real-time constraints of
the hardware with the logical time operation of this subsystem. Many hardware
components must be synchronized to an array-wide 48 ms timing pulse and the
division between real-time and the logical run-time should remain close to the
hardware in order to isolate this dependency as much as possible.

3.Science Data Reduction: The data acquired are calibrated and reduced by this
subsystem, which also checks the quality of the final data products. Its primary role is
to process data that have just been acquired (along with archived data belonging to the
same project, possibly from a different antenna configuration), but can also reduce
data obtained from the Archive. In its observation support role, it will provide Quick
Look images and other information to help assess the quality of data just acquired.

4.Archive: provides a central repository for all persistent information of the ALMA
facility such as Observing Projects, raw and reduced science data, logs of all
operations and schedules. Whereas it is logically one repository from which any
subsystem can request information, it may well be distributed over several locations in
order to optimize performance and increase redundancy. This subsystem also
provides external users with facilities to identify and request science related data from
the archive.

5.Administration: Many administrational tasks have to be performed to ensure that the
entire ALMA facility operates smoothly and efficiently. They include long term
planning for the array configuration, scheduling of maintenance, management of user
accounts and associated privileges, checking the state of Observing Projects,
production of data packages for end users and generation of reports on performance of
different parts of the facility.

Further, the science software requirements specify that the system must provide a number
of key features:

1. to perform all necessary tasks through easy-to-use GUIs.

2. to “provide simple ways for the staff or expert astronomers to refine
observing modes and develop new ones” ([SSRD] 3.1.0-R2).

3. to support automatic, interactive, manual and technical modes of
operations

ALMA ALMA Software Architecture

Revision: 0.4 Page 11 of 54

Here the Observation Preparation is responsible for generation of an Observing Project
and associated Scheduling Blocks, which it places in the archive. Instrument Operations
fetches ready Blocks from the archive and schedules them for observations depending on
their science rating and needs such as weather conditions and array configuration. This is
done by sending commands to the ALMA hardware for performing the real-time control
of correlator, antennas and receivers. The data acquired are streamed directly to the
Calibration pipeline and to the Science Data Reduction pipeline (operating in Quick look
mode) and are saved in the Archive as well. Instrument Operations receives feedback
from the Calibration pipeline in order to adjust observing parameters in near real time. In
parallel with the observing process, Science Data Reduction generates Quick Look
images and data quality information to enable the operator and observer to monitor the
on-going observations. From the Archive, Science Data Reduction obtains all data
needed to generate the observatory’s final1 data products for storage in the Archive and
access by the Proposer/Observer, and—after expiration of a proprietary period—by the
astronomical community in general.

The flow of data through the system is checked by Administration, to ensure that Projects
are executed in a timely manner. It alerts Operations personnel if Projects are suspended,
missing data or otherwise not following the standard path. Finally, it will contact the
users when Projects reach breakpoints or are completed and provide all relevant data
products to them.

An astronomical User will normally interact with the system through tools provided by
Observation Preparation regardless of whether his/her Project is to be observed in
dynamically scheduled or interactive mode. The main difference between dynamic
scheduling and interactive mode is that Instrument Operation will execute Scheduling
Blocks created immediately in the latter case while they will be queued to wait for
optimal conditions in the former. In the case of archival research, users may search for
and request data directly from the Archive. Operations at the ALMA observing site will
be supervised by an Operator, who can check the status of correlator, antennas and
receivers, change operation mode (dynamic/interactive) and administer other resources
through Instrument Operation. General managerial tasks are performed by administrators
through the Administration subsystem, which in turn accesses information in the Archive.

Storing all persistent information in the archive makes the system less coupled so that
Observing Preparation, Instrument Operation and Science Data Reduction can work
independently as long as they maintain the average flow to and from the archive. This
isolates Operations from possible disturbances in other subsystems but makes the archive
a critical component, which must have a very high availability.

The only part of the system that has true real-time requirements is Instrument Operation
as it controls the antennas, receivers and correlator. Several other processes in this
subsystem are also time critical such as calibration procedures and safe storage of
acquired data. In order to avoid time limitations due to simultaneous access to the
archive, faster more direct access methods (that bypass the archive) may be deployed in
such cases.

Whereas the system in terms of transaction rates, security and redundancy does not
present major challenges for current software technology, several other properties of the
ALMA system must be considered in depth in the detailed design. They include:

1 “Final,” of course, only as far as observatory processing is concerned; the observer will normally need to
perform further processing and analysis in the course of his/her research.

ALMA ALMA Software Architecture

Revision: 0.4 Page 12 of 54

1. Very high data acquisition rates. The ALMA baseline correlator
produces of order 1 Gbyte/s, and it is the task of the correlator
subsystem to reduce this in real time, leaving the rest of the system
to deal with a smaller, but still substantial 6 – 60 Mbyte/s.

2. Large volume of archived data (~ 180 Tbyte/year)

3. Real time synchronization of hardware over large distances. ALMA
antennas can be spread out over more than 10 km. The correlator
itself may be located ~ 50-80 km from the antenna site.

4. Dynamic, optimized scheduling of observations depending on site
conditions

5. High processing needs to reduce data

6. Flexibility for developing new observing and data-reduction modes.

ALMA ALMA Software Architecture

Revision: 0.4 Page 13 of 54

3 Architectural Goals and Constraints
The architecture of the ALMA software system must enable the development of software
that satisfies both runtime and non-runtime requirements. It is necessary, but not
sufficient, to provide a system satisfying the enumerated requirements lists of the
[SSRD]. Like all software, the ALMA system will develop and change over time, and its
architecture must foresee and support such evolution.

3.1 Runtime Requirements
3.1.1 Functionality

The Science Software Requirements can be summarized as follows: the ALMA software
will play a major role in all aspects of the operation (in its most general sense) of the
ALMA Observatory. This includes:

• Administration of day-to-day activities on the ALMA site and the Operations
Support Facility (OSF)

• Electronic preparation and submission of observing proposals by prospective
users of the Observatory

• Validation, review, selection and prioritization from these proposals

• Transformation of observing proposals into ready-to-run observing programs

• Scheduling and execution of observing programs according to scientific priority
and suitability of observing conditions

• Near real-time feedback to the operator (and in some cases, to the observer) as
observations proceed

• Automatic calibration of raw data and production of final images and spectra.

• Archival of all raw, processed and ancillary (e.g., monitor/engineering) data

• Support for archival research, once the proprietary period for a data set has
expired. This will include compatibility and interoperability with other elements
of the Virtual Observatory (VO).

3.1.1.1 What’s different about ALMA?
While ALMA builds on the experience of existing radio observatories, it nevertheless
represents a major step forward, because:

• It must be accessible to the entire astronomical community, including
those with no experience in aperture synthesis and mm/submm radio
astronomy. While this has been a goal of the WSRT and the VLA as
well, ALMA’s 2016 baselines and the technological advances of the
last 20-30 years should enable it to attract a larger body of non-radio
astronomers.

• It must, on the other hand, enable experts to customize observing and
reduction procedures.

ALMA ALMA Software Architecture

Revision: 0.4 Page 14 of 54

• It must operate predominantly in service mode, without the
controlling presence of the original proposer.

• It must maximize the scientific productivity of the observatory by
dynamically scheduling and executing observing projects in response
to changing observing conditions.

• It must provide an archive of calibrated and imaged data that can be
used by researchers without needing recourse to the specialized
knowledge of the original observers once the proprietary period for
PI (Principal Investigator)-data access has expired.

• It must deal with a larger variety of projects than previous aperture
synthesis instruments

• At ν > 345 GHz interferometry is in its infancy, started recently at
the Submillimeter Array (SMA) in Hawaii

Some operations must be available even if other parts of the pipeline are unavailable.
The proposal and observation preparation system for example, must operate regardless of
whether or not the observation system is running. And the observation system must run,
once it has some defined observations, without the proposal system.

3.1.1.2 Physical hardware
Another constraint is the commitment to physical components, some of which we know
now [December 2001]: 64 antennas, computers onboard each antenna with a local field
bus connecting to devices, high speed communication links from each antenna to the
center in a star point-to-point configuration, central correlator, central control computers,
communication links between components and to the rest of the world – these show us
the scale of the system.

3.1.2 Performance

3.1.2.1 Hard Real-time

3.1.2.2 Near real-time
Results of pointing/focus and observations of astronomical phase calibration sources
must be available quickly enough to be fed back to the observing process. In the case of
pointing/focus calibrations, further observations of the scientific target cannot proceed
until a satisfactory pointing/focus solution has been determined. Rough turnaround times
of 0.5 s are needed.

Some quick-look results should be updated and displayed to the operator every scan.

3.1.2.3 Interactive
The proposal tools must give the user immediate feedback and must be generally
responsive. When network access (e.g., to catalogs) is unavailable or unacceptably slow,
fallback to use of local resources, perhaps with reduced functionality, is required. Array
operators should be notified immediately of system failures and should have the means to
react quickly.

3.1.2.4 Overall throughput

The requirement here is that the entire processing system be fast enough to keep up with
the pace of observations, that is, that the incoming data be calibrated, imaged and

ALMA ALMA Software Architecture

Revision: 0.4 Page 15 of 54

archived as fast as it is acquired. Neither calibration nor imaging is allowed to be a
bottleneck for the system.

The current specifications for the data rate that must be supported by the post-correlator
part of the system are 6 Mbyte/s average and 60 Mbyte/s peak. A change request is
pending to increase this to 12 and 72 Mbyte/s, respectively. (Note that the baseline
ALMA correlator can deliver 1 Gbyte/s, but the correlator subsystem reduces this to the
above rates, which represent the data that is seen by the rest of the system—and represent
the data which is archived.)

3.2 Development-time Requirements
3.2.1 Distributed development

The ALMA software will be developed at many institutes, scattered over at least two
continents. The architecture is therefore required to facilitate distributed development,
promoting independent testing, clarity of interfaces and ease of integration.

3.2.2 Modifiability
The experimental nature of the ALMA project cannot be overemphasized. Some
requirements will only become clear as the system comes into operation. Early results
will stimulate the development of new requirements, particularly in the relatively
unexplored sub millimeter range.

The architecture of the ALMA system should compartmentalize the areas of likely
change, so that the impact of future changes will be restricted to relatively few areas of
the system. This implies

• High level of flexibility at those levels where considerations of robustness and
performance make the effort required reasonable

• Observers and ALMA scientific staff (i.e., those who are not software
professionals) should be able to develop and implement new observing methods
and reduction procedures, although incorporation into the system as standard
observing modes may require intervention of a software specialist.

• The architecture chosen must be scalable enough to allow the addition of new
array hardware without a disproportionate amount of effort. Such hardware could
include, for example:

1. A next-generation correlator, with its implied many-fold increase in data rate

2. Additional receiver bands

3. A second, smaller array (the ALMA compact array)

4. Should the ALMA project be expanded to include Japan as a partner, such
hardware might come sooner rather than later.

5. The architecture must permit the retargeting of parts of the system to new
computer hardware that will be available over the observatory’s lifetime of
several decades.

6. The architecture must permit the migration of archived data to new hardware
media and new forms of data access software with minimal impact on the
remainder of the system.

ALMA ALMA Software Architecture

Revision: 0.4 Page 16 of 54

4 Functional Architecture
In this chapter we show the internal structure of the global subsystems introduced in
chapter 2. The functionality is provided by a number of interacting software packages
each consisting of several classes. The main goal was to decouple the major logical
subsystems so that they can be developed and operated independently or with few
dependencies on other subsystems.

Note that we have not specified the interfaces between individual subsystems. This
process is now underway, and involves the subsystem teams directly, as they define what
information they will need from other parts of the system. Some key data elements, in
particular Observing Projects and Scheduling Blocks, have, however, been given a
preliminary definition by the High-Level Analysis group; this definition is currently
being elaborated and refined in collaboration with the subsystem teams concerned.

4.1 Global Subsystem Structure
The overall flow of data and control among the ALMA subsystems is shown in Figure 4.
It will be useful to briefly state the main functional paths within this system in order to
get a clear understanding of the role of the various subsystems.

First, an observer creates an observing project using the Observing Tool, which breaks
the project into scheduling blocks, and stores it in the archive. Then, the scheduling
subsystem gets project definitions and scheduling blocks from the archive, dispatching
them to the control system to be executed. The control system executes the scheduling
block by commanding the correlator, which results in raw data and meta-data being made
available to the calibration and quick-look pipelines. The completion status of
scheduling blocks is monitored by the scheduling subsystem, which starts the science
data reduction pipeline at appropriate times. The science pipeline generates data products
that are stored in the archive. Again the scheduling subsystem monitors the completion
of the science data reduction and informs the PI that data are now available.

Also shown in the figure, although outside the more-or-less automatic operations flow of
the system, is access by researchers to data in the Science Research Archive.

ALMA ALMA Software Architecture

Revision: 0.4 Page 17 of 54

Observation
Preparation

Scheduling

Data Reduction
Pipeline

A
r
c
h
i
v
e

Executive

ALMA Common Software

Principal
Investigator

1. Create observing project

2. Store
observing

project

3. Get project
definition

4. Dispatch scheduling block

6. Start data reduction

8. Notify PI

7.1. Get raw data & meta-data

7.2. Store science data

9. Get project
data

Archive
Researcher

Telescope
Operator

Get science data

Notify
of

Special
Condition

Start
Stop

Configure

Alter Schedule

Control System

Correlator

Calibration Pipeline

Quick Look Pipeline

5. Execute scheduling block

5.1 Setup correlator

5.2. Store
raw data

5.3. Store
meta-data

5.5. Store calibration results

5.4. Access raw data & meta-data

Primary functional paths Additional functions ALMA software subsystem external agent

Figure 4: Operation of the ALMA software system. The numbered arrows indicate steps in the
creation and processing of an Observing Project from Proposal through to data reduction and
storage in the Archive.

The ALMA software architecture (i.e., its software structure, in contrast with its run-time
control and data flow) consists of 4 layers: the presentation layer (user interfaces), the
application layer (providing the main tasks), the domain layer (commonly used objects)
and the system layer (system services, communication between subsystems). The layered

ALMA ALMA Software Architecture

Revision: 0.4 Page 18 of 54

structure helps decoupling the subsystems. Figure 4-5 shows the top-level subsystems of
those 4 layers. For simplicity the dependencies and interactions are not shown here. They
will be discussed later. For a more detailed specification of the packages discussed, see
the [ISA].

Administration
<<subsystem>>

Research
Archive

<<subsystem>>
InstrumentOperation
<<subsystems>>

Preparation
<<subsystem>>

Reduction&Analysis
<<subsystem>>

ObsProject

ACS <<subsystem>>
Archive

(InfoServices)

Policy
ResourceMng

Domain Layer

Presentation Layer

Application Layer

ObsProjectRepository

System Layer

Application UIs
(from common

toolkit)

DRP
<<external>>

Figure 4-5: Global layered subsystem and package structure of the ALMA
software system.

The system layer provides the basic communication and archival storage functionality
commonly used by almost all other subsystems. This layer will soon have to be stable
because everyone else depends on it.

The domain layer provides commonly used entity objects such as the Observing Project
and Catalogs as well as the externally-developed Data Reduction Package. The entity
objects are also central to the ALMA software system and therefore need to be developed
and made as stable as possible early on. This does not exclude, of course, the possibility
of changing their definition when experience and/or new requirements make this
necessary.

The application layer subsystems implement the main sections from chapter 2, but there
is no precise correspondence, because the view in Figure 4-5 is a static view which is
more relevant to the development of the software than to its run-time organization.
“Proposal Preparation” and “Observing Program Preparation” are handled by the
Preparation & Administration subsystems, “Observations” are covered by the
InstrumentOperation subsystems (a group of six subsystems in their own right, including
“AlmaSystem” from the Domain Layer), while “Image Reduction Pipeline” corresponds
to the ScienceDataReduction subsystem. The “Calibration Pipeline” and the “Quicklook
Pipeline” are—from the run-time point of view—in “InstrumentOperation”, but the
software itself is made up of units from the “Reduction & Analysis” package. The

ALMA ALMA Software Architecture

Revision: 0.4 Page 19 of 54

Archive subsystem is the hub around which the system is organized (the Research
Archive is itself a client of the general Archive subsystem). “Administration” is also
responsible for all other ALMA administrative tasks (see 4.2, Summary of individual
subsystems).

Finally, the presentation layer provides the user interfaces. It is planned for the ACS
subsystem to provide a general ALMA GUI toolkit that the other subsystem developers
will use.

4.2 Summary of individual subsystems

This section describes the structure of the individual subsystems. The definition of a
subsystem is mainly based on the five application layer systems, but development
considerations and the fact that the project Work Breakdown Structure definition
preceded the development of the system architecture have caused us to be less precise in
what we consider a subsystem. Only the “ACS” subsystem was kept separate because of
its system wide importance and need for stability (see section 4.4). In the figures we
already indicate the package development priorities as numbers in brackets (see section
4.4 for a detailed discussion of priorities).

4.2.1 Preparation Subsystem

The Preparation subsystem (figure 4-2) covers the ALMA software from proposal
submission to the creation of observable Scheduling Blocks (SBs). Hence, it consists of
tightly interacting packages of the observing preparation stage, which make up, with the
observing tool at its center, a logical unit that is almost independent from the rest of the
system.

ALMA ALMA Software Architecture

Revision: 0.4 Page 20 of 54

ObsProjectRepository (1)

ObsProjectReposi
toryController (1)

Correlator Tool (3)

ObsSimulator
(2)

ObsTool (1)

ObsTemplate
(2)

Reviewer (3)

Specifications (1)

ObsProject
Policy

Catalog

Figure 4-6: Observation Preparation Subsystem (The numbers in parentheses indicate
the development priority assigned to each package within the Preparation Subsystem)

The ObsProject portion from the domain layer may need to be exported as a separate
subsystem because many other subsystems depend on it. For the same reason the catalog
package may need to be kept with the ObsProject package.

We have the following further comments on individual packages: The simulator package
that forms part of the Observation Preparation subsystem will be a lightweight version;
the subsystem will be able, however, to make use of a full-fledged simulator that will be
provided with the offline reduction and analysis subsystem (appearing as a WBS element
but not otherwise discussed in this document). The correlator tool and specification
packages need a comprehensive knowledge of the instrument’s capabilities. The
ObsProjectRepositoryController is a (possibly web-based) controller subsystem that
mediates between the application layer and the ObsProjectRepository in the domain
layer.

ALMA ALMA Software Architecture

Revision: 0.4 Page 21 of 54

4.2.1.1 Interface to Instrument Operations
The primary interface between the Preparation subsystem and the Instrument Operation
subsystem are the Observing Project, along with its linked Proposal, Programs and
Scheduling Blocks (see [ISA] for a class diagram of this hierarchy). Each Scheduling
Block will contain an observing procedure, either:

• Coded in XML, to allow full validation and consistency with the high-level input
given by the PI (see [SSRD], [ISA] and [OTC]) and later compilation into either
1) scripting language commands or 2) a set of compiled language invocations;

OR

• Direct scripting language commands, in particular if an “expert-level” script has
been defined by the proposer. In this case, some kinds of validation will not be
possible.

A partial and preliminary definition of the content of a Scheduling Block is given in the
Appendix.

4.2.2 Instrument Operation Subsystems

The actual ALMA observing process is implemented in the Instrument Operations, which
consists of six subsystems.

Alma Executive: supervises and monitors the other subsystems;

Scheduling: determines the next Scheduling Block to execute and updates the
status of the SB and its enclosing Observing Project upon success or failure;
initiates Science Data Reduction processing and/or notifies the PI when
necessary (e.g., upon reaching a breakpoint or completing a significant piece
of the Observing Project);

Antenna & Receiver Control (Monitor & Control?): accepts an SB from the
Scheduling system and executes its commands to the array hardware,
configuring and triggering the acquisition of data by the correlator;

Correlator: accepts data from the correlator hardware, Fourier-transforms it
from time- to frequency-space, applies Water Vapor Radiometer (WVR)
corrections, and streams its output to the Archive, the Calibration Pipeline
and the Quicklook Pipeline;

Calibration Pipeline: calibrates data from the correlator in near-real-time,
archiving results and passing them to Antenna & Receiver Control to modify
observing parameters, and to the Scheduling subsystem to use in selecting the
next SB to execute.

Quicklook Pipeline: applies available calibrations to the data, calculates dirty
images and displays these and other data for monitoring by the ALMA staff
and, optionally, by the PI.

Operations are supervised by the Alma Executive subsystem, which starts up and
monitors the other subsystems and will not be discussed further in this section. The
Scheduler provides the dynamic ranking of Scheduling Blocks. The Dispatcher (within
the Scheduling subsystem) requests Scheduling Blocks either 1) from the Scheduler when
dynamic scheduling is in operation; or 2) from an Interactive Observer, who uses the OT

ALMA ALMA Software Architecture

Revision: 0.4 Page 22 of 54

to submit Scheduling Blocks for immediate execution. It then passes the chosen SB to the
Sequencer, which executes the observing procedures contained within the SB and sends
commands (defined in the Command package) to the Correlator and the Antenna &
Receiver Control subsystems to perform the actual observations. (The dashed box labeled
“Alma System” denotes the Correlator and Antenna & Receiver Control subsystems, our
abstractions for the ALMA hardware and all the distributed objects and control software
associated with it.) Upon completion (or abort) of an SB, the Dispatcher must notify the
Observing Project Manager (also a package within the Scheduling subsystem) which will
update the SB’s status, as well as that of its enclosing Observing Project. The Observing
Project Manager will determine whether this update, in turn, should trigger any data
processing (e.g., final image production when a Project is completed or a Breakpoint is
reached at which the PI had requested such processing) and will evaluate any conditions
that might cause the status of other SBs in the Project to change (e.g., because a
Breakpoint has been reached, or because other SBs will only become ready for execution
after the current SB has executed successfully).

The Scheduler itself depends upon the SiteCondition package (see [ISA]) for information
concerning weather conditions and instrumental performance necessary to rank SBs for
execution.

A crucial part of the subsystem is the calibration package, which will provide all
functionality for proper array / instrument / data calibration. The subsystem also consists
of several domain layer packages, whose functionality is closely related to the instrument
operation.

4.2.2.1 Interface between Correlator/Control Subsystems and Pipelines
In order to meet the requirements for rapid turnaround of calibration and quicklook
results after raw data has been acquired, two key design decisions have been made:

Data coming from the Correlator subsystem will not be retrieved from the
Archive by the Calibration and Quicklook Pipelines, but will be streamed
directly to them, possibly via specialized hardware (see the discussion of the
“Fast Data Store” in the chapter on Technical Architecture).

Both the Calibration and Quicklook Pipelines will decide which parts of this
data are of interest to them, based on metadata inserted into the data stream
by the Correlator subsystem, and an additional metadata stream coming from
the Antenna & Receiver Control subsystem. This metadata will comprise:

• All parameters characterizing antenna, receiver and correlator
configuration during the acquisition of the data that follows:

• An indication of the scientific intent (e.g., phase calibration,
pointing calibration, pointing scan), which will have been
embedded in each scan command before it is executed.

In this way, the operation of these two pipelines will be fully data-driven.

ALMA ALMA Software Architecture

Revision: 0.4 Page 23 of 54

AlmaExec

CalibrationPkg

Scheduler Sequencer

SiteCondition

Correlator
<<subsystem>>

Antenna&Rcv_Ctrl
<<subsystem>>

Archive

AlmaSystem

Command

Figure 4-7: Instrument Operations Subsystems. The Sequencer issues configuration and control commands to the
Correlator and Antenna & Receiver Control subsystems. Both science (uv & total power) and engineering (“monitor”)
data produced by these subsystems are made accessible to other subsystems via the Archive (via direct streaming to the
Calibration and Quicklook Pipelines, which need to process this data in near-real time). Only the most significant
dependencies are shown.

4.2.3 Data Reduction Subsystems

Data reduction in ALMA appears in three guises: 1) on-line calibration to enable
evaluation and optimization of on-going operations; 2) generation of quicklook results to
give feedback to the operator and/or PI; and 3) generation of “definitive” data products.
These three processes will clearly share most of their basic functionality, and will be
assembled from pieces of software functionality provided by an existing Data Reduction
Package (DRP), probably AIPS++. The Quicklook Pipeline in particular can be regarded
largely as a subset of the full Science Data Reduction Pipeline, although it has its own
unique requirements for rapid display of results.

Further data reduction and analysis will be done by PIs at the ALMA Regional Support
Centers and/or at their home institutions. For this purpose, they will use an ALMA-
specific Data Reduction User Interface (DRUI) to allow them to reduce and analyze their
data interactively. At least at the beginning, the DRUI will make use of parts of the above
ALMA pipelines and the external DRP, although it is intended to be general enough to
allow the substitution of a different DRP if the user so desires.

ALMA ALMA Software Architecture

Revision: 0.4 Page 24 of 54

The minimal analysis that has been done on this area of the system is clear from the
oversimplified figure. Since it is very likely that AIPS++ will be the DRP selected, the
modality for integration with the rest of the ALMA software needs to be addressed in
collaboration with experts in AIPS++ internals and with the developers of the Calibration
and Quicklook Pipelines and of the DRUI.

DRP
<<external>>

CalibrationPipeline QuicklookPipeline Science Data
Reduction Pipeline

DataReduction
UI

Figure 4-8: Data Reduction Subsystems. The “DRP” (Data Reduction
Package) is expected to be already-existing software that has been developed
outside the ALMA project, and will have been enhanced where necessary to
meet the needs of millimeter and submillimeter radio astronomy. ALMA-
specific functionality will be added by the Calibration, Quicklook and Science
Data Reduction Pipelines.

4.2.4 Archive Subsystem

The archive subsystem consists of a package in the application and the system layer,
respectively. The InfoService package will contain the abstract classes for all data /
information services and the services themselves. Hence it will provide for archives,
catalogs, repositories, databases, etc. and will be needed by many packages from other
subsystems from very early on. The ArchiveResearch package will be responsible for
archive queries and data retrieval.

ALMA ALMA Software Architecture

Revision: 0.4 Page 25 of 54

ArchiveResearch (3)

InfoService (0)
(from System Layer)

Figure 4-9: Archive Subsystem

4.2.5 Administration Subsystem

At the center of the Administration subsystem are the ProgramTool and AdminTool
classes, responsible for the high level administration of observing programs and more
general administrative tasks (staff shifts and hardware maintenance schedules, for
example), respectively. A Quality Control package was introduced in the subsystem to
take care of trend analysis of telescope, array, and receiver properties on the basis of
calibration results. The user management package in the domain layer is responsible for
managing ALMA user details such as access privileges. This functionality might at some
point be completely covered by the ALMA Common Software.

ALMA ALMA Software Architecture

Revision: 0.4 Page 26 of 54

AlmaAdmin (2) ObsAdmin (3) QualityControl
(2)

User Management (3)

Figure 4-10: Administration Subsystem

4.2.6 ACS Subsystem

The ALMA Common Software (ACS) Subsystem provides the “glue” between all other
subsystems. It is based on the CORBA middleware but provides many more features that
facilitate subsystem communication, error handling, data collection etc. For a
comprehensive summary see the ALMA Common Software Architecture document
(ALMA memo 016).

To reflect the existing developments in the ALMA Common Software (ACS) we have
added a package called “ACS Core“ which comprises CORBA, the error handling
system, etc. The need for the Internet Messaging and Common UI toolkit packages
shown in Figure 4-11 was confirmed in the course of our analysis work. We assign them
to be part of the ACS subsystem.

ALMA ALMA Software Architecture

Revision: 0.4 Page 27 of 54

AlarmSystem InternetMessaging CommonUI
Toolkit ...

ACSCore

Figure 4-11: ACS Subsystem

4.2.7 Interaction between subsystems

The detailed interactions between subsystems need to be worked out in more detail with
the developers of the subsystems involved. In general, coupling of subsystems is
minimized by having them interact via the Archive/InfoServices subsystem or via
mechanisms provided by ACS as much as possible. Where performance or simplicity
make this undesirable, direct interaction is possible. In particular, we expect that raw (and
WVR-corrected) data from the correlator subsystem will flow directly to the Calibration
and Quicklook pipelines without first being stored and then retrieved from the Archive.
While the Archive will be able to accept the full (~10-70 Mbyte/s) data rate in streaming
mode, it will be unable to match that speed for retrieval of large quantities of data that it
has already stored.

4.3 Mapping of packages to the WBS

Beside the logical structure derived from the required system functionality and from
technological constraints, there is also the highly distributed structure of the ALMA
development teams and the administratively important Work Breakdown Structure
(WBS) which partitions the software development effort among the ALMA partners.
Table 1 shows which subsystems and/or packages have been assigned to each WBS
element. It also includes the priorities of the individual packages, which will be discussed
in the next section.

ALMA ALMA Software Architecture

Revision: 0.4 Page 28 of 54

Table 1: WBS-to-Architecture mapping and priorities. Where a relevant [ISA] reference exists, it is given in the
third column.

WBS Item Subsystem/Package ISA Ref Priority
 InfoService 2.17 0
 Archive 2.18 0 Archiving (2820)
 ArchiveResearch 2.17 3
 CommonUI Toolkit 1
 AlarmSystem 1
 Internet / Messaging Services 2.24 2 Common Software (2740)

 ACS Core 0
 Command 2.8 0
 SiteCondition 2.23 0
 Sequencer 2.13 1
 Antenna&Rcv_Cntrl 1

Control Software (2760)

 ResourceMng 2.10 2
Correlator Software (2780) Correlator 1
Data Reduction User I/F (2890)
Offline Data Reduction I/F(2880) Data Reduction User I/F 2

 AlmaAdmin 2.21 2
 UserManagement 3
 UserSecurity 3 Executive Software (2750)

 AlmaExec 2.9 1
 ObsAdmin 2.2 3
 ObsProjectRepositoryController 1
 ObsTool 2.1 1
 Specifications 2.1.1 1
 ObsSimulator2 2.1.3 2
 ObsTemplate 2.1.2 2
 CorrelatorSetup 2.1.4 3
 Reviewer 2.3 3
 Policy 2.4 3
 ObsProject 2.9 0
 ObsProjectRepository 2.20 0

Obs. Preparation/Support (2860)

 Catalog 2.19 1
Scheduling (2840) Scheduler 2.12 3
Pipeline – Heuristics (2800) ScienceData & Q/L Pipelines 2.1.5 1
Pipeline – Infrastructure (2800) DRP (external) 2.1.5 1

 DRP (external) 2.1.5 1 Offline Data Reduction Engines
(2880) ObsSimulator 2.1.3 2

 CalibrationPipeline 2.14 0 Tel. Calibration Engines (2900) QualityControl 2

4.4 Priorities of package development

2 Although the primary responsibility for the simulator has been assigned to the Offline Data Reduction WBS
element, a “light” version that, e.g., simulates synthesized beamshapes and estimates required observing time,
will be an intrinsic part of the Observing Tool itself.

ALMA ALMA Software Architecture

Revision: 0.4 Page 29 of 54

The developmental stability of the packages and classes must increase from the
presentation layer to the domain and system layers because many subsystems depend on
functionalities in those layers while higher layers are more independent and can thus be
kept more flexible in the development process. The most obvious subsystems with a need
for stability are the “Observing Project” and “Observing Project Repository”. The domain
and system layer subsystems therefore have the highest design and implementation
priorities.

We assigned priority levels from 0 to 3 to all packages, 0 being the highest and 3 being
the lowest priority (see second column in table 4-1). Note that all packages are necessary
for the ALMA system and that these are short-term priorities meant for the design and
development in the next 1-2 years, i.e. 2002/03. Priority “3” is thus not to be interpreted
as “desirable” as in the SSR report but rather “not urgent” while “0” means “crucial”.

The priority “0” packages are “InfoService” and “Archive” from the system layer,
“Observing Project”, “Observing Project Repository” and “Command” from the domain
layer and “CalibrationPkg” and “SiteCondition” from the application layer. The system
and domain layer packages are important because of subsystem dependencies. The
calibration package and the related site condition package were also assigned priority “0”
because the need for the development of new algorithms for submillimeter interferometry
calibrations makes them critical to the success of ALMA.

Once the level “0” packages have been designed, development for level “1” can begin.
Level “1” comprises most of the basic ALMA functionality such as the (basic) observing
tool and the array control software. Level “2” deals with systems that are needed later and
whose functionality extends the basic level. Level “3” systems add items that will be
needed when the interim science phase begins. We assumed implicitly that all user
interfaces have priority “3”. This only means that the final stable version of the UIs is not
an urgent item. There will of course soon be intermediate versions.

4.5 Critical issues

We identified a number of critical issues needing more detailed consideration.

1. To reduce the load onto the system at the ALMA site, observing simulations
should be performed offline at remote sites.

2. There is a requirement to support “eavesdropping” on operations (basically
from anywhere). This responsibility has not yet been assigned; also uncertain
is what kind of access methods and bandwidths to ALMA are needed and
how security should be handled.

3. The requested ability to enable a PI to update already-approved Observing
Programs / Scheduling Blocks from external nodes can place a large burden
on the operations staff, especially if the feedback times must be small (hours
rather than days). Such changes might also wreak havoc with a long-term
schedule if, for example, new targets are introduced that would change the
date in which the observations could be scheduled. Although this is a policy
and operational issue, in the absence of definitive guidelines, the software
needs to provide a mechanism to make these updates possible, minimizing
effects on the operation of the core ALMA system but offering reasonable
flexibility to the users.

ALMA ALMA Software Architecture

Revision: 0.4 Page 30 of 54

4. Data reduction algorithms for submm interferometry especially phase
calibration correction for long baselines using data from water vapor
radiometers are currently still in an experimental stage and development of
new algorithms which convert measured water vapor line profiles into phase
corrections are crucial right from the beginning of the array operation.

5. Any interactions with the real time system must not lock ALMA operations.
Especially the feedback mechanisms of the Calibration Pipeline need to be
prototyped early and their performance extrapolated to the full system.

6. The Archive is the central part to decouple the subsystems. Access to the
Archive is therefore crucial and it must be able to handle the expected data
rates (for science data rates see [SMM]).

7. The requirement for Archival Research adds additional external access
(although not to the core system but to remote copies of the Archive) which
has to be considered.

8. In general the necessary interprocess communication and network
bandwidths have to be estimated. Whether, for example, CORBA
middleware provides sufficiently performant facilities for transfer of raw
science data needs examination.

4.6 Deployment view

We have made a first cut at allocating ALMA software to individual processors or nodes,
and have defined ten general types of nodes or processors to understand deployment and
communication issues (see Figure 4-12). They are:

N1) Proposer: Used by the Proposer to prepare observing proposals for ALMA. It will
often be external to the secure ALMA network (e.g., because it is on the Proposer’s
laptop) and exist in several instances.

N2) Reviewer: Used by reviewers during their evaluation of proposals. It may be external
to the secure ALMA network and exist in several offline instances.

N3) ALMA Master Control: Controls the ALMA facility and can therefore only exist in
one instance. It is naturally in the secure ALMA network and accessed by the ALMA
operator.

N4) ALMA Administration: Used by ALMA staff for administration of the general
ALMA facility. The node can exist in several instances, but all must be on the secure
ALMA network.

N5) Program Administration: Used by staff for performing tasks related to the
administration of observing programs.

ALMA ALMA Software Architecture

Revision: 0.4 Page 31 of 54

N6) Data Processing: Performs general pipeline processing of data. It can be both internal
and external to ALMA. Any of the various pipelines may, in principle, run on this node;
however, the container-component model for the technical architecture (see next chapter)
allows us to defer such decisions until run-time—and even to redeploy pipelines to other
nodes while the system is running.

N7) Archive: This type of node provides access to the InfoServices. It may exist in
several instances but normally on the secure ALMA network.

N8) Observer: Used by interactive observers to specify observations (i.e. to specify
Scheduling Blocks) which then can be executed immediately. This node is on the secure
ALMA network. There may be several instances for the control of several subarrays.

N9) Scientific User: Used by scientific users to perform their work when interacting with
ALMA data. It is normally external to ALMA and can exist in multiple instances.

N10) ALMA System: This is a generic node of the ALMA real-time system, e.g.,
antenna, correlator, real-time computer. It is not anticipated that any of the pipelines will
run on this type of node.

Nodes external to ALMA that need remote access to the system raise security issues that
need to be considered. Any such remote access must not affect the internal ALMA
system performance. Even interactions with the remote DataPipeline and the
RemoteArchive, although they don’t represent the same potential dangers as interactions
with the operations infrastructure itself, still need to be regulated. (Protection of
proprietary data and prevention of abuse of resources are two important concerns even at
the Regional Support Centers.) In addition, the Proposer and Reviewer nodes may
operate offline. This implies the need for synchronization methods between those nodes
and the rest of the system.

The activity (“swimlane”) diagram shown in Figure 4-13 gives a schematic view of the
general order of events in the life of an ALMA program, as well as the parts of the
system responsible.

•

ALMA ALMA Software Architecture

Revision: 0.4 Page 32 of 54

Proposer

manual

Reviewer

manual

AlmaControl

executive

AlmaAdmin

manual

Archive

preemptive

Observer

manual

ProgAdmin

manual

DataPipeline

preemptive

AlmaUser

manual

OP PackagingSB Queue Fill

OP/SB Fetching

Data Processing

AlmaSystem

preemptive

CorrelatorAntenna

SubArray Observing

Reviewing

Data Processing

Interactive / Manual Sessions

ALMA ->

<- External

Possibly external
(remote observing)

Remote
Archive

preemptive

Remote
DataPipeline

preemptive

Synch.

Data Processing

OP Submission

Archival Research

Figure 4-12: Deployment of the ALMA software system on ALMA internal,

external and remote nodes.

AL
M

A

AL
M

A
So

ftw
ar

e
Ar

ch
ite

ct
ur

e

 R
ev

is
io

n:
 0

.4

Pa

ge
 3

3
of

 5
4

C
re

at
e

&
 S

ub
m

it
O

bs
er

vi
ng

 P
ro

po
sa

l
O

P
ro

p
be

in
g

cr
ea

te
d

O
P

ro
p

be
in

g
cr

ea
te

d

C
re

at
e

&
 S

ub
m

it
O

P

an
d

S
B

s
O

P
 /

SB
s

be
in

g
cr

ea
te

d
O

P
 /

SB
s

be
in

g
cr

ea
te

d

W
rit

e
P

ap
er

P
er

fo
rm

 A
rc

hi
va

l
R

es
ea

rc
h

Pr
op

os
er

R
ev

ie
w

in
g

O
P

ro
p

be
in

g
re

vi
ew

ed
O

P
ro

p
be

in
g

re
vi

ew
ed

R
ev

ie
w

er

Ac
ce

pt
 P

ro
po

sa
ls

O
P

ro
p

su
bm

itt
ed

O
P

ro
p

su
bm

itt
ed

S
en

d
to

 R
ev

ie
w

er

O
P

ro
p

be
in

g
se

nt
 to

 re
vie

w
er

O
P

ro
p

be
in

g
se

nt
 to

 re
vie

w
er

Ac
ce

pt
 re

vi
ew

ed
O

P
ro

p

O
P

ro
p

re
vi

ew
ed

O
P

ro
p

re
vi

ew
ed

N
ot

ify
 o

bs
er

ve
r

O
P

ro
p

ac
ce

pt
ed

O
P

ro
p

ac
ce

pt
ed

Ac
ce

pt
 O

P
 /

S
B

s

O
P

 /
S

B
s

su
bm

itt
ed

/ q

ue
ue

d
O

P
 /

S
B

s
su

bm
itt

ed

/ q
ue

ue
d

P
ac

ka
ge

 O
P

R

es
ul

ts

O
P

co

m
pl

et
ed

O
P

co

m
pl

et
ed

P
ro

gr
am

 A
dm

in
is

tra
tio

n

S
ch

ed
ul

e
S

B

SB
s

be
in

g
ra

nk
ed

SB
s

be
in

g
ra

nk
ed

E
xe

cu
te

 to
p

le
ve

l S
B

S
B

 b
ei

ng

ex
ec

ut
ed

S
B

 b
ei

ng

ex
ec

ut
ed

Up
da

te
 O

P
 S

ta
tu

s

O
P

ob

se
rv

ed
O

P

ob
se

rv
ed

M
on

ito
r

su
bs

yt
em

s

In
st

ru
m

en
t O

pe
ra

tio
n

Ar
ch

iv
e

ra
w

 d
at

a

R
aw

 D
at

a
Ar

ch
iv

ed
R

aw
 D

at
a

Ar
ch

iv
ed

Ar
ch

iv
e

re
du

ce
d

da
ta

R
ed

uc
ed

 D
at

a
Ar

ch
iv

ed
R

ed
uc

ed
 D

at
a

Ar
ch

iv
ed

D
el

iv
er

 O
P

 D
at

a

O
P

 D
at

a
D

el
iv

er
ed

O
P

 D
at

a
D

el
iv

er
ed

Ar
ch

iv
e

R
ed

uc
e

ra
w

 d
at

a

R
aw

 D
at

a
be

in
g

re
du

ce
d

R
aw

 D
at

a
be

in
g

re
du

ce
d

Pi
pe

lin
e

D
el

iv
er

 a
rc

hi
ve

d
da

ta

R
em

ot
e

Ar
ch

iv
e

R
ed

uc
e

ar
ch

iv
ed

 d
at

a

R
em

ot
e

P
ip

el
in

e

Re
m

ot
e

Pi
pe

lin
e

Re
m

o
te

 A
rc

hi
ve

Pi
pe

li
ne

Ar
ch

iv
e

In
st

ru
m

en
t O

pe
ra

tio
n

Pr
og

ra
m

 A
dm

in
is

tra
tio

n
Re

vi
ew

er
Pr

op
o

se
r

AL
M

A

AL
M

A
So

ftw
ar

e
Ar

ch
ite

ct
ur

e

 R
ev

is
io

n:
 0

.4

Pa

ge
 3

4
of

 5
4

Fi
gu

re
 4

-1
3:

 A
LM

A
sw

im
la

ne
 d

ia
gr

am
 sh

ow
in

g
th

e
ge

ne
ra

l f
lo

w
 o

f i
nf

or
m

at
io

n
th

ro
ug

h
th

e
AL

M
A

so
ftw

ar
e

sy
st

em
. E

ac
h

st
ag

e
is

ch

ar
ac

te
ri

ze
d

by
 a

 st
at

e
of

 m
os

t i
m

po
rt

an
t e

nt
ity

 o
bj

ec
t.

N
ot

e
th

at
 th

e
ve

rt
ic

al
 d

iv
is

io
ns

 re
fe

r t
o

Ac
to

rs
, n

ot
 th

e
N

od
es

 o
f t

he
 p

re
vi

ou
s

di
ag

ra
m

.

ALMA ALMA Software Architecture

Revision: 0.4 Page 35 of 54

5 Technical Architecture
The technical architecture for the ALMA software system provides the broad
infrastructure necessary to support the functional architecture described in the preceding
chapter. As the headings of this and the previous chapter suggest, we want to separate
two types of concerns, the domain-specific “functional” concerns, from the “technical”
concerns that arise from the computing environment in which the problems of Alma
operations, data acquisition and data analysis are to be solved.

This “separation of concerns” is hardly a new concept in software development. Software
professionals will recognize in this phrase the same decades-old principle that has guided
the development of high-quality, modular code: cohesion of individual modules, and
loose coupling between them. It is this principle that teaches us not to combine in a single
routine, for example, code to calculate a cosine function with code to perform a
numerical integration.

The concerns that we are separating here, however, are somewhat more generic, and our
motive for separating them is a precise one: to allow subsystem developers to concentrate
on issues of radio astronomy and interferometry, physics and algorithms, leaving to IT
specialists the tasks of providing mechanisms for interfacing, remote access and security.

5.1 Container-Component Model
The Container-Component model for software organization and development is our
primary instrument for achieving this separation of functional from technical concerns.

Voelter (2001) defines a component as a software element that exposes its services
through a published interface and explicitly declares its dependencies on other
components and services, can be deployed independently and, in addition:

“is coarse grained: In contrast to a programming language class, a component
has a much larger granularity and thus usually more responsibilities.
Internally, a component can be made up of classes, or, if no OO language is
used, … can be made up of any other suitable constructs. Component based
development and OO are not technically related.

“requires a runtime environment: A components cannot exist on its own, it
requires a something which provides it with some necessary services.” This
“something” is called a container.

“is remotely accessible, in order to support distributed, component based
applications.”

The following diagram shows the essential ideas:

ALMA ALMA Software Architecture

Revision: 0.4 Page 36 of 54

Client

...

Container

C
om

po
ne

nt
 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 3

Client

...

Container

C
om

po
ne

nt
 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 3

Figure 5-1: A client accesses several service components via an enclosing container.

In this figure, a client (which could be itself a component residing in another container)
accesses the services of three components via their published service interfaces. The
interfaces published by Components 1 and 2 are shown inside the Container, because in
these two cases, access to their services is mediated by the Container itself, which may
add additional services such as client authorization verification to those provided by the
component. Here, the container is acting as a “tight” container. For Component 3, on the
other hand, the container is “porous”; access to the component is direct, although the
container will be used to supply the client with the initial reference to Component 3. This
might be desirable when performance considerations outweigh the benefits that a tight
container could provide in the way of added services.

These two modes, “tight” and “porous”, reflect the expected use of this model in the data
flow and control system areas, respectively. The client, however, receives only a
reference to its needed component, and does not know which of these two container types
it is dealing with.

The division of responsibilities between components and containers enables decisions
about where individual components are deployed to be deferred until runtime, at which
point configuration information (typically from a file or database, mediated in ALMA by
the ACS Manager) is read by the container. If the container manages component security
as well, authorization policies can be configured at run time in the same way.

To operate in such an environment, a component publishes two interfaces:

Service interface: the methods and signatures by which the component’s
services are available to clients. This interface is written in the CORBA
Interface Definition Language (IDL), or derived from it via additional code
generation (see section 5.4 for details).

ALMA ALMA Software Architecture

Revision: 0.4 Page 37 of 54

Lifecycle interface: a set of methods that are accessible only by the
component’s enclosing container. These are, in the order in which they
would typically be invoked:

• setComponentName(String):
dynamically assigns an instance name to the component

• setContainerServices(ContainerServices):
callback object through which the component can explicitly
use services offered by the container.

• initialize():
tells the component that it’s time to configure itself, build up
in-memory tables, establish remote connections, etc.

• execute():
similar to initialize(); tells the component to start running
methods that are not part of its functional interface. For
instance, the Scheduler component would run the thread that
maintains the ranked list of SBs. Many components will
probably implement only initialize() or execute(), but not
both.

• Cleanup():
called after the last functional call has finished; tells the
component to release resources so it can be removed safely.

• aboutToAbort():
only called if the container has to forcibly remove the
component. Component should make an effort to minimize
the damage.

The complete specification can be found in
alma.acs.container.ComponentLifecycle.

Note that the implementation of these lifecycle methods is completely at the
option of the component, which may decide to provide “null”
implementations of any or all of these methods as long as the semantics of
the contract between the component and the container are followed.

Other rules for component implementations:

• The constructor of the component implementation class should do close to
nothing. Initializations should be carried out in the initialize() and/or execute()
methods.

• A component should be implemented thread-safe. This means that any of its
methods can be invoked asynchronously in different threads without causing
resource conflicts or deadlocks. If thread safety seems really much too
complicated to implement, or if very likely only one thread from one client will
ever use the component, the container can be configured to synchronize calls to
the component to overcome threading issues (at the expense of some
performance loss)

Commercial implementations of the Container-Component model are quite popular in
industry at present, with Sun’s Enterprise Java Beans specification and Microsoft’s .NET

ALMA ALMA Software Architecture

Revision: 0.4 Page 38 of 54

framework being the prime examples. (A vendor-independent specification, the Corba
Component Model (CCM), is under development, but it is not complete, and production
implementations do not yet exist.) In any case, all of these are rather comprehensive
systems, and require a wholesale commitment from developers to use the languages and
tools supplied. For ALMA, which can benefit from an infrastructure that is more
lightweight, the Container-Component model will be implemented by ACS, following the
structure shown in Figure 5-2. Much of this infrastructure already exists in ACS, so
implementing the Container-Component model does not mean that we are starting from a
blank slate.

C
on

ta
in

er
C

on
ta

in
er

A
ctiva tor

DOComp. 1

Manager A
ctiva tor

DO

A
ctiva tor

DO

A
ctiva tor

DOComp. 1Comp. 1

ManagerManager

J-Comp.J-C
ont.

Comp. 2

J-Comp.J-C
ont.

J-Comp.J-C
ont.

Comp. 2Comp. 2

Figure 5-2: The ACS implementation for porous (existing) and tight (planned) Containers. The Manager provides
Containers and Activators (“porous” Containers) with configuration information.

In the following sections, we will detail how important technical issues are addressed
within the general framework of the Container-Component model: 5.2) definition of
entity (or value) classes; 5.5) persistence; 5.6) versioning; and 5.7) choice of
programming languages.

5.2 Definition of entity classes
There are many complex data structures that must be defined for the ALMA system to
operate smoothly; some will be driven by scientific needs and the requirements of
packages outside of our control; examples include:

• complex visibilities;

• images and spectra.

These are typically large (many Mbytes or Gbytes), may have existing formats that are
standard throughout the astronomical community (e.g., FITS, Measurement Sets), and are
therefore not the subject of the discussion that follows.

ALMA ALMA Software Architecture

Revision: 0.4 Page 39 of 54

Other complex data structures drive ALMA operations; they include (see [ISA] for a
discussion of this particular class hierarchy):

• Observing Proposals;

• Observing Projects;

• Scheduling Blocks;

• Instrument and operations logs.

We have complete freedom to organize these latter data structures in such a way as to
reduce development effort (including the inevitable modifications and revisions that will
take place over time) and enhance run-time performance.

In line with the object-oriented philosophy of software development for ALMA, we will
speak of entity classes and objects. As in the [ISA], we mean here classes responsible
primarily for accepting, storing and retrieving persistent data.

In the case of ALMA we often have to deal with structured data, which includes things
like configuration parameters and Scheduling Blocks. XML, the eXtensible Markup1
Language, is a set of rules (one may also think of them as guidelines or conventions) for
designing text formats that let one structure one’s data. Since its introduction as an open
standard, XML has spawned the development of many supplementary specifications and
tools that greatly facilitate its use as a data definition language in computer systems
development.

We will adopt XML to:

1. define the content and structure of the entity objects that will be passed between
subsystems (subject of this section);

2. automatically generate the classes needed to access the data contained in these
entity objects, optionally validating every change to a data value; currently
validation happens either on explicit request, or automatically on marshalling if
desired.

3. serialize these objects for network transmission;

4. facilitate the storage of these objects using the most appropriate and cost-
effective database technology at our disposal—Relational and/or Warehouse
Database Management Systems today, with perhaps Object-Oriented or XML-
based technology in the future. The Archive subsystem already provides the
XML database (Xindice) for ALMA subsystem teams to use for their
development work; very few (if any) changes will be required to subsystem
persistence code in order to use the technology that the Archive eventually
adopts.

Although XML documents are written in text format, they are not designed to be reader-
friendly. Most editing of XML documents is done via a specialized editor, and the
processing itself is hidden from the user, and in most cases, from the developer as well.

1 In spite of the “Markup” in its name, XML is not primarily for formatting printed documents or Web pages.
As its official specification states, XML “can be used to store any kind of structured information, and to
enclose or encapsulate information in order to pass it between different computing systems which would
otherwise be unable to communicate.”

ALMA ALMA Software Architecture

Revision: 0.4 Page 40 of 54

Nevertheless, we provide some “raw” XML examples below to make the basic concepts
clear.

XML schemas define application-specific rules for the content of an XML document. So,
for example, we can define the content of a Scheduling Block via a schema. A part of
such a schema will serve to make this clear:

<xsd:element name="SchedBlock">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="prj:ObsUnitT">
 <xsd:sequence>
 <xsd:element name="SchedBlockEntity" type="sbl:SchedBlockEntityT"/>
 <xsd:element name="ObsProjectRef" type="prj:ObsProjectRefT"/>
 <xsd:element name="SchedBlockControl" type="sbl:SchedBlockControlT"/>
 <xsd:element name="SchedBlockImaging" type="prj:ImagingProcedureT"/>
 <xsd:element name="ObsProcedure" type="sbl:ObsProcedureT"/>
 <xsd:element name="ObsTarget" type="sbl:TargetT" maxOccurs="unbounded"/>
 <xsd:element name="PhaseCalTarget" type="sbl:TargetT" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="PointingCalTarget" type="sbl:TargetT" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

This part of the schema states that a Scheduling Block must have the following elements:
TargetCoordinates, PhaseCalCoordinates, an ObsScript, Hardware and Calibration
Requirements, and references to an ImageScript and something called a
TargetPhaseLoop. Of course this is just a simplified example, and an observable SB
would have a much richer content.

In any event, both Target and PhaseCal Coordinates are defined to be of the “complex
type” SkyCoordinatesT, which is itself defined in detail:

 <xsd:complexType name="SkyCoordinatesT">
 <xsd:sequence>
 <xsd:element name="Longitude" type="gen:LongitudeT"/>
 <xsd:element name="Latitude" type="gen:LatitudeT"/>
 </xsd:sequence>
 <xsd:attribute name="system" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="B1950"/>
 <xsd:enumeration value="J2000"/>
 <xsd:enumeration value="galactic"/>
 <xsd:enumeration value="horizon"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:complexType name="LatitudeT">
 <xsd:simpleContent>
 <xsd:restriction base="gen:DoubleWithUnitT"> defined in namespace “gen”
 <xsd:minInclusive value="-90"/>
 <xsd:maxInclusive value="90"/>
 <xsd:attribute name="unit" fixed="deg"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
 <--! Similarly for LongitudeT -->

ALMA ALMA Software Architecture

Revision: 0.4 Page 41 of 54

While the above schema fragment may look intimidating in its length, the corresponding
use of it in an XML document is much simpler. A piece of the XML string or document
conforming to this schema could then look like:

 <TargetCoordinates system="B1950">
 <Longitude unit="deg">24.5</Longitude>
 <Latitude unit="deg">-30.0</Latitude>
 </TargetCoordinates>

An alternative way of working with xml schemas is to use graphical tools like XMLSpy,
where the tree can be manipulated using mouse menus and tables. The SchedBlock with
some of its child elements looks like this:

Figure 3: Sample XML schema displayed in graphical form. It shows a hierarchy beginning on
the left hand side and branching towards the right. The small squares with "+" signs indicate
that more structure is hidden to the right. The rounded rectangles with three bullets in a row
indicate that a sequence of elements follows to the right; these elements must be present in the
order shown (descending from the topmost element).

XML applications can use the schema to ensure that all data in the corresponding XML
document complies in form and content with what is defined there, for instance, that the
longitude will be a double precision floating point number between 0 and 360, the
latitude will be between –90 and +90, the units will be defined in degrees, and a
coordinate system will have been specified that is one of the four allowed (character
string) types: “B1950”, “J2000”, “galactic” and “horizon”.

ALMA ALMA Software Architecture

Revision: 0.4 Page 42 of 54

5.3 Generating classes from XML schema
There is no necessity for most subsystem developers to be concerned with, or perhaps
even aware of, the XML underpinnings of the entity class definitions (with the possible
exception of cases in which entity objects must be passed or returned via remote
invocations; see below). This is because we can use tools that automatically generate
programming language classes representing these entities straight from the XML schema
definition. The subsystem developer can then work directly with the generated class. The
process is illustrated in Figure 5-4, where the open-source XML-binding framework
Castor is used to transform schemas to Java classes.

XML Schema for SB Castor

SB

getTargetRA

setTargetRA

...

Wrapper for
Subsystem 1

Wrapper for
Subsystem 2

SB

getTargetRA

setTargetRA

...

SB

getTargetRA

setTargetRA

...

SB

getTargetRA

setTargetRA

...

Wrapper for
Subsystem 1

Wrapper for
Subsystem 2

Wrapper for
Subsystem 1

Wrapper for
Subsystem 2

Castor is an open-source
framework for binding
XML to Java classes

Figure 5-4: Castor generates a Java class from the XML schema for a Scheduling Block. Note the "getter"
and "setter" methods supplied as part of the generated class. Subsystem developers can then make
“wrapper” subclasses to provide them with any additional specialized functionality that they need.

Not shown in the figure, but produced by the framework as well, is the validation code,
which may be optionally enabled to check the validity of all schema-defined entity data.
For example, an attempt to set the target latitude to, say, 120 degrees, would cause this
validation code to throw an exception. By specifying our constraints in the XML schema
and using the framework, we obtain the corresponding validation code for free.

Through development of a prototype, we have already verified feasibility, usability and
performance of this technique in Java.

5.4 Interprocess Communication and Serialization
In the usual approach popularized by CORBA, an object in one subsystem that needs the
services of an object in remote networked subsystem asks the Object Request Broker for
a reference to the remote object, and then invokes methods on that reference, passing
additional references in the method’s argument list. For those situations in which access
to non-trivial portions of an entity object is needed, a pass-by-value mechanism will be
preferred, because:

1. Frequent remote method invocations can clog the network, particularly if large
amounts of data are passed as parameters or as results.

2. Subsystems should be as independent of each other as possible, so that one can
continue to run when another is down. This will be a frequent occurrence during
development, and may be common during operations as well.

ALMA ALMA Software Architecture

Revision: 0.4 Page 43 of 54

While CORBA provides a pass-by-value mechanism, it is immature and somewhat
shaky, so we will use the same schema and binding framework described in the previous
section to allow us to pass entity data by value using an XML serialization technique.
These XML strings will then be transported via CORBA.

Figure 5-5 illustrates the principle actors involved. Here, a hypothetical Observing Tool
is shown passing a Scheduling Block to a remote Validator component.

OT

Validator
(at ALMA facility)

SB, Marshalled to XML

-Nominally CORBA transport

Figure 5-5: The Observing Tool (OT) passes a Scheduling Block across the network to a remote ALMA facility for
validation. The SB is serialized to XML before transmission, and de-serialized by the Validator upon receipt.

We use the Interface Definition Language (IDL) to define and publish component
interfaces in order to maintain a “Corba-centric” style to the architecture. A component is
implemented as a CORBA servant, while the container is implemented as an intercepting
layer between the CORBA Object Request Broker (ORB) and the servant. The
Container-Component model, built on top of CORBA, hides the details of the
implementation of CORBA interfaces from the application developer. The general
scheme is shown in the following figure.

ALMA ALMA Software Architecture

Revision: 0.4 Page 44 of 54

SchedulerImpl
Do() : SchedBlock

SchedulerSkeleton
Do() : SchedBlockXML

ServantClient

SchedClient
SchedulerProxy
Do() : SchedBlock

Generated proxy
(a la ABeans)

Scheduler IDL
Do() : SchedBlockXML

generates

SchedulerSkeletonImpl

Do() marshalling

SchedulerStub
Do() : SchedBlockXML

generates

Do() unmarshalling
Scheduler Interface
Do() : SchedBlock

Do()

CORBA
Thin delegation
layer

Figure 5-6: Example class diagram for interprocess communication. A client needs to use the Scheduler, which has
been implemented as a CORBA servant. Because the Scheduler returns an SB, serialized to XML for transport, both
client and server must ensure that the proper marshalling and un-marshalling is done. The classes highlighted in green
are automatically generated by an IDL compiler, while those in blue would need to be implemented (either by hand or
by a generator).

The IDL interface explicitly uses their XML representation when entity objects appear as
method call arguments or return values. This means that clients calling such an interface
and servants implementing it must take the responsibility for (un)-marshalling to/from
any language dependent representation of the XML data.

In order to make this operation transparent (so that client and server developers do not
need to be concerned with the marshalling and unmarshalling of XML), it is possible to
provide support classes. In Java, these classes will be generated with the help of the
Castor binding framework at compile time, hiding the XML-dependent nature of the IDL
definition. The amount of effort to provide similar transparency for other languages is
under investigation.

As a further step, we can take advantage of the fact that when the XML representation is
hidden by these support classes, the servant implementation class and the generated stub
have the same interface. Clients running inside a Container request from the Container
references to the Services they want to access. When both client and servant are running
inside the same Container, the Container itself can then pass back to the client the actual
Programming Language (PL)-native object reference for the servant instead of the
CORBA-based stub. This provides an additional optimization; we avoid the XML
serialization for the entity data.

ALMA ALMA Software Architecture

Revision: 0.4 Page 45 of 54

This latter feature can be implemented in a later phase without changing already
implemented code, because it will be completely hidden inside the Container
implementation.

An alternative way of communication is based on the repository. Programs can send
around IDs and clients retrieve the data (or the part that they need) from the repository
themselves.

5.4.1 Entity Objects in the Instrument Operations Subsystems
The same XML infrastructure can find application in two important areas of the real-time
operations of ALMA:

Commands that pass complex configuration structures to e.g., the correlator,
can pass them as XML-schema conformant entity objects, enabling the
commanding subsystem to forward this information exactly as it has been
prepared by the observer, and the archive to receive directly an exact copy of
the configuration as it was used during operations.

The metadata that will accompany the correlator output (see the chapter on
Functional Architecture) can be encoded in an XML-schema compliant
VOTable (a product of Virtual Observatory development; see http://www.us-
vo.org/VOTable/) with a pointer to that portion of the data that will be
maintained in binary form for performance and data rate reasons. This offers
a more flexible alternative to FITS binary tables and allows the metadata to
be stored into the archive in a searchable format without format conversion.

In both of the above cases, frameworks that automatically generate C++ classes from the
defining XML schema should soon be available.

5.5 Persistence
All needs for persistence in the ALMA system will be handled by the central operational
archive subsystem. This includes very different types of data, such as entity objects,
science data (raw or processed), and time-stamped logging data. The operational archive
will internally use appropriate database or file storage technologies. To the software
developers of other subsystems, the storage mechanisms will be shielded by the archive
API. For instance, a SchedBlock entity object will be stored in the archive, without the
application knowing whether a relational database, an XML database, or any other future
technology is at work behind the scenes. With the long development and operations time
of ALMA, it is important to avoid or at least encapsulate any such commitment.

The choice of schema-based XML documents as the persistent format of application
objects facilitates the storage in a database. Naturally, a real XML database provides easy
storage, retrieval and query mechanisms for our XML data. But even if a relational
database (RDBMS) were to be used, we benefit from using XML compared with the
traditional object-relational mapping model.

When many different views on the same data are required, RDBMSs are at their best
because every piece of elementary object data is mapped to attributes in various tables,
and can be reassembled into new structures. The downside of this approach is what is
know as the “impedance mismatch” between object and relational models. Complicated
and time-consuming SQL queries must be executed to get all the relevant record sets that
hold the data for the objects we want to retrieve from the database. The same applies to
insert and update operations.

http://www.us-vo.org/VOTable/
http://www.us-vo.org/VOTable/

ALMA ALMA Software Architecture

Revision: 0.4 Page 46 of 54

While such flexibility might be a requirement for the Science Archive, for the
Operational Archive all objects are foreseen to be stored and retrieved using the same
data model. We don’t need to have one separate field in a relational database table for
each attribute in an object. Instead, we can define only those fields that we will need to
use for optimized searches, and thus avoid the overhead and performance penalties of
supporting arbitrary SQL queries, many of which will never be made.

Therefore we will maintain entity objects as Character Large Objects, essentially text
strings of arbitrary length (“CLOB”s; this database field type is defined in Version 3 of
SQL). In particular, these CLOBs will be in the XML serialized form that a) conforms to
the same schema that was used to define it; and b) is the same as that used for remote
communication. These objects will be stored in an RDBMS with carefully selected
attributes (redundant data extracted from the object to enable queries based on those
attributes). A unique ID will be created and stored for each object. Figure 5-7 shows an
example for a simplified Scheduling Block, with Observing Project ID, Target
coordinates and maximum allowed Water Vapor column extracted redundantly (these
quantities still exist in the XML CLOB) as searchable database fields. In practice, we
expect that many more such fields will be needed, but these should not present either
storage or performance problems.

This redundancy is visible to and managed by the archive system; update of a CLOB will
therefore always result in the corresponding update to any redundant fields maintained in
the database table. Maintaining consistency, always a potential source of problems when
data is stored redundantly, will therefore be relatively easy to ensure.

This approach offers the advantage of loose coupling between archive and Entity Objects.
Changes to the structure of Entity Objects which don’t affect the queryable redundant
attributes do not require changes to the database and the impact on the DAO’s that might
result.

ALMA ALMA Software Architecture

Revision: 0.4 Page 47 of 54

RDBMS
Id

:in
te

ge
r

X
M

L
:C

L
O

B

Pr
oj

ec
tId

:in
te

ge
r

Ta
rg

et
C

oo
rd

:d
ou

bl
e2

Table SchedBlock

W
at

er
V

ap
or

:d
ou

bl
e

Id
:in

te
ge

r

X
M

L
:C

L
O

B

Pr
oj

ec
tId

:in
te

ge
r

Ta
rg

et
C

oo
rd

:d
ou

bl
e2

Table SchedBlock

W
at

er
V

ap
or

:d
ou

bl
e

Application
Component

SchedBlock
EntityObject

Application
Component

SchedBlock
EntityObject

DataAccess
Object

marshalled SchedBlock
(XML String)

DataAccess
Object

marshalled SchedBlock
(XML String)

Figure 5-7: Application component accessing a stored Scheduling Block via a Data Access Object (DAO). The SQL
machinery is completely hidden from the application component.

Data Access Objects (DAO)

Database access code should be encapsulated inside specialized Data Access Objects.
The DAO model offers the required flexibility, without causing the overhead of a full-
fledged object-relational mapping layer. By “DAO” we mean a native Programming
Language object that has the following responsibilities:

• A DAO is in charge of storing and retrieving one entity object in one type of
database.

• It delivers an XML representation of that entity. The same mechanism used for de-
serialization can then be used by the client to create the PL-native object.

• For read-only access, the DAO may offer the option to retrieve only part of the
object’s full XML representation. This is useful for example, when a list of entities is
to be displayed to the user, but only one entity is to be selected (and therefore
retrieved in its totality) for further processing.

• DAOs are created by a factory2. Different implementations of the same DAO
functionality allow us to use a different database (or even a file system) without
changing the application code. This is especially useful during development (when
individual developers might use a lightweight DBMS such as mySQL for testing,
whereas the system as a whole will probably rely on an industrial-strength DBMS
such as DB2) and for remote deployment (for example, on a notebook).

• Developer groups can be responsible for their own database access code (in
particular, subsystem developers will be responsible for writing their own DAOs, in

2 Standard creational pattern from the book “Design Patterns” by Gamma et.al. [GOF]

ALMA ALMA Software Architecture

Revision: 0.4 Page 48 of 54

consultation with the Archive subsystem team), without depending much on other
groups.

Queries

We want to keep application objects as free of SQL or XPath/XQuery and query
definitions as possible. Therefore, query definitions should be encapsulated by DAOs

To execute a query, an object calls a query method of a DAO. Letting the object pass
binding parameters can provide some flexibility. A query to access all SBs with certain
parameters might look like:

SB_DAO.getSBs(status, LST, arrayConfig);

The binding parameters here would be the status (perhaps “ready”), the LST range, and
the current antenna array configuration, to look up all Scheduling Blocks that are ready to
run with a given LST range and a given array configuration. All query code would be
hidden by the DAO.

SchedBlockDAOFactory
currentDatabase

createDAO()

SchedBlockDAOOracle8 SchedBlockDAOXindice

Scheduler
AbstractSchedBlockDAO

getRunnableSBs()
saveSB()
getSB()

xml exchange

inst inst

Figure 5-8: Example class diagram for a Data Access Object. At run time, the concrete
SchedBlockDAO will be created, depending on what database technology and database are

being used. The code of client (the Scheduler in this example) does not change, no matter how
radically the underlying database technology may be altered.

5.6 Versioning
The usual way of dealing with changes to software is through a configuration control
system and the re-integration of the system when module interfaces change. Similarly,
changes to the definitions of entity objects (i.e., to their data formats and contents)
usually require modification of the routines that access them, and the transformation of
existing objects in, for example, an archive. To avoid massive updates of existing data
repositories, we can use the alternative approach of requiring that the application
software itself be able to recognize older versions of interacting modules or accessed

ALMA ALMA Software Architecture

Revision: 0.4 Page 49 of 54

entity objects and be able to function with the older (reduced) functionality. A “lazy
update” mechanism could be used to transform an older version of an entity object to the
current version when it is first accessed after a definition change. Such a requirement
places a non-trivial burden on the application programmer, but makes updating parts of
the system easier and integration of those parts more forgiving. The addition of an
attribute to the observing project data structure, for example, could be done without the
simultaneous updating of all existing projects in the ALMA archive.

We believe that such backward compatibility might prove desirable for the project, but
don’t see a clear case for mandating it at this time. To preserve the possibility that such
flexibility could be added in the future, we will, however, mandate the inclusion of a
version number in each object (particularly entity objects) so that it can be queried at
runtime. In the simplest case, a module encountering a version mismatch could exit
gracefully.

5.7 Languages
The ALMA software development effort is distributed across nearly a dozen institutes in
two continents. In such an environment, unifying influences are certainly welcome. We
believe that one such unifying influence would be reliance, insofar as possible, on a
single programming language. The ALMA Computing group has already recognized the
value of coding standards for each language: it makes code easier to understand, review
and maintain by those who did not write it originally. Similarly, the use of a single
language would make code sharing, reuse and evaluation easier across the project and
reduce the burden of standards and tool support required of the Software Engineering
group.

Use of a single programming language is not possible on this project for both historical
and technical reasons. ALMA will depend on a good deal of legacy software, written in
various compiled and scripting languages. Technically speaking, the hard real-time
requirements of the project can be met only with a compiled language that is both
predictable and performant at run-time. At the same time, the [SSRD] requires a highly-
flexible scripting capability for the development of new observing procedures, as well as
user-friendly Graphical User Interfaces for the neophyte ALMA user.

Nevertheless, we see a strong case for encouraging the project to prefer a single
programming language for new software development, and to restrict the use of scripting
languages to prototyping activities and those that require the kind of flexibility that the
[SSRD] calls for. In particular, we recommend the use of Java, outside of the hard real-
time and scripting areas. Its strong static typing and run-time error checking makes it a
very solid basis for developing code that must be robust and reliable. It is one of the less
arcane of modern object-oriented programming languages, has exceptionally good library
support, has respectable performance and has the non-negligible advantage that many
experienced Java programmers are available.

For the hardware control system, the choice of C++ has already been made. We propose
to support the Container-Component model described earlier for both Java and C++, and
to support client access to Java and C++ components from Python, should this be chosen
as ALMA’s preferred scripting language. We recommend that Jython (formerly Jpython)
be carefully considered as a replacement for Python because: 1) it offers seamless
integration with Java and the opportunity to exploit the full range of libraries that are
supplied with Java; and 2) it would make it straightforward to migrate observing
procedures from scripting to compiled (Java) code once they are mature and fully tested.

ALMA ALMA Software Architecture

Revision: 0.4 Page 50 of 54

5.8 Bulk data throughput
Raw data (coming out from the correlator), as well as reduced data (calibration data or
scientific results), can be of the order of gigabytes for a contiguous set.

For performance reasons, bulk data can’t be treated like “normal-sized” data, i.e., as
typed members in a class or part of an XML file. It must be transported very efficiently.
Whether or not this can be done using CORBA techniques (possibly the CORBA Audio
Video Streaming service) needs further investigation. In any case, the handling of bulk
data should be as object-oriented as possible from the application developer’s point of
view.

We need to provide a mechanism that

Moves bulk data from where it’s created to safe storage.

Never needs to have the entire bulk data chunk in memory at a time
(therefore, some Reader/Writer-streaming technique seems useful). In fact,
we propose to only provide sequential access to bulk data. If a process needs
random access, e.g., for deconvolution of images, it must first copy the bulk
data to its local file system.

Allows bulk data to be referenced from objects as member data. The object
keeps a link to the bulk data which resides outside the object on a specialized
node, called the Fast Data Store (FDS). This allows us to move objects by-
value without having to move their associated bulk data.

Integrates the FDS with the operational archive:

The FDS will be critical to instrument operations, while we expect that any
data that needs to be accessed from the archive (e.g., for definitive image
processing of data sets acquired many days, weeks or months apart) can be
accessed in a more normal way. (We would appreciate comments by the
scientific reviewers in particular about whether this assumption is correct.)3

Saving data to the archive: if an object is ingested by the archive, the
associated non-transient bulk data must be copied automatically from the
FDS to the archive as well. This transfer could actually be anticipated by the
archive, which could pull files from the FDS at low process priority, even
before the application objects get archived.

Bulk data should be accessed in a type-safe way. All components should
share a set of wrapper classes that translate the byte structure to something
meaningful like a map of visibilities.

The following items need to be discussed further:

3 If this assumption is not correct, we could have bulk data be transparently
uploaded from the archive to the FDS when an object referencing that bulk
data is read from the archive. If the bulk data is accessed after being
uploaded completely, then access to that data will be rather fast; if it’s
accessed during the upload, it should still be piped through the FDS at the
rate at which the data comes from the archive.

ALMA ALMA Software Architecture

Revision: 0.4 Page 51 of 54

To allow the generic ACS/FDS/archive software to handle objects with bulk
data, each such object must implement an interface that declares the
persistent or transient bulk data “members” and gives access to these data.

Do we need to transport bulk data without creating an object beforehand that
keeps a reference to the data? An argument could be that raw data must be
recorded even if the application software fails. We suggest not doing this, as
it would require an additional, non-OO classification/retrieval schema.
Software failures should rather be addressed using redundant services and
failover strategies.

We assume that bulk data will be immutable, either because 1) it represents
raw data, which by definition needs to be preserved as is; 2) it represents a
transformation of the raw data, e.g., when visibilities are phase-corrected, in
which case a new file/object will be created; or 3) it will be passed as a
whole to/from an external system such as AIPS++, which will then be
responsible for using it in whatever way is necessary.

5.9 Security
We want to prevent:

Destructive attacks from the internet;

Theft of intellectual property, inside or outside of ALMA;

ALMA users trying to obtain privileges that they have not been granted; here
we assume only limited criminal energy (e.g., we don’t expect users to
deploy their own manipulated client software at the ALMA site and connect
to the servers there).

The Container-Component model enables us to set security policies for each Component
at run-time, and delegate the task of enforcing these policies to the Container. Within the
ALMA software system, we will implement something less demanding than the CORBA
security service. There will be a tradeoff between keeping security issues completely
outside of the components (thus making component development easier), and avoiding
lengthy deployment procedures. As a rule of thumb, IDL interfaces should be designed so
that all methods inside are likely to have similar access restrictions.

5.10 Technical Prototype
Earlier in 2002 we developed a first prototype that provided a container-component
model and transparent un-/marshalling of XML entity objects. It was based on the
assumption that almost all of ALMA software could be written in JAVA, and that JAVA-
RMI communication would therefore allow us to elegantly handle the XML
communication.

After discussions with several ALMA developers this idea was abandoned in favor of the
CORBA-centric model described earlier in this document. It relies on CORBA for remote
transport and allows the use of different programming languages, although the number of
supported languages must be kept low since every language requires the re-
implementation of the framework.

Currently a second prototype is being developed, in accordance with the CORBA-centric
model. It will offer the container capabilities of the ACS activator to Java components.
Transparent un-/marshalling of XML binding classes will be supported. Deployment
information will be stored in the ACS Configuration Database and will be used by the

ALMA ALMA Software Architecture

Revision: 0.4 Page 52 of 54

container and the ACS Manager. This approach ensures a seamless integration of the
ideas of this document with the existing ACS and its future development; in other words
an evolution, not a revolution, in ACS.

Appendix A. Scheduling Block Design: A first sketch
Since the Scheduling Block is a key, perhaps the key, class that will govern ALMA
operations, we begin here to sketch the outline of its design. Completion of this design
will require collaboration from members of all subsystem teams that depend, in one way
or another, on information contained in this class and its constituent pieces.

PipelineCommand

CalibrationRequirements

PerformanceGoal

ObservingProcedure

ObsUnitControl
maxExecutionTime
elapsedTime
status
scientificPriority

NutatorSpecification

Pattern
offsetCoordinates
phaseCenterCoordinates
referenceCoordinates
intTimeSource
intTimeReference
patternType

FieldSpecificat ion
synthBeamSize

11

Source
sourceCoordinates
sourceName

11

Target

11
11

CorrelatorSetup
numberIFBands
bandWidth
channelWidth

SpectralSpecification

11

11

FrequencySetup
restFrequency
transit ionName
sideBand

1..*1..*

ImagingProcedure

1..n1..n

Scheduling Block

1

11

1..*1..*11

Figure 5-9: Class diagram for a Scheduling Block and its dependent parts. This is a revised version of the
diagram in [ISA].

Figure 5-9 shows the class diagram for a Scheduling Block and the classes that it contains
or depends upon. Most quantities are specified by the user, normally via the Observing
Tool. The ObsUnitControl block will contain, as a rule, parameters that are controlled by
the system (status, elapsedTime) or set by reviewers (scientificPriority) and that should
not be modifiable by users.

It is clear from the diagram that some of these classes have been developed in more detail
than others, and it should therefore also be clear where more work needs to be done. For
example:

ALMA ALMA Software Architecture

Revision: 0.4 Page 53 of 54

1. “ObservingProcedure” might be a Python script or a more abstract description of
the observing procedure to be followed, perhaps as produced by the Observing
Tool and later converted to a script for execution.

2. Patterns need to be defined more generally, perhaps by a class hierarchy.

3. Calibration and Hardware Configuration requirements need to be defined in a
way that enables the system to recognize what incremental steps are needed to
bring the system to the desired configuration and calibration state in the most
efficient way.

We provide below a first sketch of what the XML representation of an ALMA
Scheduling Block might look like. (The defining schema for this file will be found in the
Interface Control Document for the Observing Preparation subsystem.) The file applies
the ideas discussed in the preceding chapter to provide the parameters for an observation
of the CO 3-2 transition at ~ 345 GHz in the Large Magellanic cloud. Many things have
been left out, for example, an explicit calibrator specification, but this would mimic the
layout of the target specification, and so would add bulk but little additional clarity to the
example.

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v5 rel. 2 U (http://www.xmlspy.com) therefore some values are left as
“String” or “0” which is how XMLSPY constructed them -->
<sbl:SchedBlock xmlns:sbl="Alma/SchedBlock" xmlns:ent="Alma/CommonEntity"
xmlns:gen="Alma/GeneralIncludes" xmlns:prj="Alma/ObsProject"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="Alma/SchedBlock
H:\ALMA\Architecture\SAD\XML\schemas\SchedBlock.xsd">
 <prj:Preconditions>
 <prj:WeatherConstraints>
 <prj:Opacity>TBD</prj:Opacity>
 <prj:Seeing>TBD</prj:Seeing>
 <prj:PhaseStability>TBD</prj:PhaseStability>
 </prj:WeatherConstraints>
 <prj:Polarization>TBD</prj:Polarization>
 <prj:BaselineCal>TBD</prj:BaselineCal>
 </prj:Preconditions>
 <prj:ObsUnitControl scientificPriority="0" runWhenReady="1" schedStatus="waiting">
 <prj:MaximumTime unit="sec">1800.</prj:MaximumTime>
 <prj:ElapsedTime unit="sec">0.0</prj:ElapsedTime>
 <prj:PerformanceGoal>e.g., desired sensitivity level</prj:PerformanceGoal>
 <prj:CalibrationRequirements>
 <prj:PointingAccuracy>0.8 arcsec</prj:PointingAccuracy>
 <prj:Bandpass>TBD</prj:Bandpass>
 </prj:CalibrationRequirements>
 </prj:ObsUnitControl>
 <sbl:SchedBlockEntity entityId="2345" entityIdEncrypted="String" entityTypeName="SchedBlock"
entityVersion="0" isReadOnly="false" lifecycleState="String"/>
 <sbl:ObsProjectRef entityId="1432" entityTypeName="ObsProject" entityVersion='"latest"'/>
 <sbl:SchedBlockControl repeatCount="24"/>
 <sbl:SchedBlockImaging imageScript="String"/>
 <sbl:ObsProcedure obsProcScript="String -- probably a call to a Python procedure"/>
 <sbl:ObsTarget>
 <sbl:FieldSpec>
 <sbl:FieldSource sourceName="NGC19234">
 <sbl:SourceCoordinates system="B1950">
 <sbl:Longitude unit="deg">71.0</sbl:Longitude>
 <sbl:Latitude unit="deg">-34.5</sbl:Latitude>
 </sbl:SourceCoordinates>
 <sbl:SourceVelocity>
 <sbl:CenterVelocity unit="km/s">250.</sbl:CenterVelocity>
 <sbl:referenceSystem>lsr</sbl:referenceSystem>
 </sbl:SourceVelocity>
 <sbl:SourceProperty>
 <sbl:SourceFrequency unit="GHz">345.0</sbl:SourceFrequency>

http://www.xmlspy.com/

ALMA ALMA Software Architecture

Revision: 0.4 Page 54 of 54

 <sbl:SourceFlux unit="Jy">0.0015</sbl:SourceFlux>
 <sbl:SourceDiameter unit="arcsec">0.005</sbl:SourceDiameter>
 </sbl:SourceProperty>
 </sbl:FieldSource>
 <sbl:FieldPattern type="rectangle">
 <sbl:OffsetCoordinates system="B1950">
 <sbl:Longitude unit="deg">0.002</sbl:Longitude>
 <sbl:Latitude unit="deg">0.002</sbl:Latitude>
 </sbl:OffsetCoordinates>
 <sbl:ReferenceCoordinates system="B1950">
 <sbl:Longitude unit="deg">70.999</sbl:Longitude>
 <sbl:Latitude unit="deg">-34.5</sbl:Latitude>
 </sbl:ReferenceCoordinates>
 <sbl:PhaseCenterCoordinates system="B1950">
 <sbl:Longitude unit="deg">71.0</sbl:Longitude>
 <sbl:Latitude unit="deg">-34.5</sbl:Latitude>
 </sbl:PhaseCenterCoordinates>
 <!-- More specs go here -->
 </sbl:FieldPattern>
 <sbl:DesiredSynthesizedBeamSize unit="arcsec">0.05</sbl:DesiredSynthesizedBeamSize>
 </sbl:FieldSpec>
 <sbl:SpectralSpec>
 <sbl:FrequencySetup transitionName="CO 3-2" sideBand="lsb">
 <sbl:RestFrequency unit="GHz">...etc.</sbl:RestFrequency>
 </sbl:FrequencySetup>
 <sbl:CorrelatorSetup>
 <sbl:BandWidth unit="GHz">8.0</sbl:BandWidth>
 <sbl:ChannelWidth unit="MHz">30.0</sbl:ChannelWidth>
 <sbl:NumberIFBands>4</sbl:NumberIFBands>
 </sbl:CorrelatorSetup>
 </sbl:SpectralSpec>
 </sbl:ObsTarget>
 <sbl:PhaseCalTarget>
 <!-- Similar specs to above -->
 </sbl:PhaseCalTarget>
 <sbl:PointingCalTarget>
 <!-- Similar specs to above -->
 </sbl:PointingCalTarget>
</sbl:SchedBlock>

	Introduction
	Purpose
	Status of this document

	Scope
	Definitions, Acronyms and Abbreviations
	References
	Overview

	Architectural Representation
	Functional and Technical Architecture
	Global Information Flow
	ALMA System Overview

	Architectural Goals and Constraints
	Runtime Requirements
	Functionality
	What’s different about ALMA?
	Physical hardware

	Performance
	Hard Real-time
	Near real-time
	Interactive
	Overall throughput

	Development-time Requirements
	Distributed development
	Modifiability

	Functional Architecture
	Global Subsystem Structure
	Summary of individual subsystems
	Preparation Subsystem
	Interface to Instrument Operations

	Instrument Operation Subsystems
	Interface between Correlator/Control Subsystems and Pipelines

	Data Reduction Subsystems
	Archive Subsystem
	Administration Subsystem
	ACS Subsystem
	Interaction between subsystems

	Mapping of packages to the WBS
	Priorities of package development
	Critical issues
	Deployment view

	Technical Architecture
	Container-Component Model
	Definition of entity classes
	Generating classes from XML schema
	Interprocess Communication and Serialization
	Entity Objects in the Instrument Operations Subsystems

	Persistence
	Versioning
	Languages
	Bulk data throughput
	Security
	Technical Prototype

