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1 Introduction 

1.1 Purpose 
This document provides a comprehensive architectural overview of the ALMA software 
system, using a number of different architectural views to depict different aspects of the 
system. It is intended to capture and convey the significant architectural decisions that 
will shape the system. 

This document is intended for a technical audience including, but not limited to, ALMA 
software management, ALMA software developers and members of the ALMA Software 
Science Requirements Committee. It should be read by every software worker new to the 
ALMA project, or intending to develop pieces of the ALMA software system, because 
only by sharing the vision conveyed by this document can developers distributed over 
two or more continents construct a system that meets its functional requirements in a 
coherent and effective way. 

The reader of this document is assumed to be familiar with the contents of the Science 
Software Requirements Document [SSRD] and the Initial Software Analysis [ISA] 
referenced below. The present document will be difficult, if not impossible, to follow 
without such familiarity, since most of the information contained in the preceding 
documents is not repeated here. A future version of this document will incorporate that 
portion of the [ISA] that remains valid and is relevant for the architecture. 

1.1.1 Status of this document 
This document, even after review and approval, remains a work in progress. That is, 
many of its principles and details will be subject to change and revision during the 
lifetime of the ALMA software development project. Much architecturally important 
information cannot be added without the collaboration of subsystem developers who are 
experts in their individual domains. More changes will arise naturally 1) as subsystem 
developers encounter the concrete problems of building their subsystems and integrating 
them into ALMA as a whole; and 2) as the High Level Analysis and Design (HLA) group 
learns more about the developing system. In particular, a revision of this document 
should be anticipated for PDR. 

1.2 Scope 
This document applies to all application- and domain-level software developed for the 
ALMA project. It affects future versions of the ALMA Common Software (ACS), since 
it implicitly levies new requirements on the ACS that go beyond those currently 
implemented or foreseen in the ACS Architecture Document [ACSA]. 

1.3 Definitions, Acronyms and Abbreviations 
A few key terms are defined here. For a complete list of definitions, acronyms and 
abbreviations, the reader is referred to the Glossary (Appendix XX). 

Term Definition 

Architecture “…the structure or structures of the 
system, which comprise software 
components, the externally visible 
properties of those components, and the 
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relationships among them.” [SAIP] 
Package A grouping of (usually related) classes. 
Component A coarse-grained unit of composition with 

contractually specified interfaces and 
explicit context dependencies only. It 
requires a runtime environment and must be 
remotely accessible. 

 
 

1.4 References 
1. Lucas, R. et al, ALMA Software Science Requirements and Use Cases, 

Revision 3, ALMA-SW-0011, 2001. [SSRD] 

2. Schwarz, J. et al, Initial Software Analysis, undergoing revision, ALMA-SW-
xxxx, 2001. [ISA] 

3. Fowler, M. and Scott, K., UML Distilled, Second Edition, Addison-Wesley, 
2000. 

4. Bass, L., Clements, P. and Kazman, R., Software Architecture in Practice, 
Addison-Wesley, 1998. [SAIP] 

5. Chiozzi, G., Gustaffson, B. and Jeram, B., ALMA Common Software 
Architecture, ALMA-SW-0016, 2001. [ACSA] 

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements 
of Reusable Object-Oriented Software, Addison-Wesley, 1995. [GOF] 

7. Scott, S. and Myers, S., Momose, M., Data Rates for the ALMA Archive and 
Control System, ALMA Technical Note, 2002. [SMM] 

1.5 Overview 
 

The ALMA software system is designed to transform user input into an approved 
observing proposal, to perform the observations specified therein, and to deliver 
calibrated data (often including further data products such as images and spectra) to the 
user and to an observatory archive. From the information retained in this archive, not 
only the original observer, but also other interested astronomers, can do further research 
and refined analysis of the observational data. 

Software to manage and administer proposal preparation, instrument operations and 
archival use is included in the scope of the software project. 
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2 Architectural Representation 
The main objectives of the architecture are to present the organization of the software 
system, describe its structural elements and their behavior, and compose these structures 
into larger subsystems. The general architecture has been driven by the high-level Use 
Cases defined in the Software Scientific Requirements document [SSRD]. The main 
structural elements of the system have been identified in the Initial Software Analysis 
document [ISA], which was based on these Use Cases. For this reason, this document 
does not include an explicit Use Case View of the system.  

2.1 Functional and Technical Architecture 
Software Architecture has two facets: one is the functional architecture, describing the 
components, their responsibilities and interfaces, and their primary relationships and 
interactions. The technical architecture on the other hand describes technical aspects, 
such as remote access, streaming, threading, activation, and transactions.  Both are 
architecture: two different views that go hand in hand.   

The description of each part, however, is directed towards a different audience. The 
technical architecture must be understood by infrastructure (container/ACS) developers 
while the functional architecture needs to be understood by the application developers. A 
programming model will be extracted from the technical architecture in order to show 
application developers how to use the provided technical infrastructure.  

The detailed descriptions of these two aspects of the architecture are presented in 
Chapters 4 and 5, respectively.  A high-level description of the system, with emphasis on 
the functional aspects is given in the following sections of this chapter. A generic 
deployment view is provided in Chapter 4 as part of the functional considerations. 
Explicit process and implementation views are not given at this stage and will first be 
defined in detail at the subsystem level. 

In the logical view, several common high-level design issues are considered. This was 
done to outline global architectural and design decisions that must be accommodated by 
all subsystem designs. 

2.2 Global Information Flow 
The ALMA software system is envisioned as an end-to-end data flow system, which 
handles the information and operations required to conduct all tasks from the time an 
astronomer creates an observing proposal until the resulting data are returned. This type 
of end-to-end observatory system was pioneered by Space Telescope Science Institute for 
HST and European Southern Observatory for VLT. The experience with these systems 
has been used as a guide for the ALMA system architecture. A schematic representation 
of the system is given in Figure 2-1, where its main elements are shown. 
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Figure 2-1: ALMA System Dataflow (Schematic). The outer solid lines show the logical data flow; the dashed 
lines directed to/from the Archive indicate that a) all data is saved in and can be retrieved from the Archive; and 
b) that the logical data flow may—when appropriate—be handled by the Archive rather than via direct process-to-
process communication. Note also the feedback of, e.g., pointing, focus and phase calibration results from the 
Calibration Pipeline to the ALMA Observing Process. 

One may view the system either from the perspective of an end user (i.e., an astronomer) 
or an observatory. The astronomer is interested in how an observing project flows 
through the different parts of the system, as illustrated by the outer set of lines in Figure 
2-1. The user (shown as the actor symbol on the leftmost side) initiates the cycle by 
creating and submitting a proposal for ALMA observing time to Phase I Preparation. 
After the proposal has been reviewed and (hopefully) accepted it is turned into an 
Observing Project/Program and goes to Phase II Preparation where the actual 
observations are fully specified by creation of Scheduling Blocks (SB). 

Once each SB has been defined it is stored in the Archive and considered for scheduling 
whenever available observing conditions and array resources make its execution feasible. 
If all other factors are equal, the ready-to-run SB with the highest scientific ranking will 
be chosen and executed/observed by the ALMA Instrument Operations subsystem. The 
execution of an SB generates a set of raw data, which is both saved in the Archive and 
forwarded to the Calibration Pipeline (in the case of data to be used for calibration) 
and/or the Reduction Pipeline for processing. The Calibration Pipeline processes, among 
other things, focus, pointing, and phase calibrator data, feeding the appropriate results 
back to 1) the ALMA system to modify observing parameters in near real time; 2) the 
dynamic scheduler to allow it to select the next SB to observe (this latter feedback is not 
shown in the Figure). It saves these and other results in the Archive for use by the 
Reduction Pipeline. 
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The Reduction Pipeline is responsible for producing the quick look and final images 
and/or spectra, applying whatever corrections are necessary. Finally, the astronomer 
receives the results of the observing project in the form of calibrated images and/or 
spectra together with associated information (e.g., logs). As data accumulate in the 
Archive, Quality Control performs trend analyses of them. The results can then be used to 
e.g., correct final data products or initiate maintenance actions. 
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Figure 2-2 ALMA Online Dataflow, with a more detailed view of the processes. The arrows indicate flow of data; 
the five tall boxes represent major logical groupings of functionality. Although all data is stored in and retrieved 
from the Archive, this fact does not alter the progressive flow of data from Proposal Preparation to Final Results. 
The term “Standard Image” is used to indicate that observatory-specified procedures are used to produce the 
image that is normally delivered to the PI. For simplicity, the Archive itself is omitted from this figure, but the 
relationship with the preceding diagram is shown at the top. 

 

Another access route for a user is archival research, where requests for data are made 
directly to the Archive (possibly after some review). In case raw data are requested they 
may be passed through the Pipeline to yield images and/or spectra, benefiting from 
calibration and processing techniques that may have been improved since the original 
data were acquired. Figure 2-3 shows the general flow of data for this case. 
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Figure 2-3 ALMA Archival Research (using “Offline System”). As in the previous diagram, arrows represent 
data flow and tall boxes represent logical groupings of functionality. 

 

The observatory has a somewhat different view of the flow of information, as its prime 
interest is to optimize the efficiency with which it can process a large collection of 
observing projects and at the same time guarantee that all scientific requirements are 
fulfilled. This view is directed principally towards the Archive, which is the central 
repository for observing projects, data acquired and status and availability of equipment.  
The main functional elements (i.e. Phase I/II, ALMA, Pipelines, Quality Control and 
Administration) all interact with the Archive to obtain and deliver data but can otherwise 
operate as independent peers. To ensure high global performance, each element must be 
optimized individually and have adequate access to the Archive. 

The ALMA real-time system should be the only one that limits the total system 
throughput, that is, all other elements must be carefully programmed and scaled so that 
they do not constitute bottlenecks. Besides operating the functional elements, the 
observatory monitors the overall performance of the system through the Administration 
and Quality Control elements. They provide tools to assess the status of observing 
projects and to analyze trends to determine data quality and performance of individual 
parts of the system.  

2.3 ALMA System Overview 
The general structure of the ALMA software system was derived from the requirements 
and data flow considerations given above and consists of 5 top-level subsystems with the 
following responsibilities: 
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1.Observation Preparation: includes the Phase I and II preparation of observing 
projects and the associated peer review process.  It is the main interface for 
astronomical users to the ALMA facility and provides them with easy to use 
Graphical User Interfaces (GUIs) for the detailed specification of observations. The 
main product generated is Observing Projects with their Scheduling Blocks, which 
contain all information required to perform the corresponding observations.  

2.Instrument Operation: is responsible for the actual observations specified by 
Scheduling Blocks and is the only subsystem with true real-time behavior. All 
observing hardware at the ALMA site (e.g. antennas, receivers and correlator) is 
controlled and monitored by this subsystem. It is the focus of the system since it 
acquires data.  Although it can work automatically by using dynamic scheduling, it 
will normally be supervised, or at least checked regularly, by a human operator. 

An important goal of instrument operation is to reconcile the real-time constraints of 
the hardware with the logical time operation of this subsystem. Many hardware 
components must be synchronized to an array-wide 48 ms timing pulse and the 
division between real-time and the logical run-time should remain close to the 
hardware in order to isolate this dependency as much as possible. 

3.Science Data Reduction: The data acquired are calibrated and reduced by this 
subsystem, which also checks the quality of the final data products.  Its primary role is 
to process data that have just been acquired (along with archived data belonging to the 
same project, possibly from a different antenna configuration), but can also reduce 
data obtained from the Archive.  In its observation support role, it will provide Quick 
Look images and other information to help assess the quality of data just acquired. 

4.Archive: provides a central repository for all persistent information of the ALMA 
facility such as Observing Projects, raw and reduced science data, logs of all 
operations and schedules.  Whereas it is logically one repository from which any 
subsystem can request information, it may well be distributed over several locations in 
order to optimize performance and increase redundancy.  This subsystem also 
provides external users with facilities to identify and request science related data from 
the archive. 

5.Administration: Many administrational tasks have to be performed to ensure that the 
entire ALMA facility operates smoothly and efficiently.  They include long term 
planning for the array configuration, scheduling of maintenance, management of user 
accounts and associated privileges, checking the state of Observing Projects, 
production of data packages for end users and generation of reports on performance of 
different parts of the facility. 

Further, the science software requirements specify that the system must provide a number 
of key features: 

1. to perform all necessary tasks through easy-to-use GUIs. 

2. to “provide simple ways for the staff or expert astronomers to refine 
observing modes and develop new ones” ([SSRD] 3.1.0-R2). 

3. to support automatic, interactive, manual and technical modes of 
operations 
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Here the Observation Preparation is responsible for generation of an Observing Project 
and associated Scheduling Blocks, which it places in the archive.  Instrument Operations 
fetches ready Blocks from the archive and schedules them for observations depending on 
their science rating and needs such as weather conditions and array configuration. This is 
done by sending commands to the ALMA hardware for performing the real-time control 
of correlator, antennas and receivers. The data acquired are streamed directly to the 
Calibration pipeline and to the Science Data Reduction pipeline (operating in Quick look 
mode) and are saved in the Archive as well. Instrument Operations receives feedback 
from the Calibration pipeline in order to adjust observing parameters in near real time. In 
parallel with the observing process, Science Data Reduction generates Quick Look 
images and data quality information to enable the operator and observer to monitor the 
on-going observations. From the Archive, Science Data Reduction obtains all data 
needed to generate the observatory’s final1 data products for storage in the Archive and 
access by the Proposer/Observer, and—after expiration of a proprietary period—by the 
astronomical community in general.   

The flow of data through the system is checked by Administration, to ensure that Projects 
are executed in a timely manner.  It alerts Operations personnel if Projects are suspended, 
missing data or otherwise not following the standard path.  Finally, it will contact the 
users when Projects reach breakpoints or are completed and provide all relevant data 
products to them. 

An astronomical User will normally interact with the system through tools provided by 
Observation Preparation regardless of whether his/her Project is to be observed in 
dynamically scheduled or interactive mode.  The main difference between dynamic 
scheduling and interactive mode is that Instrument Operation will execute Scheduling 
Blocks created immediately in the latter case while they will be queued to wait for 
optimal conditions in the former.  In the case of archival research, users may search for 
and request data directly from the Archive.  Operations at the ALMA observing site will 
be supervised by an Operator, who can check the status of correlator, antennas and 
receivers, change operation mode (dynamic/interactive) and administer other resources 
through Instrument Operation.  General managerial tasks are performed by administrators 
through the Administration subsystem, which in turn accesses information in the Archive. 

Storing all persistent information in the archive makes the system less coupled so that 
Observing Preparation, Instrument Operation and Science Data Reduction can work 
independently as long as they maintain the average flow to and from the archive. This 
isolates Operations from possible disturbances in other subsystems but makes the archive 
a critical component, which must have a very high availability. 

The only part of the system that has true real-time requirements is Instrument Operation 
as it controls the antennas, receivers and correlator.  Several other processes in this 
subsystem are also time critical such as calibration procedures and safe storage of 
acquired data.  In order to avoid time limitations due to simultaneous access to the 
archive, faster more direct access methods (that bypass the archive) may be deployed in 
such cases. 
 
Whereas the system in terms of transaction rates, security and redundancy does not 
present major challenges for current software technology, several other properties of the 
ALMA system must be considered in depth in the detailed design.  They include: 

                                                           
1 “Final,” of course, only as far as observatory processing is concerned; the observer will normally need to 
perform further processing and analysis in the course of his/her research. 
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1. Very high data acquisition rates. The ALMA baseline correlator 
produces of order 1 Gbyte/s, and it is the task of the correlator 
subsystem to reduce this in real time, leaving the rest of the system 
to deal with a smaller, but still substantial 6 – 60 Mbyte/s. 

2. Large volume of archived data (~ 180 Tbyte/year) 

3. Real time synchronization of hardware over large distances. ALMA 
antennas can be spread out over more than 10 km. The correlator 
itself may be located ~ 50-80 km from the antenna site. 

4. Dynamic, optimized scheduling of observations depending on site 
conditions 

5. High processing needs to reduce data 

6. Flexibility for developing new observing and data-reduction modes.
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3 Architectural Goals and Constraints 
The architecture of the ALMA software system must enable the development of software 
that satisfies both runtime and non-runtime requirements. It is necessary, but not 
sufficient, to provide a system satisfying the enumerated requirements lists of the 
[SSRD]. Like all software, the ALMA system will develop and change over time, and its 
architecture must foresee and support such evolution. 

3.1 Runtime Requirements 
3.1.1 Functionality 

The Science Software Requirements can be summarized as follows: the ALMA software 
will play a major role in all aspects of the operation (in its most general sense) of the 
ALMA Observatory. This includes: 

• Administration of day-to-day activities on the ALMA site and the Operations 
Support Facility (OSF) 

• Electronic preparation and submission of observing proposals by prospective 
users of the Observatory 

• Validation, review, selection and prioritization from these proposals 

• Transformation of observing proposals into ready-to-run observing programs 

• Scheduling and execution of observing programs according to scientific priority 
and suitability of observing conditions 

• Near real-time feedback to the operator (and in some cases, to the observer) as 
observations proceed 

• Automatic calibration of raw data and production of final images and spectra. 

• Archival of all raw, processed and ancillary (e.g., monitor/engineering) data 

• Support for archival research, once the proprietary period for a data set has 
expired. This will include compatibility and interoperability with other elements 
of the Virtual Observatory (VO). 

3.1.1.1 What’s different about ALMA? 
While ALMA builds on the experience of existing radio observatories, it nevertheless 
represents a major step forward, because: 

• It must be accessible to the entire astronomical community, including 
those with no experience in aperture synthesis and mm/submm radio 
astronomy. While this has been a goal of the WSRT and the VLA as 
well, ALMA’s 2016 baselines and the technological advances of the 
last 20-30 years should enable it to attract a larger body of non-radio 
astronomers. 

• It must, on the other hand, enable experts to customize observing and 
reduction procedures. 
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• It must operate predominantly in service mode, without the 
controlling presence of the original proposer. 

• It must maximize the scientific productivity of the observatory by 
dynamically scheduling and executing observing projects in response 
to changing observing conditions. 

• It must provide an archive of calibrated and imaged data that can be 
used by researchers without needing recourse to the specialized 
knowledge of the original observers once the proprietary period for 
PI (Principal Investigator)-data access has expired. 

• It must deal with a larger variety of projects than previous aperture 
synthesis instruments 

• At ν > 345 GHz interferometry is in its infancy, started recently at 
the Submillimeter Array (SMA) in Hawaii  

Some operations must be available even if other parts of the pipeline are unavailable.  
The proposal and observation preparation system for example, must operate regardless of 
whether or not the observation system is running. And the observation system must run, 
once it has some defined observations, without the proposal system. 

3.1.1.2 Physical hardware 
Another constraint is the commitment to physical components, some of which we know 
now [December 2001]: 64 antennas, computers onboard each antenna with a local field 
bus connecting to devices, high speed communication links from each antenna to the 
center in a star point-to-point configuration, central correlator, central control computers, 
communication links between components and to the rest of the world – these show us 
the scale of the system. 

3.1.2 Performance 

3.1.2.1 Hard Real-time 

3.1.2.2 Near real-time 
Results of pointing/focus and observations of astronomical phase calibration sources 
must be available quickly enough to be fed back to the observing process. In the case of 
pointing/focus calibrations, further observations of the scientific target cannot proceed 
until a satisfactory pointing/focus solution has been determined. Rough turnaround times 
of 0.5 s are needed. 

Some quick-look results should be updated and displayed to the operator every scan. 

3.1.2.3 Interactive 
The proposal tools must give the user immediate feedback and must be generally 
responsive. When network access (e.g., to catalogs) is unavailable or unacceptably slow, 
fallback to use of local resources, perhaps with reduced functionality, is required. Array 
operators should be notified immediately of system failures and should have the means to 
react quickly. 

3.1.2.4 Overall throughput 
 
The requirement here is that the entire processing system be fast enough to keep up with 
the pace of observations, that is, that the incoming data be calibrated, imaged and 
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archived as fast as it is acquired. Neither calibration nor imaging is allowed to be a 
bottleneck for the system. 
 

The current specifications for the data rate that must be supported by the post-correlator 
part of the system are 6 Mbyte/s average and 60 Mbyte/s peak. A change request is 
pending to increase this to 12 and 72 Mbyte/s, respectively. (Note that the baseline 
ALMA correlator can deliver 1 Gbyte/s, but the correlator subsystem reduces this to the 
above rates, which represent the data that is seen by the rest of the system—and represent 
the data which is archived.) 

3.2 Development-time Requirements 
3.2.1 Distributed development 

The ALMA software will be developed at many institutes, scattered over at least two 
continents. The architecture is therefore required to facilitate distributed development, 
promoting independent testing, clarity of interfaces and ease of integration. 

3.2.2 Modifiability 
The experimental nature of the ALMA project cannot be overemphasized. Some 
requirements will only become clear as the system comes into operation. Early results 
will stimulate the development of new requirements, particularly in the relatively 
unexplored sub millimeter range. 

The architecture of the ALMA system should compartmentalize the areas of likely 
change, so that the impact of future changes will be restricted to relatively few areas of 
the system. This implies 

• High level of flexibility at those levels where considerations of robustness and 
performance make the effort required reasonable 

• Observers and ALMA scientific staff (i.e., those who are not software 
professionals) should be able to develop and implement new observing methods 
and reduction procedures, although incorporation into the system as standard 
observing modes may require intervention of a software specialist. 

• The architecture chosen must be scalable enough to allow the addition of new 
array hardware without a disproportionate amount of effort. Such hardware could 
include, for example: 

1. A next-generation correlator, with its implied many-fold increase in data rate 

2. Additional receiver bands 

3. A second, smaller array (the ALMA compact array) 

4. Should the ALMA project be expanded to include Japan as a partner, such 
hardware might come sooner rather than later. 

5. The architecture must permit the retargeting of parts of the system to new 
computer hardware that will be available over the observatory’s lifetime of 
several decades. 

6. The architecture must permit the migration of archived data to new hardware 
media and new forms of data access software with minimal impact on the 
remainder of the system. 
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4 Functional Architecture 
In this chapter we show the internal structure of the global subsystems introduced in 
chapter 2. The functionality is provided by a number of interacting software packages 
each consisting of several classes. The main goal was to decouple the major logical 
subsystems so that they can be developed and operated independently or with few 
dependencies on other subsystems. 

Note that we have not specified the interfaces between individual subsystems. This 
process is now underway, and involves the subsystem teams directly, as they define what 
information they will need from other parts of the system. Some key data elements, in 
particular Observing Projects and Scheduling Blocks, have, however, been given a 
preliminary definition by the High-Level Analysis group; this definition is currently 
being elaborated and refined in collaboration with the subsystem teams concerned. 

4.1 Global Subsystem Structure 
The overall flow of data and control among the ALMA subsystems is shown in Figure 4. 
It will be useful to briefly state the main functional paths within this system in order to 
get a clear understanding of the role of the various subsystems. 

 
First, an observer creates an observing project using the Observing Tool, which breaks 
the project into scheduling blocks, and stores it in the archive.  Then, the scheduling 
subsystem gets project definitions and scheduling blocks from the archive, dispatching 
them to the control system to be executed.  The control system executes the scheduling 
block by commanding the correlator, which results in raw data and meta-data being made 
available to the calibration and quick-look pipelines.  The completion status of 
scheduling blocks is monitored by the scheduling subsystem, which starts the science 
data reduction pipeline at appropriate times.  The science pipeline generates data products 
that are stored in the archive.  Again the scheduling subsystem monitors the completion 
of the science data reduction and informs the PI that data are now available. 

 

Also shown in the figure, although outside the more-or-less automatic operations flow of 
the system, is access by researchers to data in the Science Research Archive. 
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Figure 4: Operation of the ALMA software system. The numbered arrows indicate steps in the 
creation and processing of an Observing Project from Proposal through to data reduction and 
storage in the Archive. 

 
The ALMA software architecture (i.e., its software structure, in contrast with its run-time 
control and data flow) consists of 4 layers: the presentation layer (user interfaces), the 
application layer (providing the main tasks), the domain layer (commonly used objects) 
and the system layer (system services, communication between subsystems). The layered 



ALMA  ALMA Software Architecture 

 
Revision: 0.4  Page 18 of 54 

structure helps decoupling the subsystems. Figure 4-5 shows the top-level subsystems of 
those 4 layers. For simplicity the dependencies and interactions are not shown here. They 
will be discussed later. For a more detailed specification of the packages discussed, see 
the [ISA]. 

Administration
<<subsystem>>

Research
Archive

<<subsystem>>
InstrumentOperation
<<subsystems>>

Preparation
<<subsystem>>

Reduction&Analysis
<<subsystem>>

ObsProject

ACS <<subsystem>>
Archive

(InfoServices)

Policy
ResourceMng

Domain Layer

Presentation Layer

Application Layer

ObsProjectRepository

System Layer

Application UIs
(from common

toolkit)

DRP
<<external>>

 

Figure 4-5: Global layered subsystem and package structure of the ALMA 
software system. 

 

The system layer provides the basic communication and archival storage functionality 
commonly used by almost all other subsystems. This layer will soon have to be stable 
because everyone else depends on it. 

The domain layer provides commonly used entity objects such as the Observing Project 
and Catalogs as well as the externally-developed Data Reduction Package. The entity 
objects are also central to the ALMA software system and therefore need to be developed 
and made as stable as possible early on. This does not exclude, of course, the possibility 
of changing their definition when experience and/or new requirements make this 
necessary. 

The application layer subsystems implement the main sections from chapter 2, but there 
is no precise correspondence, because the view in Figure 4-5 is a static view which is 
more relevant to the development of the software than to its run-time organization. 
“Proposal Preparation” and “Observing Program Preparation” are handled by the 
Preparation & Administration subsystems, “Observations” are covered by the 
InstrumentOperation subsystems (a group of six subsystems in their own right, including 
“AlmaSystem” from the Domain Layer), while “Image Reduction Pipeline” corresponds 
to the ScienceDataReduction subsystem. The “Calibration Pipeline” and the “Quicklook 
Pipeline” are—from the run-time point of view—in “InstrumentOperation”, but the 
software itself is made up of units from the “Reduction & Analysis” package. The 
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Archive subsystem is the hub around which the system is organized (the Research 
Archive is itself a client of the general Archive subsystem). “Administration” is also 
responsible for all other ALMA administrative tasks (see 4.2, Summary of individual 
subsystems). 

Finally, the presentation layer provides the user interfaces. It is planned for the ACS 
subsystem to provide a general ALMA GUI toolkit that the other subsystem developers 
will use. 

 

4.2 Summary of individual subsystems 
 

This section describes the structure of the individual subsystems. The definition of a 
subsystem is mainly based on the five application layer systems, but development 
considerations and the fact that the project Work Breakdown Structure definition 
preceded the development of the system architecture have caused us to be less precise in 
what we consider a subsystem. Only the “ACS” subsystem was kept separate because of 
its system wide importance and need for stability (see section 4.4). In the figures we 
already indicate the package development priorities as numbers in brackets (see section 
4.4 for a detailed discussion of priorities). 

4.2.1 Preparation Subsystem 
 

The Preparation subsystem (figure 4-2) covers the ALMA software from proposal 
submission to the creation of observable Scheduling Blocks (SBs). Hence, it consists of 
tightly interacting packages of the observing preparation stage, which make up, with the 
observing tool at its center, a logical unit that is almost independent from the rest of the 
system. 
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Figure 4-6: Observation Preparation Subsystem (The numbers in parentheses indicate 
the development priority assigned to each package within the Preparation Subsystem) 

The ObsProject portion from the domain layer may need to be exported as a separate 
subsystem because many other subsystems depend on it. For the same reason the catalog 
package may need to be kept with the ObsProject package. 

We have the following further comments on individual packages: The simulator package 
that forms part of the Observation Preparation subsystem will be a lightweight version; 
the subsystem will be able, however, to make use of a full-fledged simulator that will be 
provided with the offline reduction and analysis subsystem (appearing as a WBS element 
but not otherwise discussed in this document). The correlator tool and specification 
packages need a comprehensive knowledge of the instrument’s capabilities. The 
ObsProjectRepositoryController is a (possibly web-based) controller subsystem that 
mediates between the application layer and the ObsProjectRepository in the domain 
layer. 
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4.2.1.1 Interface to Instrument Operations 
The primary interface between the Preparation subsystem and the Instrument Operation 
subsystem are the Observing Project, along with its linked Proposal, Programs and 
Scheduling Blocks (see [ISA] for a class diagram of this hierarchy). Each Scheduling 
Block will contain an observing procedure, either: 

• Coded in XML, to allow full validation and consistency with the high-level input 
given by the PI (see [SSRD], [ISA] and [OTC]) and later compilation into either 
1) scripting language commands or 2) a set of compiled language invocations; 

OR 

• Direct scripting language commands, in particular if an “expert-level” script has 
been defined by the proposer. In this case, some kinds of validation will not be 
possible. 

A partial and preliminary definition of the content of a Scheduling Block is given in the 
Appendix. 

4.2.2 Instrument Operation Subsystems 
 

The actual ALMA observing process is implemented in the Instrument Operations, which 
consists of six subsystems.  

Alma Executive: supervises and monitors the other subsystems; 

Scheduling: determines the next Scheduling Block to execute and updates the 
status of the SB and its enclosing Observing Project upon success or failure; 
initiates Science Data Reduction processing and/or notifies the PI when 
necessary (e.g., upon reaching a breakpoint or completing a significant piece 
of the Observing Project); 

Antenna & Receiver Control (Monitor & Control?): accepts an SB from the 
Scheduling system and executes its commands to the array hardware, 
configuring and triggering the acquisition of data by the correlator; 

Correlator: accepts data from the correlator hardware, Fourier-transforms it 
from time- to frequency-space, applies Water Vapor Radiometer (WVR) 
corrections, and streams its output to the Archive, the Calibration Pipeline 
and the Quicklook Pipeline; 

Calibration Pipeline: calibrates data from the correlator in near-real-time, 
archiving results and passing them to Antenna & Receiver Control to modify 
observing parameters, and to the Scheduling subsystem to use in selecting the 
next SB to execute. 

Quicklook Pipeline: applies available calibrations to the data, calculates dirty 
images and displays these and other data for monitoring by the ALMA staff 
and, optionally, by the PI. 

Operations are supervised by the Alma Executive subsystem, which starts up and 
monitors the other subsystems and will not be discussed further in this section. The 
Scheduler provides the dynamic ranking of Scheduling Blocks. The Dispatcher (within 
the Scheduling subsystem) requests Scheduling Blocks either 1) from the Scheduler when 
dynamic scheduling is in operation; or 2) from an Interactive Observer, who uses the OT 
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to submit Scheduling Blocks for immediate execution. It then passes the chosen SB to the 
Sequencer, which executes the observing procedures contained within the SB and sends 
commands (defined in the Command package) to the Correlator and the Antenna & 
Receiver Control subsystems to perform the actual observations. (The dashed box labeled 
“Alma System” denotes the Correlator and Antenna & Receiver Control subsystems, our 
abstractions for the ALMA hardware and all the distributed objects and control software 
associated with it.) Upon completion (or abort) of an SB, the Dispatcher must notify the 
Observing Project Manager (also a package within the Scheduling subsystem) which will 
update the SB’s status, as well as that of its enclosing Observing Project. The Observing 
Project Manager will determine whether this update, in turn, should trigger any data 
processing (e.g., final image production when a Project is completed or a Breakpoint is 
reached at which the PI had requested such processing) and will evaluate any conditions 
that might cause the status of other SBs in the Project to change (e.g., because a 
Breakpoint has been reached, or because other SBs will only become ready for execution 
after the current SB has executed successfully). 

The Scheduler itself depends upon the SiteCondition package (see [ISA]) for information 
concerning weather conditions and instrumental performance necessary to rank SBs for 
execution. 

A crucial part of the subsystem is the calibration package, which will provide all 
functionality for proper array / instrument / data calibration. The subsystem also consists 
of several domain layer packages, whose functionality is closely related to the instrument 
operation. 

 

4.2.2.1 Interface between Correlator/Control Subsystems and Pipelines 
In order to meet the requirements for rapid turnaround of calibration and quicklook 
results after raw data has been acquired, two key design decisions have been made: 

Data coming from the Correlator subsystem will not be retrieved from the 
Archive by the Calibration and Quicklook Pipelines, but will be streamed 
directly to them, possibly via specialized hardware (see the discussion of the 
“Fast Data Store” in the chapter on Technical Architecture). 

Both the Calibration and Quicklook Pipelines will decide which parts of this 
data are of interest to them, based on metadata inserted into the data stream 
by the Correlator subsystem, and an additional metadata stream coming from 
the Antenna & Receiver Control subsystem. This metadata will comprise: 

• All parameters characterizing antenna, receiver and correlator 
configuration during the acquisition of the data that follows: 

• An indication of the scientific intent (e.g., phase calibration, 
pointing calibration, pointing scan), which will have been 
embedded in each scan command before it is executed. 

In this way, the operation of these two pipelines will be fully data-driven. 
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Figure 4-7: Instrument Operations Subsystems. The Sequencer issues configuration and control commands to the 
Correlator and Antenna & Receiver Control subsystems. Both science (uv & total power) and engineering (“monitor”) 
data produced by these subsystems are made accessible to other subsystems via the Archive (via direct streaming to the 
Calibration and Quicklook Pipelines, which need to process this data in near-real time). Only the most significant 
dependencies are shown. 

4.2.3 Data Reduction Subsystems 
 

Data reduction in ALMA appears in three guises: 1) on-line calibration to enable 
evaluation and optimization of on-going operations; 2) generation of quicklook results to 
give feedback to the operator and/or PI; and 3) generation of “definitive” data products. 
These three processes will clearly share most of their basic functionality, and will be 
assembled from pieces of software functionality provided by an existing Data Reduction 
Package (DRP), probably AIPS++. The Quicklook Pipeline in particular can be regarded 
largely as a subset of the full Science Data Reduction Pipeline, although it has its own 
unique requirements for rapid display of results. 

Further data reduction and analysis will be done by PIs at the ALMA Regional Support 
Centers and/or at their home institutions. For this purpose, they will use an ALMA-
specific Data Reduction User Interface (DRUI) to allow them to reduce and analyze their 
data interactively. At least at the beginning, the DRUI will make use of parts of the above 
ALMA pipelines and the external DRP, although it is intended to be general enough to 
allow the substitution of a different DRP if the user so desires. 
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The minimal analysis that has been done on this area of the system is clear from the 
oversimplified figure. Since it is very likely that AIPS++ will be the DRP selected, the 
modality for integration with the rest of the ALMA software needs to be addressed in 
collaboration with experts in AIPS++ internals and with the developers of the Calibration 
and Quicklook Pipelines and of the DRUI. 

DRP
<<external>>

CalibrationPipeline QuicklookPipeline Science Data 
Reduction Pipeline

DataReduction 
UI

 

Figure 4-8: Data Reduction Subsystems. The “DRP” (Data Reduction 
Package) is expected to be already-existing software that has been developed 
outside the ALMA project, and will have been enhanced where necessary to 
meet the needs of millimeter and submillimeter radio astronomy. ALMA-
specific functionality will be added by the Calibration, Quicklook and Science 
Data Reduction Pipelines.   

4.2.4 Archive Subsystem 
 

The archive subsystem consists of a package in the application and the system layer, 
respectively. The InfoService package will contain the abstract classes for all data / 
information services and the services themselves. Hence it will provide for archives, 
catalogs, repositories, databases, etc. and will be needed by many packages from other 
subsystems from very early on. The ArchiveResearch package will be responsible for 
archive queries and data retrieval. 
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Figure 4-9: Archive Subsystem 

4.2.5 Administration Subsystem 
 

At the center of the Administration subsystem are the ProgramTool and AdminTool 
classes, responsible for the high level administration of observing programs and more 
general administrative tasks (staff shifts and hardware maintenance schedules, for 
example), respectively.  A Quality Control package was introduced in the subsystem to 
take care of trend analysis of telescope, array, and receiver properties on the basis of 
calibration results. The user management package in the domain layer is responsible for 
managing ALMA user details such as access privileges. This functionality might at some 
point be completely covered by the ALMA Common Software. 
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Figure 4-10: Administration Subsystem 

4.2.6 ACS Subsystem 
 
The ALMA Common Software (ACS) Subsystem provides the “glue” between all other 
subsystems. It is based on the CORBA middleware but provides many more features that 
facilitate subsystem communication, error handling, data collection etc. For a 
comprehensive summary see the ALMA Common Software Architecture document 
(ALMA memo 016). 

To reflect the existing developments in the ALMA Common Software (ACS) we have 
added a package called “ACS Core“ which comprises CORBA, the error handling 
system, etc. The need for the Internet Messaging and Common UI toolkit packages 
shown in Figure 4-11 was confirmed in the course of our analysis work. We assign them 
to be part of the ACS subsystem. 
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Figure 4-11: ACS Subsystem 

 

4.2.7 Interaction between subsystems 
 
The detailed interactions between subsystems need to be worked out in more detail with 
the developers of the subsystems involved. In general, coupling of subsystems is 
minimized by having them interact via the Archive/InfoServices subsystem or via 
mechanisms provided by ACS as much as possible. Where performance or simplicity 
make this undesirable, direct interaction is possible. In particular, we expect that raw (and 
WVR-corrected) data from the correlator subsystem will flow directly to the Calibration 
and Quicklook pipelines  without first being stored and then retrieved from the Archive. 
While the Archive will be able to accept the full (~10-70 Mbyte/s) data rate in streaming 
mode, it will be unable to match that speed for retrieval of large quantities of data that it 
has already stored. 

 

4.3 Mapping of packages to the WBS 
 

Beside the logical structure derived from the required system functionality and from 
technological constraints, there is also the highly distributed structure of the ALMA 
development teams and the administratively important Work Breakdown Structure 
(WBS) which partitions the software development effort among the ALMA partners. 
Table 1 shows which subsystems and/or packages have been assigned to each WBS 
element. It also includes the priorities of the individual packages, which will be discussed 
in the next section. 
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Table 1: WBS-to-Architecture mapping and priorities. Where a relevant [ISA] reference exists, it is given in the 
third column. 

WBS Item Subsystem/Package ISA Ref Priority
  InfoService 2.17 0 
  Archive 2.18 0 Archiving (2820) 
  ArchiveResearch 2.17 3 
  CommonUI Toolkit  1 
  AlarmSystem  1 
  Internet / Messaging Services 2.24 2 Common Software (2740) 

  ACS Core  0 
  Command 2.8 0 
  SiteCondition 2.23 0 
  Sequencer 2.13 1 
  Antenna&Rcv_Cntrl  1 

Control Software (2760) 

  ResourceMng 2.10 2 
Correlator Software (2780)   Correlator  1 
Data Reduction User I/F (2890) 
Offline Data Reduction I/F(2880) Data Reduction User I/F  2 

  AlmaAdmin 2.21 2 
  UserManagement  3 
  UserSecurity  3 Executive Software (2750) 

  AlmaExec 2.9 1 
  ObsAdmin 2.2 3 
  ObsProjectRepositoryController  1 
  ObsTool 2.1 1 
  Specifications 2.1.1 1 
  ObsSimulator2 2.1.3 2 
  ObsTemplate 2.1.2 2 
  CorrelatorSetup 2.1.4 3 
  Reviewer 2.3 3 
  Policy  2.4 3 
  ObsProject 2.9 0 
  ObsProjectRepository 2.20 0 

Obs. Preparation/Support (2860) 

  Catalog 2.19 1 
Scheduling (2840)   Scheduler 2.12 3 
Pipeline – Heuristics (2800)   ScienceData & Q/L Pipelines 2.1.5 1 
Pipeline – Infrastructure (2800)   DRP (external) 2.1.5 1 

  DRP (external) 2.1.5 1 Offline Data Reduction Engines 
(2880)   ObsSimulator 2.1.3 2 

  CalibrationPipeline 2.14 0 Tel. Calibration Engines (2900)   QualityControl  2 
 

4.4 Priorities of package development 
 

                                                           
2 Although the primary responsibility for the simulator has been assigned to the Offline Data Reduction WBS 
element, a “light” version that, e.g., simulates synthesized beamshapes and estimates required observing time, 
will be an intrinsic part of the Observing Tool itself. 
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The developmental stability of the packages and classes must increase from the 
presentation layer to the domain and system layers because many subsystems depend on 
functionalities in those layers while higher layers are more independent and can thus be 
kept more flexible in the development process. The most obvious subsystems with a need 
for stability are the “Observing Project” and “Observing Project Repository”. The domain 
and system layer subsystems therefore have the highest design and implementation 
priorities. 

We assigned priority levels from 0 to 3 to all packages, 0 being the highest and 3 being 
the lowest priority (see second column in table 4-1). Note that all packages are necessary 
for the ALMA system and that these are short-term priorities meant for the design and 
development in the next 1-2 years, i.e. 2002/03. Priority “3” is thus not to be interpreted 
as “desirable” as in the SSR report but rather “not urgent” while “0” means “crucial”. 

The priority “0” packages are “InfoService” and “Archive” from the system layer,  
“Observing Project”, “Observing Project Repository” and “Command” from the domain 
layer and “CalibrationPkg” and “SiteCondition” from the application layer. The system 
and domain layer packages are important because of subsystem dependencies. The 
calibration package and the related site condition package were also assigned priority “0” 
because the need for the development of new algorithms for submillimeter interferometry 
calibrations makes them critical to the success of ALMA. 

Once the level “0” packages have been designed, development for level “1” can begin. 
Level “1” comprises most of the basic ALMA functionality such as the (basic) observing 
tool and the array control software. Level “2” deals with systems that are needed later and 
whose functionality extends the basic level. Level “3” systems add items that will be 
needed when the interim science phase begins. We assumed implicitly that all user 
interfaces have priority “3”. This only means that the final stable version of the UIs is not 
an urgent item. There will of course soon be intermediate versions. 

 

4.5 Critical issues 
 
We identified a number of critical issues needing more detailed consideration.  

1. To reduce the load onto the system at the ALMA site, observing simulations 
should be performed offline at remote sites. 

2. There is a requirement to support “eavesdropping” on operations (basically 
from anywhere). This responsibility has not yet been assigned; also uncertain 
is what kind of access methods and bandwidths to ALMA are needed and 
how security should be handled. 

3. The requested ability to enable a PI to update already-approved Observing 
Programs / Scheduling Blocks from external nodes can place a large burden 
on the operations staff, especially if the feedback times must be small (hours 
rather than days). Such changes might also wreak havoc with a long-term 
schedule if, for example, new targets are introduced that would change the 
date in which the observations could be scheduled. Although this is a policy 
and operational issue, in the absence of definitive guidelines, the software 
needs to provide a mechanism to make these updates possible, minimizing 
effects on the operation of the core ALMA system but offering reasonable 
flexibility to the users. 
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4. Data reduction algorithms for submm interferometry especially phase 
calibration correction for long baselines using data from water vapor 
radiometers are currently still in an experimental stage and development of 
new algorithms which convert measured water vapor line profiles into phase 
corrections are crucial right from the beginning of the array operation. 

5. Any interactions with the real time system must not lock ALMA operations. 
Especially the feedback mechanisms of the Calibration Pipeline need to be 
prototyped early and their performance extrapolated to the full system. 

6. The Archive is the central part to decouple the subsystems. Access to the 
Archive is therefore crucial and it must be able to handle the expected data 
rates (for science data rates see [SMM]). 

7. The requirement for Archival Research adds additional external access 
(although not to the core system but to remote copies of the Archive) which 
has to be considered. 

8. In general the necessary interprocess communication and network 
bandwidths have to be estimated. Whether, for example, CORBA 
middleware provides sufficiently performant facilities for transfer of raw 
science data needs examination. 

 
 

4.6 Deployment view  
 

We have made a first cut at allocating ALMA software to individual processors or nodes, 
and have defined ten general types of nodes or processors to understand deployment and 
communication issues (see Figure 4-12). They are: 

 
N1) Proposer: Used by the Proposer to prepare observing proposals for ALMA. It will 
often be external to the secure ALMA network (e.g., because it is on the Proposer’s 
laptop) and exist in several instances.  

 
N2) Reviewer: Used by reviewers during their evaluation of proposals. It may be external 
to the secure ALMA network and exist in several offline instances.  

 
N3) ALMA Master Control: Controls the ALMA facility and can therefore only exist in 
one instance.  It is naturally in the secure ALMA network and accessed by the ALMA 
operator. 

 
N4) ALMA Administration: Used by ALMA staff for administration of the general 
ALMA facility.  The node can exist in several instances, but all must be on the secure 
ALMA network.  

 
N5) Program Administration: Used by staff for performing tasks related to the 
administration of observing programs.  
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N6) Data Processing: Performs general pipeline processing of data. It can be both internal 
and external to ALMA. Any of the various pipelines may, in principle, run on this node; 
however, the container-component model for the technical architecture (see next chapter) 
allows us to defer such decisions until run-time—and even to redeploy pipelines to other 
nodes while the system is running. 

 
N7) Archive: This type of node provides access to the InfoServices.  It may exist in 
several instances but normally on the secure ALMA network.  

 
N8) Observer: Used by interactive observers to specify observations (i.e. to specify 
Scheduling Blocks) which then can be executed immediately. This node is on the secure 
ALMA network. There may be several instances for the control of several subarrays.  

 
N9) Scientific User: Used by scientific users to perform their work when interacting with 
ALMA data.  It is normally external to ALMA and can exist in multiple instances.  

 
N10) ALMA System: This is a generic node of the ALMA real-time system, e.g., 
antenna, correlator, real-time computer. It is not anticipated that any of the pipelines will 
run on this type of node. 

Nodes external to ALMA that need remote access to the system raise security issues that 
need to be considered. Any such remote access must not affect the internal ALMA 
system performance. Even interactions with the remote DataPipeline and the 
RemoteArchive, although they don’t represent the same potential dangers as interactions 
with the operations infrastructure itself, still need to be regulated. (Protection of 
proprietary data and prevention of abuse of resources are two important concerns even at 
the Regional Support Centers.) In addition, the Proposer and Reviewer nodes may 
operate offline. This implies the need for synchronization methods between those nodes 
and the rest of the system. 

 
 
The activity (“swimlane”) diagram shown in Figure 4-13 gives a schematic view of the 
general order of events in the life of an ALMA program, as well as the parts of the 
system responsible. 

 
•  
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Figure 4-12: Deployment of the ALMA software system on ALMA internal, 

external and remote nodes. 
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5 Technical Architecture 
The technical architecture for the ALMA software system provides the broad 
infrastructure necessary to support the functional architecture described in the preceding 
chapter. As the headings of this and the previous chapter suggest, we want to separate 
two types of concerns, the domain-specific “functional” concerns, from the “technical” 
concerns that arise from the computing environment in which the problems of Alma 
operations, data acquisition and data analysis are to be solved. 

This “separation of concerns” is hardly a new concept in software development. Software 
professionals will recognize in this phrase the same decades-old principle that has guided 
the development of high-quality, modular code: cohesion of individual modules, and 
loose coupling between them. It is this principle that teaches us not to combine in a single 
routine, for example, code to calculate a cosine function with code to perform a 
numerical integration. 

The concerns that we are separating here, however, are somewhat more generic, and our 
motive for separating them is a precise one: to allow subsystem developers to concentrate 
on issues of radio astronomy and interferometry, physics and algorithms, leaving to IT 
specialists the tasks of providing mechanisms for interfacing, remote access and security. 

5.1 Container-Component Model 
The Container-Component model for software organization and development is our 
primary instrument for achieving this separation of functional from technical concerns.  

Voelter (2001) defines a component as a software element that exposes its services 
through a published interface and explicitly declares its dependencies on other 
components and services, can be deployed independently and, in addition: 

“is coarse grained: In contrast to a programming language class, a component 
has a much larger granularity and thus usually more responsibilities. 
Internally, a component can be made up of classes, or, if no OO language is 
used, … can be made up of any other suitable constructs. Component based 
development and OO are not technically related. 

“requires a runtime environment: A components cannot exist on its own, it 
requires a something which provides it with some necessary services.” This 
“something” is called a container. 

“is remotely accessible, in order to support distributed, component based 
applications.” 

The following diagram shows the essential ideas: 
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Figure 5-1: A client accesses several service components via an enclosing container. 

In this figure, a client (which could be itself a component residing in another container) 
accesses the services of three components via their published service interfaces. The 
interfaces published by Components 1 and 2 are shown inside the Container, because in 
these two cases, access to their services is mediated by the Container itself, which may 
add additional services such as client authorization verification to those provided by the 
component. Here, the container is acting as a “tight” container. For Component 3, on the 
other hand, the container is “porous”; access to the component is direct, although the 
container will be used to supply the client with the initial reference to Component 3. This 
might be desirable when performance considerations outweigh the benefits that a tight 
container could provide in the way of added services. 

These two modes, “tight” and “porous”, reflect the expected use of this model in the data 
flow and control system areas, respectively. The client, however, receives only a 
reference to its needed component, and does not know which of these two container types 
it is dealing with. 

The division of responsibilities between components and containers enables decisions 
about where individual components are deployed to be deferred until runtime, at which 
point configuration information (typically from a file or database, mediated in ALMA by 
the ACS Manager) is read by the container. If the container manages component security 
as well, authorization policies can be configured at run time in the same way. 

To operate in such an environment, a component publishes two interfaces: 

Service interface: the methods and signatures by which the component’s 
services are available to clients. This interface is written in the CORBA 
Interface Definition Language (IDL), or derived from it via additional code 
generation (see section 5.4 for details). 
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Lifecycle interface: a set of methods that are accessible only by the 
component’s enclosing container. These are, in the order in which they 
would typically be invoked: 

• setComponentName(String):  
dynamically assigns an instance name to the component 

• setContainerServices(ContainerServices):  
callback object through which the component can explicitly 
use services offered by the container. 

• initialize():  
tells the component that it’s time to configure itself, build up 
in-memory tables, establish remote connections, etc. 

• execute():  
similar to initialize(); tells the component to start running 
methods that are not part of its functional interface. For 
instance, the Scheduler component would run the thread that 
maintains the ranked list of SBs. Many components will 
probably implement only initialize() or execute(), but not 
both. 

• Cleanup():  
called after the last functional call has finished; tells the 
component to release resources so it can be removed safely. 

• aboutToAbort():  
only called if the container has to forcibly remove the 
component. Component should make an effort to minimize 
the damage. 

The complete specification can be found in 
alma.acs.container.ComponentLifecycle.  

Note that the implementation of these lifecycle methods is completely at the 
option of the component, which may decide to provide “null” 
implementations of any or all of these methods as long as the semantics of 
the contract between the component and the container are followed. 

Other rules for component implementations: 

• The constructor of the component implementation class should do close to 
nothing. Initializations should be carried out in the initialize() and/or execute() 
methods. 

• A component should be implemented thread-safe. This means that any of its 
methods can be invoked asynchronously in different threads without causing 
resource conflicts or deadlocks. If thread safety seems really much too 
complicated to implement, or if very likely only one thread from one client will 
ever use the component, the container can be configured to synchronize calls to 
the component to overcome threading issues (at the expense of some 
performance loss) 

Commercial implementations of the Container-Component model are quite popular in 
industry at present, with Sun’s Enterprise Java Beans specification and Microsoft’s .NET 
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framework being the prime examples. (A vendor-independent specification, the Corba 
Component Model (CCM), is under development, but it is not complete, and production 
implementations do not yet exist.) In any case, all of these are rather comprehensive 
systems, and require a wholesale commitment from developers to use the languages and 
tools supplied. For ALMA, which can benefit from an infrastructure that is more 
lightweight, the Container-Component model will be implemented by ACS, following the 
structure shown in Figure 5-2. Much of this infrastructure already exists in ACS, so 
implementing the Container-Component model does not mean that we are starting from a 
blank slate. 
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Figure 5-2: The ACS implementation for porous (existing) and tight (planned) Containers. The Manager provides 
Containers and Activators (“porous” Containers) with configuration information. 

In the following sections, we will detail how important technical issues are addressed 
within the general framework of the Container-Component model: 5.2) definition of 
entity (or value) classes; 5.5) persistence; 5.6) versioning; and 5.7) choice of 
programming languages. 

5.2 Definition of entity classes 
There are many complex data structures that must be defined for the ALMA system to 
operate smoothly; some will be driven by scientific needs and the requirements of 
packages outside of our control; examples include: 

• complex visibilities; 

• images and spectra. 

These are typically large (many Mbytes or Gbytes), may have existing formats that are 
standard throughout the astronomical community (e.g., FITS, Measurement Sets), and are 
therefore not the subject of the discussion that follows. 
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Other complex data structures drive ALMA operations; they include (see [ISA] for a 
discussion of this particular class hierarchy):  

• Observing Proposals; 

• Observing Projects; 

• Scheduling Blocks; 

• Instrument and operations logs.  

We have complete freedom to organize these latter data structures in such a way as to 
reduce development effort (including the inevitable modifications and revisions that will 
take place over time) and enhance run-time performance. 

In line with the object-oriented philosophy of software development for ALMA, we will 
speak of entity classes and objects. As in the [ISA], we mean here classes responsible 
primarily for accepting, storing and retrieving persistent data. 

In the case of ALMA we often have to deal with structured data, which includes things 
like configuration parameters and Scheduling Blocks. XML, the eXtensible Markup1 
Language, is a set of rules (one may also think of them as guidelines or conventions) for 
designing text formats that let one structure one’s data. Since its introduction as an open 
standard, XML has spawned the development of many supplementary specifications and 
tools that greatly facilitate its use as a data definition language in computer systems 
development. 

We will adopt XML to: 

1. define the content and structure of the entity objects that will be passed between 
subsystems (subject of this section); 

2. automatically generate the classes needed to access the data contained in these 
entity objects, optionally validating every change to a data value; currently 
validation happens either on explicit request, or automatically on marshalling if 
desired. 

3. serialize these objects for network transmission; 

4. facilitate the storage of these objects using the most appropriate and cost-
effective database technology at our disposal—Relational and/or Warehouse 
Database Management Systems today, with perhaps Object-Oriented or XML-
based technology in the future. The Archive subsystem already provides the 
XML database (Xindice) for ALMA subsystem teams to use for their 
development work; very few (if any) changes will be required to subsystem 
persistence code in order to use the technology that the Archive eventually 
adopts. 

Although XML documents are written in text format, they are not designed to be reader-
friendly. Most editing of XML documents is done via a specialized editor, and the 
processing itself is hidden from the user, and in most cases, from the developer as well. 

                                                           
1 In spite of the “Markup” in its name, XML is not primarily for formatting printed documents or Web pages. 
As its official specification states, XML “can be used to store any kind of structured information, and to 
enclose or encapsulate information in order to pass it between different computing systems which would 
otherwise be unable to communicate.” 
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Nevertheless, we provide some “raw” XML examples below to make the basic concepts 
clear.  

XML schemas define application-specific rules for the content of an XML document. So, 
for example, we can define the content of a Scheduling Block via a schema. A part of 
such a schema will serve to make this clear: 

 

<xsd:element name="SchedBlock"> 
 <xsd:complexType> 
  <xsd:complexContent> 
   <xsd:extension base="prj:ObsUnitT"> 
    <xsd:sequence> 
     <xsd:element name="SchedBlockEntity" type="sbl:SchedBlockEntityT"/> 
     <xsd:element name="ObsProjectRef" type="prj:ObsProjectRefT"/> 
     <xsd:element name="SchedBlockControl" type="sbl:SchedBlockControlT"/> 
     <xsd:element name="SchedBlockImaging" type="prj:ImagingProcedureT"/> 
     <xsd:element name="ObsProcedure" type="sbl:ObsProcedureT"/> 
     <xsd:element name="ObsTarget" type="sbl:TargetT" maxOccurs="unbounded"/> 
     <xsd:element name="PhaseCalTarget" type="sbl:TargetT" minOccurs="0" 
maxOccurs="unbounded"/> 
     <xsd:element name="PointingCalTarget" type="sbl:TargetT" minOccurs="0" 
maxOccurs="unbounded"/> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
</xsd:element> 
 
This part of the schema states that a Scheduling Block must have the following elements: 
TargetCoordinates, PhaseCalCoordinates, an ObsScript, Hardware and Calibration 
Requirements, and references to an ImageScript and something called a 
TargetPhaseLoop. Of course this is just a simplified example, and an observable SB 
would have a much richer content. 

In any event, both Target and PhaseCal Coordinates are defined to be of the “complex 
type” SkyCoordinatesT, which is itself defined in detail: 

 <xsd:complexType name="SkyCoordinatesT"> 
  <xsd:sequence> 
   <xsd:element name="Longitude" type="gen:LongitudeT"/> 
   <xsd:element name="Latitude" type="gen:LatitudeT"/> 
  </xsd:sequence> 
  <xsd:attribute name="system" use="required"> 
   <xsd:simpleType> 
    <xsd:restriction base="xsd:string"> 
     <xsd:enumeration value="B1950"/> 
     <xsd:enumeration value="J2000"/> 
     <xsd:enumeration value="galactic"/> 
     <xsd:enumeration value="horizon"/> 
    </xsd:restriction> 
   </xsd:simpleType> 
  </xsd:attribute> 
 </xsd:complexType> 

 <xsd:complexType name="LatitudeT"> 
  <xsd:simpleContent> 
   <xsd:restriction base="gen:DoubleWithUnitT"> defined in namespace “gen” 
    <xsd:minInclusive value="-90"/> 
    <xsd:maxInclusive value="90"/> 
    <xsd:attribute name="unit" fixed="deg"/> 
   </xsd:restriction> 
  </xsd:simpleContent> 
 </xsd:complexType> 
 <--! Similarly for LongitudeT --> 
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While the above schema fragment may look intimidating in its length, the corresponding 
use of it in an XML document is much simpler. A piece of the XML string or document 
conforming to this schema could then look like: 

 
    <TargetCoordinates system="B1950"> 
     <Longitude unit="deg">24.5</Longitude>  
     <Latitude unit="deg">-30.0</Latitude> 
    </TargetCoordinates> 

 
 

An alternative way of working with xml schemas is to use graphical tools like XMLSpy, 
where the tree can be manipulated using mouse menus and tables. The SchedBlock with 
some of its child elements looks like this: 

 

Figure 3: Sample XML schema displayed in graphical form. It shows a hierarchy beginning on 
the left hand side and branching towards the right. The small squares with "+" signs indicate 
that more structure is hidden to the right. The rounded rectangles with three bullets in a row 
indicate that a sequence of elements follows to the right; these elements must be present in the 
order shown (descending from the topmost element). 

XML applications can use the schema to ensure that all data in the corresponding XML 
document complies in form and content with what is defined there, for instance, that the 
longitude will be a double precision floating point number between 0 and 360, the 
latitude will be between –90 and +90, the units will be defined in degrees, and a 
coordinate system will have been specified that is one of the four allowed (character 
string) types: “B1950”, “J2000”, “galactic” and “horizon”. 
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5.3 Generating classes from XML schema 
There is no necessity for most subsystem developers to be concerned with, or perhaps 
even aware of, the XML underpinnings of the entity class definitions (with the possible 
exception of cases in which entity objects must be passed or returned via remote 
invocations; see below). This is because we can use tools that automatically generate 
programming language classes representing these entities straight from the XML schema 
definition. The subsystem developer can then work directly with the generated class. The 
process is illustrated in Figure 5-4, where the open-source XML-binding framework 
Castor is used to transform schemas to Java classes. 

XML Schema for SB Castor

SB

getTargetRA

setTargetRA

...

Wrapper for 
Subsystem 1

Wrapper for 
Subsystem 2

SB

getTargetRA

setTargetRA

...

SB

getTargetRA

setTargetRA

...

SB

getTargetRA

setTargetRA

...

Wrapper for 
Subsystem 1

Wrapper for 
Subsystem 2

Wrapper for 
Subsystem 1

Wrapper for 
Subsystem 2

Castor is an open-source 
framework for binding 
XML to Java classes

 

Figure 5-4: Castor generates a Java class from the XML schema for a Scheduling Block. Note the "getter" 
and "setter" methods supplied as part of the generated class. Subsystem developers can then make 
“wrapper” subclasses to provide them with any additional specialized functionality that they need. 

Not shown in the figure, but produced by the framework as well, is the validation code, 
which may be optionally enabled to check the validity of all schema-defined entity data. 
For example, an attempt to set the target latitude to, say, 120 degrees, would cause this 
validation code to throw an exception. By specifying our constraints in the XML schema 
and using the framework, we obtain the corresponding validation code for free. 

Through development of a prototype, we have already verified feasibility, usability and 
performance of this technique in Java. 

5.4 Interprocess Communication and Serialization 
In the usual approach popularized by CORBA, an object in one subsystem that needs the 
services of an object in remote networked subsystem asks the Object Request Broker for 
a reference to the remote object, and then invokes methods on that reference, passing 
additional references in the method’s argument list. For those situations in which access 
to non-trivial portions of an entity object is needed, a pass-by-value mechanism will be 
preferred, because: 

1. Frequent remote method invocations can clog the network, particularly if large 
amounts of data are passed as parameters or as results. 

2. Subsystems should be as independent of each other as possible, so that one can 
continue to run when another is down. This will be a frequent occurrence during 
development, and may be common during operations as well. 
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While CORBA provides a pass-by-value mechanism, it is immature and somewhat 
shaky, so we will use the same schema and binding framework described in the previous 
section to allow us to pass entity data by value using an XML serialization technique.  
These XML strings will then be transported via CORBA. 

Figure 5-5 illustrates the principle actors involved. Here, a hypothetical Observing Tool 
is shown passing a Scheduling Block to a remote Validator component. 

 
OT

Validator  
(at ALMA facility) 

SB, Marshalled to XML

-Nominally CORBA transport

 

Figure 5-5: The Observing Tool (OT) passes a Scheduling Block across the network to a remote ALMA facility for 
validation. The SB is serialized to XML before transmission, and de-serialized by the Validator upon receipt. 

We use the Interface Definition Language (IDL) to define and publish component 
interfaces in order to maintain a “Corba-centric” style to the architecture. A component is 
implemented as a CORBA servant, while the container is implemented as an intercepting 
layer between the CORBA Object Request Broker (ORB) and the servant. The 
Container-Component model, built on top of CORBA, hides the details of the 
implementation of CORBA interfaces from the application developer. The general 
scheme is shown in the following figure. 
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Figure 5-6: Example class diagram for interprocess communication. A client needs to use the Scheduler, which has 
been implemented as a CORBA servant. Because the Scheduler returns an SB, serialized to XML for transport, both 
client and server must ensure that the proper marshalling and un-marshalling is done. The classes highlighted in green 
are automatically generated by an IDL compiler, while those in blue would need to be implemented (either by hand or 
by a generator). 

The IDL interface explicitly uses their XML representation when entity objects appear as 
method call arguments or return values. This means that clients calling such an interface 
and servants implementing it must take the responsibility for (un)-marshalling to/from 
any language dependent representation of the XML data. 

In order to make this operation transparent (so that client and server developers do not 
need to be concerned with the marshalling and unmarshalling of XML), it is possible to 
provide support classes. In Java, these classes will be generated with the help of the 
Castor binding framework at compile time, hiding the XML-dependent nature of the IDL 
definition. The amount of effort to provide similar transparency for other languages is 
under investigation. 

As a further step, we can take advantage of the fact that when the XML representation is 
hidden by these support classes, the servant implementation class and the generated stub 
have the same interface. Clients running inside a Container request from the Container 
references to the Services they want to access. When both client and servant are running 
inside the same Container, the Container itself can then pass back to the client the actual 
Programming Language (PL)-native object reference for the servant instead of the 
CORBA-based stub. This provides an additional optimization; we avoid the XML 
serialization for the entity data. 
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This latter feature can be implemented in a later phase without changing already 
implemented code, because it will be completely hidden inside the Container 
implementation. 

An alternative way of communication is based on the repository. Programs can send 
around IDs and clients retrieve the data (or the part that they need) from the repository 
themselves. 

5.4.1 Entity Objects in the Instrument Operations Subsystems 
The same XML infrastructure can find application in two important areas of the real-time 
operations of ALMA: 

Commands that pass complex configuration structures to e.g., the correlator, 
can pass them as XML-schema conformant entity objects, enabling the 
commanding subsystem to forward this information exactly as it has been 
prepared by the observer, and the archive to receive directly an exact copy of 
the configuration as it was used during operations. 

The metadata that will accompany the correlator output (see the chapter on 
Functional Architecture) can be encoded in an XML-schema compliant 
VOTable (a product of Virtual Observatory development; see http://www.us-
vo.org/VOTable/ ) with a pointer to that portion of the data that will be 
maintained in binary form for performance and data rate reasons. This offers 
a more flexible alternative to FITS binary tables and allows the metadata to 
be stored into the archive in a searchable format without format conversion. 

In both of the above cases, frameworks that automatically generate C++ classes from the 
defining XML schema should soon be available. 

5.5 Persistence  
All needs for persistence in the ALMA system will be handled by the central operational 
archive subsystem. This includes very different types of data, such as entity objects, 
science data (raw or processed), and time-stamped logging data. The operational archive 
will internally use appropriate database or file storage technologies. To the software 
developers of other subsystems, the storage mechanisms will be shielded by the archive 
API. For instance, a SchedBlock entity object will be stored in the archive, without the 
application knowing whether a relational database, an XML database, or any other future 
technology is at work behind the scenes. With the long development and operations time 
of ALMA, it is important to avoid or at least encapsulate any such commitment. 

The choice of schema-based XML documents as the persistent format of application 
objects facilitates the storage in a database. Naturally, a real XML database provides easy 
storage, retrieval and query mechanisms for our XML data. But even if a relational 
database (RDBMS) were to be used, we benefit from using XML compared with the 
traditional object-relational mapping model.  

When many different views on the same data are required, RDBMSs are at their best 
because every piece of elementary object data is mapped to attributes in various tables, 
and can be reassembled into new structures. The downside of this approach is what is 
know as the “impedance mismatch” between object and relational models. Complicated 
and time-consuming SQL queries must be executed to get all the relevant record sets that 
hold the data for the objects we want to retrieve from the database. The same applies to 
insert and update operations.  

http://www.us-vo.org/VOTable/
http://www.us-vo.org/VOTable/
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While such flexibility might be a requirement for the Science Archive, for the 
Operational Archive all objects are foreseen to be stored and retrieved using the same 
data model. We don’t need to have one separate field in a relational database table for 
each attribute in an object. Instead, we can define only those fields that we will need to 
use for optimized searches, and thus avoid the overhead and performance penalties of 
supporting arbitrary SQL queries, many of which will never be made.  

Therefore we will maintain entity objects as Character Large Objects, essentially text 
strings of arbitrary length (“CLOB”s; this database field type is defined in Version 3 of 
SQL). In particular, these CLOBs will be in the XML serialized form that a) conforms to 
the same schema that was used to define it; and b) is the same as that used for remote 
communication. These objects will be stored in an RDBMS with carefully selected 
attributes (redundant data extracted from the object to enable queries based on those 
attributes). A unique ID will be created and stored for each object. Figure 5-7 shows an 
example for a simplified Scheduling Block, with Observing Project ID, Target 
coordinates and maximum allowed Water Vapor column extracted redundantly (these 
quantities still exist in the XML CLOB) as searchable database fields. In practice, we 
expect that many more such fields will be needed, but these should not present either 
storage or performance problems. 

This redundancy is visible to and managed by the archive system; update of a CLOB will 
therefore always result in the corresponding update to any redundant fields maintained in 
the database table. Maintaining consistency, always a potential source of problems when 
data is stored redundantly, will therefore be relatively easy to ensure. 

This approach offers the advantage of loose coupling between archive and Entity Objects. 
Changes to the structure of Entity Objects which don’t affect the queryable redundant 
attributes do not require changes to the database and the impact on the DAO’s that might 
result. 
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Figure 5-7: Application component accessing a stored Scheduling Block via a Data Access Object (DAO). The SQL 
machinery is completely hidden from the application component. 

Data Access Objects (DAO) 

Database access code should be encapsulated inside specialized Data Access Objects. 
The DAO model offers the required flexibility, without causing the overhead of a full-
fledged object-relational mapping layer. By “DAO” we mean a native Programming 
Language object that has the following responsibilities: 

• A DAO is in charge of storing and retrieving one entity object in one type of 
database.  

• It delivers an XML representation of that entity. The same mechanism used for de-
serialization can then be used by the client to create the PL-native object. 

• For read-only access, the DAO may offer the option to retrieve only part of the 
object’s full XML representation. This is useful for example, when a list of entities is 
to be displayed to the user, but only one entity is to be selected (and therefore 
retrieved in its totality) for further processing. 

• DAOs are created by a factory2. Different implementations of the same DAO 
functionality allow us to use a different database (or even a file system) without 
changing the application code. This is especially useful during development (when 
individual developers might use a lightweight DBMS such as mySQL for testing, 
whereas the system as a whole will probably rely on an industrial-strength DBMS 
such as DB2) and for remote deployment (for example, on a notebook). 

• Developer groups can be responsible for their own database access code (in 
particular, subsystem developers will be responsible for writing their own DAOs, in 

                                                           
2 Standard creational pattern from the book “Design Patterns” by Gamma et.al. [GOF] 
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consultation with the Archive subsystem team), without depending much on other 
groups. 

Queries 

We want to keep application objects as free of SQL or XPath/XQuery and query 
definitions as possible. Therefore, query definitions should be encapsulated by DAOs 

To execute a query, an object calls a query method of a DAO. Letting the object pass 
binding parameters can provide some flexibility. A query to access all SBs with certain 
parameters might look like: 

SB_DAO.getSBs(status, LST, arrayConfig); 

The binding parameters here would be the status (perhaps “ready”), the LST range, and 
the current antenna array configuration, to look up all Scheduling Blocks that are ready to 
run with a given LST range and a given array configuration. All query code would be 
hidden by the DAO. 

 

SchedBlockDAOFactory
currentDatabase

createDAO()

SchedBlockDAOOracle8 SchedBlockDAOXindice

Scheduler
AbstractSchedBlockDAO

getRunnableSBs()
saveSB()
getSB()

xml exchange

inst inst

 

Figure 5-8: Example class diagram for a Data Access Object. At run time, the concrete 
SchedBlockDAO will be created, depending on what database technology and database are 

being used. The code of client (the Scheduler in this example) does not change, no matter how 
radically the underlying database technology may be altered. 

5.6 Versioning 
The usual way of dealing with changes to software is through a configuration control 
system and the re-integration of the system when module interfaces change. Similarly, 
changes to the definitions of entity objects (i.e., to their data formats and contents) 
usually require modification of the routines that access them, and the transformation of 
existing objects in, for example, an archive. To avoid massive updates of existing data 
repositories, we can use the alternative approach of requiring that the application 
software itself be able to recognize older versions of interacting modules or accessed 
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entity objects and be able to function with the older (reduced) functionality. A “lazy 
update” mechanism could be used to transform an older version of an entity object to the 
current version when it is first accessed after a definition change. Such a requirement 
places a non-trivial burden on the application programmer, but makes updating parts of 
the system easier and integration of those parts more forgiving. The addition of an 
attribute to the observing project data structure, for example, could be done without the 
simultaneous updating of all existing projects in the ALMA archive. 

We believe that such backward compatibility might prove desirable for the project, but 
don’t see a clear case for mandating it at this time. To preserve the possibility that such 
flexibility could be added in the future, we will, however, mandate the inclusion of a 
version number in each object (particularly entity objects) so that it can be queried at 
runtime. In the simplest case, a module encountering a version mismatch could exit 
gracefully. 

5.7 Languages 
The ALMA software development effort is distributed across nearly a dozen institutes in 
two continents. In such an environment, unifying influences are certainly welcome. We 
believe that one such unifying influence would be reliance, insofar as possible, on a 
single programming language. The ALMA Computing group has already recognized the 
value of coding standards for each language: it makes code easier to understand, review 
and maintain by those who did not write it originally. Similarly, the use of a single 
language would make code sharing, reuse and evaluation easier across the project and 
reduce the burden of standards and tool support required of the Software Engineering 
group. 

Use of a single programming language is not possible on this project for both historical 
and technical reasons. ALMA will depend on a good deal of legacy software, written in 
various compiled and scripting languages. Technically speaking, the hard real-time 
requirements of the project can be met only with a compiled language that is both 
predictable and performant at run-time. At the same time, the [SSRD] requires a highly-
flexible scripting capability for the development of new observing procedures, as well as 
user-friendly Graphical User Interfaces for the neophyte ALMA user. 

Nevertheless, we see a strong case for encouraging the project to prefer a single 
programming language for new software development, and to restrict the use of scripting 
languages to prototyping activities and those that require the kind of flexibility that the 
[SSRD] calls for. In particular, we recommend the use of Java, outside of the hard real-
time and scripting areas. Its strong static typing and run-time error checking makes it a 
very solid basis for developing code that must be robust and reliable. It is one of the less 
arcane of modern object-oriented programming languages, has exceptionally good library 
support, has respectable performance and has the non-negligible advantage that many 
experienced Java programmers are available. 

For the hardware control system, the choice of C++ has already been made. We propose 
to support the Container-Component model described earlier for both Java and C++, and 
to support client access to Java and C++ components from Python, should this be chosen 
as ALMA’s preferred scripting language. We recommend that Jython (formerly Jpython) 
be carefully considered as a replacement for Python because: 1) it offers seamless 
integration with Java and the opportunity to exploit the full range of libraries that are 
supplied with Java; and 2) it would make it straightforward to migrate observing 
procedures from scripting to compiled (Java) code once they are mature and fully tested. 
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5.8 Bulk data throughput 
Raw data (coming out from the correlator), as well as reduced data (calibration data or 
scientific results), can be of the order of gigabytes for a contiguous set.  

For performance reasons, bulk data can’t be treated like “normal-sized” data, i.e., as 
typed members in a class or part of an XML file. It must be transported very efficiently. 
Whether or not this can be done using CORBA techniques (possibly the CORBA Audio 
Video Streaming service) needs further investigation. In any case, the handling of bulk 
data should be as object-oriented as possible from the application developer’s point of 
view. 

We need to provide a mechanism that 

Moves bulk data from where it’s created to safe storage. 

Never needs to have the entire bulk data chunk in memory at a time 
(therefore, some Reader/Writer-streaming technique seems useful). In fact, 
we propose to only provide sequential access to bulk data. If a process needs 
random access, e.g., for deconvolution of images, it must first copy the bulk 
data to its local file system. 

Allows bulk data to be referenced from objects as member data. The object 
keeps a link to the bulk data which resides outside the object on a specialized 
node, called the Fast Data Store (FDS). This allows us to move objects by-
value without having to move their associated bulk data.  

Integrates the FDS with the operational archive: 

The FDS will be critical to instrument operations, while we expect that any 
data that needs to be accessed from the archive (e.g., for definitive image 
processing of data sets acquired many days, weeks or months apart) can be 
accessed in a more normal way. (We would appreciate comments by the 
scientific reviewers in particular about whether this assumption is correct.)3 

Saving data to the archive: if an object is ingested by the archive, the 
associated non-transient bulk data must be copied automatically from the 
FDS to the archive as well. This transfer could actually be anticipated by the 
archive, which could pull files from the FDS at low process priority, even 
before the application objects get archived. 

Bulk data should be accessed in a type-safe way. All components should 
share a set of wrapper classes that translate the byte structure to something 
meaningful like a map of visibilities.  

The following items need to be discussed further: 

                                                           
3 If this assumption is not correct, we could have bulk data be transparently 
uploaded from the archive to the FDS when an object referencing that bulk 
data is read from the archive. If the bulk data is accessed after being 
uploaded completely, then access to that data will be rather fast; if it’s 
accessed during the upload, it should still be piped through the FDS at the 
rate at which the data comes from the archive. 

 



ALMA  ALMA Software Architecture 

 
Revision: 0.4  Page 51 of 54 

To allow the generic ACS/FDS/archive software to handle objects with bulk 
data, each such object must implement an interface that declares the 
persistent or transient bulk data “members” and gives access to these data. 

Do we need to transport bulk data without creating an object beforehand that 
keeps a reference to the data? An argument could be that raw data must be 
recorded even if the application software fails. We suggest not doing this, as 
it would require an additional, non-OO classification/retrieval schema. 
Software failures should rather be addressed using redundant services and 
failover strategies. 

We assume that bulk data will be immutable, either because 1) it represents 
raw data, which by definition needs to be preserved as is; 2) it represents a 
transformation of the raw data, e.g., when visibilities are phase-corrected, in 
which case a new file/object will be created; or 3) it will be passed as a 
whole to/from an external system such as AIPS++, which will then be 
responsible for using it in whatever way is necessary. 

5.9 Security 
We want to prevent: 

Destructive attacks from the internet; 

Theft of intellectual property, inside or outside of ALMA; 

ALMA users trying to obtain privileges that they have not been granted; here 
we assume only limited criminal energy (e.g., we don’t expect users to 
deploy their own manipulated client software at the ALMA site and connect 
to the servers there). 

The Container-Component model enables us to set security policies for each Component 
at run-time, and delegate the task of enforcing these policies to the Container. Within the 
ALMA software system, we will implement something less demanding than the CORBA 
security service. There will be a tradeoff between keeping security issues completely 
outside of the components (thus making component development easier), and avoiding 
lengthy deployment procedures. As a rule of thumb, IDL interfaces should be designed so 
that all methods inside are likely to have similar access restrictions. 

5.10 Technical Prototype 
Earlier in 2002 we developed a first prototype that provided a container-component 
model and transparent un-/marshalling of XML entity objects. It was based on the 
assumption that almost all of ALMA software could be written in JAVA, and that JAVA-
RMI communication would therefore allow us to elegantly handle the XML 
communication.  

After discussions with several ALMA developers this idea was abandoned in favor of the 
CORBA-centric model described earlier in this document. It relies on CORBA for remote 
transport and allows the use of different programming languages, although the number of 
supported languages must be kept low since every language requires the re-
implementation of the framework. 

Currently a second prototype is being developed, in accordance with the CORBA-centric 
model. It will offer the container capabilities of the ACS activator to Java components. 
Transparent un-/marshalling of XML binding classes will be supported. Deployment 
information will be stored in the ACS Configuration Database and will be used by the 
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container and the ACS Manager. This approach ensures a seamless integration of the 
ideas of this document with the existing ACS and its future development; in other words 
an evolution, not a revolution, in ACS. 

Appendix A. Scheduling Block Design: A first sketch 
Since the Scheduling Block is a key, perhaps the key, class that will govern ALMA 
operations, we begin here to sketch the outline of its design. Completion of this design 
will require collaboration from members of all subsystem teams that depend, in one way 
or another, on information contained in this class and its constituent pieces. 
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Figure 5-9: Class diagram for a Scheduling Block and its dependent parts. This is a revised version of the 
diagram in [ISA]. 

Figure 5-9 shows the class diagram for a Scheduling Block and the classes that it contains 
or depends upon. Most quantities are specified by the user, normally via the Observing 
Tool. The ObsUnitControl block will contain, as a rule, parameters that are controlled by 
the system (status, elapsedTime) or set by reviewers (scientificPriority) and that should 
not be modifiable by users. 

It is clear from the diagram that some of these classes have been developed in more detail 
than others, and it should therefore also be clear where more work needs to be done. For 
example: 
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1. “ObservingProcedure” might be a Python script or a more abstract description of 
the observing procedure to be followed, perhaps as produced by the Observing 
Tool and later converted to a script for execution.  

2. Patterns need to be defined more generally, perhaps by a class hierarchy. 

3. Calibration and Hardware Configuration requirements need to be defined in a 
way that enables the system to recognize what incremental steps are needed to 
bring the system to the desired configuration and calibration state in the most 
efficient way.  

We provide below a first sketch of what the XML representation of an ALMA 
Scheduling Block might look like. (The defining schema for this file will be found in the 
Interface Control Document for the Observing Preparation subsystem.) The file applies 
the ideas discussed in the preceding chapter to provide the parameters for an observation 
of the CO 3-2 transition at ~ 345 GHz in the Large Magellanic cloud. Many things have 
been left out, for example, an explicit calibrator specification, but this would mimic the 
layout of the target specification, and so would add bulk but little additional clarity to the 
example. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<!--Sample XML file generated by XMLSPY v5 rel. 2 U (http://www.xmlspy.com) therefore some values are left as 
“String” or “0” which is how XMLSPY constructed them --> 
<sbl:SchedBlock xmlns:sbl="Alma/SchedBlock" xmlns:ent="Alma/CommonEntity" 
xmlns:gen="Alma/GeneralIncludes" xmlns:prj="Alma/ObsProject" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="Alma/SchedBlock 
H:\ALMA\Architecture\SAD\XML\schemas\SchedBlock.xsd"> 
 <prj:Preconditions> 
  <prj:WeatherConstraints> 
   <prj:Opacity>TBD</prj:Opacity> 
   <prj:Seeing>TBD</prj:Seeing> 
   <prj:PhaseStability>TBD</prj:PhaseStability> 
  </prj:WeatherConstraints> 
  <prj:Polarization>TBD</prj:Polarization> 
  <prj:BaselineCal>TBD</prj:BaselineCal> 
 </prj:Preconditions> 
 <prj:ObsUnitControl scientificPriority="0" runWhenReady="1" schedStatus="waiting"> 
  <prj:MaximumTime unit="sec">1800.</prj:MaximumTime> 
  <prj:ElapsedTime unit="sec">0.0</prj:ElapsedTime> 
  <prj:PerformanceGoal>e.g., desired sensitivity level</prj:PerformanceGoal> 
  <prj:CalibrationRequirements> 
   <prj:PointingAccuracy>0.8 arcsec</prj:PointingAccuracy> 
   <prj:Bandpass>TBD</prj:Bandpass> 
  </prj:CalibrationRequirements> 
 </prj:ObsUnitControl> 
 <sbl:SchedBlockEntity entityId="2345" entityIdEncrypted="String" entityTypeName="SchedBlock" 
entityVersion="0" isReadOnly="false" lifecycleState="String"/> 
 <sbl:ObsProjectRef entityId="1432" entityTypeName="ObsProject" entityVersion='"latest"'/> 
 <sbl:SchedBlockControl repeatCount="24"/> 
 <sbl:SchedBlockImaging imageScript="String"/> 
 <sbl:ObsProcedure obsProcScript="String -- probably a call to a Python procedure"/> 
 <sbl:ObsTarget> 
  <sbl:FieldSpec> 
   <sbl:FieldSource sourceName="NGC19234"> 
    <sbl:SourceCoordinates system="B1950"> 
     <sbl:Longitude unit="deg">71.0</sbl:Longitude> 
     <sbl:Latitude unit="deg">-34.5</sbl:Latitude> 
    </sbl:SourceCoordinates> 
    <sbl:SourceVelocity> 
     <sbl:CenterVelocity unit="km/s">250.</sbl:CenterVelocity> 
     <sbl:referenceSystem>lsr</sbl:referenceSystem> 
    </sbl:SourceVelocity> 
    <sbl:SourceProperty> 
     <sbl:SourceFrequency unit="GHz">345.0</sbl:SourceFrequency> 

http://www.xmlspy.com/
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     <sbl:SourceFlux unit="Jy">0.0015</sbl:SourceFlux> 
     <sbl:SourceDiameter unit="arcsec">0.005</sbl:SourceDiameter> 
    </sbl:SourceProperty> 
   </sbl:FieldSource> 
   <sbl:FieldPattern type="rectangle"> 
    <sbl:OffsetCoordinates system="B1950"> 
     <sbl:Longitude unit="deg">0.002</sbl:Longitude> 
     <sbl:Latitude unit="deg">0.002</sbl:Latitude> 
    </sbl:OffsetCoordinates> 
    <sbl:ReferenceCoordinates system="B1950"> 
     <sbl:Longitude unit="deg">70.999</sbl:Longitude> 
     <sbl:Latitude unit="deg">-34.5</sbl:Latitude> 
    </sbl:ReferenceCoordinates> 
    <sbl:PhaseCenterCoordinates system="B1950"> 
     <sbl:Longitude unit="deg">71.0</sbl:Longitude> 
     <sbl:Latitude unit="deg">-34.5</sbl:Latitude> 
    </sbl:PhaseCenterCoordinates> 
    <!-- More specs go here --> 
   </sbl:FieldPattern> 
   <sbl:DesiredSynthesizedBeamSize unit="arcsec">0.05</sbl:DesiredSynthesizedBeamSize> 
  </sbl:FieldSpec> 
  <sbl:SpectralSpec> 
   <sbl:FrequencySetup transitionName="CO 3-2" sideBand="lsb"> 
    <sbl:RestFrequency unit="GHz">...etc.</sbl:RestFrequency> 
   </sbl:FrequencySetup> 
   <sbl:CorrelatorSetup> 
    <sbl:BandWidth unit="GHz">8.0</sbl:BandWidth> 
    <sbl:ChannelWidth unit="MHz">30.0</sbl:ChannelWidth> 
    <sbl:NumberIFBands>4</sbl:NumberIFBands> 
   </sbl:CorrelatorSetup> 
  </sbl:SpectralSpec> 
 </sbl:ObsTarget> 
 <sbl:PhaseCalTarget> 
  <!-- Similar specs to above --> 
 </sbl:PhaseCalTarget> 
 <sbl:PointingCalTarget> 
  <!-- Similar specs to above --> 
 </sbl:PointingCalTarget> 
</sbl:SchedBlock> 
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