

Atacama Large
Millimeter Array

ALMA-SW-0013

Revision: 3

2001-07-202002-

Software
Standard

Michele
Zamparelli

ALMA Software
Engineering Practices

Software Standards

Mich

Rele

Insti

K

App

Insti

Auth

e

a

t

e

r

tu

o

le Zamparelli
European Southern Observatory

sed by: Richard Kurz Signature:

ute: ESO Date:

ywords: standards, practices, software, procedures

oved by: Brian Glendenning Signature:

te: NRAO Date:

r Signature: Date:

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 2 o3535

Change Record

DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION
REMARKS

29-08-2001 Michele Zamparelli initial draft 1

18-04-2002 Michele Zamparelli implementing minutes of review 2

26-11-2002 Michele Zamparelli all 3
Draft for IDR

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 3 o3535

Table of Contents

Change Record...2

Table of Contents ...3

1. Introduction ..5
1.1 Scope ...5
1.2 Structure...6
1.3 Glossary ...6
1.4 References ...7

2. Software Process...9
2.1 Goal..9
2.2 Scope ...11
2.3 Applicability ..11
2.4 Procedures and Tools ..11

3. Document Reviews..12
3.1 Goal..12
3.2 Scope ...12
3.3 Applicability ..12
3.4 Procedures and Tools ..12
4. Document Formats, Templates and Numbering Scheme...........13
4.1 Goal..13
4.2 Scope ...14
4.3 Applicability ..14
4.4 Procedures and Tools ..14
5. Interface Control ..14
5.1 Goal..14
5.2 Scope ...15
5.3 Applicability ..15
5.4 Procedures and Tools ..15

6. Development Environment...16
6.1 Goal..16
6.2 Scope ...16
6.3 Applicability ..1616
6.4 Procedures and Tools ..17

7. Integration Environment ...18
7.1 Goal..18
7.2 Scope ...1818
7.3 Applicability ..1818
7.4 Procedures and Tools ..1918

8. Coding Standards..2020
8.1 Goal..2020
8.2 Scope ...2020

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 4 o3535

8.3 Applicability: ...2020
8.4 Procedures and Tools ..2020

9. Code Inspections...2121
9.1 Goal..2121
9.2 Scope: ..2121
9.3 Applicability : ..2121
9.4 Procedures and Tools ..2121

10. Configuration Management..2222
10.1 Goal ...2222
10.2 Scope...2222
10.3 Applicability..2222
10.4 Procedures and Tools..2222

11. Testing...2424
11.1 Goal ...2424
11.2 Scope...2424
11.3 Applicability..2424
11.4 Procedures and Tools..2424

12. Change Management...2626
12.1 Goal ...2626
12.2 Scope...2626
12.3 Applicability..2626
12.4 Procedures and Tools..2626
12.5 ..2727

Appendix A. Deliverables for the Software Process..........................2828
12.6 Software Requirements Review ..2828
12.7 Preliminary Design Review..2828
12.8 Critical Design Review...3131
12.9 Preliminary Acceptance Review ..3232
12.10 Final Acceptance Test ...3232

Appendix B. List of supported Third-Party Software Tools..............3434

Appendix C. Information Technology Support...................................3535

Appendix D. Checklists...................................Error! Bookmark not defined.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 5 o3535

1. Introduction

1.1 Scope

This document covers all the software engineering practices in place for the
ALMA software development. It is issued and maintained by the Software
Engineering (SE) responsible persons, within the ALMA computing group.

It lists all goals for SE for ALMA, documenting for each goal the choices of
procedures and tools to reach the goal plus the verification methodologies to
measure the distance to its achievement.

The goals stated in this document represent the basis for agreement between the
ALMA Software Management and the SE responsible persons about SE and
Quality Assurance activities for ALMA.

At the same time, this document will provide the outline of applicable
procedures to be used by the ALMA Software developers (both internal and
outsourced) as mandated by the ALMA Software Management.

Only the activities listed in each chapter of this document shall be considered as
part of SE for the ALMA computing group. Activities as Risk Management or
detailed Planning are outside of this scope and shall be specified, when
applicable, at subsystem level in management documents. The explicit use of
metrics for design and code evaluation is considered premature at this stage and
will be left to later versions of this document.

Procedures, methodologies and tools mentioned in this document may be either
adopted standards (which must be adhered to) or suggested guidelines (whose
adoption is encouraged but not enforced).

A periodic review of this document will guarantee that the goals are in line with
the management’s view and that their implementation is broadly discussed
among the developers’ base. Occasionally, guidelines may be promoted to
standards and standards may be demoted to guidelines.

The content of this document markedly reflects some specific features of the
ALMA software project:

• its geographical and cultural dispersity

• its large foreseen time span

• the twofold type of software involved (hardware control and data processing)

• the scarcity of testing sites for hardware-coupled code

The ALMA SW project has been divided by the ALMA executive committee
into two phases: Phase 1 was used to gather experience in dealing with specific
topics of software development (procedures, prototyping, design, software

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 6 o3635

engineering etc.) whereas Phase 2 will mark the start of construction both in
hardware and software.

1.2 Structure

This document aims to be the central "backbone" document explaining in broad
terms all applicable policies. When this is deemed not enough it will reference
more detailed documentation. Each chapter covers a specific area where formal
Software Practices are considered necessary. Each chapter has:

• a short rationale section containing a brief outline of the practice

• a section specifying the scope

• a section specifying the applicability

• a section specifying the necessary references to procedures and tools,
when applicable.

Each chapter is intentionally kept concise to allow the reader to get quickly to
the core idea and also providing references to more detailed and technical
explanations. Neither the division of the ALMA software system into
subsystems, nor the contractual aspects involved with it are addressed in this
document.

1.3 Glossary

A Project wide glossary for terms relevant to software is available at
http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.ht
m

The following additional terms are used within this document:

ACG ALMA Computing Group

ADT ALMA Development Team, responsible for a
Subsystem

CDR 1-3 (Incremental) Critical Design Review 1,2,3

FTE Full Time Equivalent

ICD Interface Control Document

Package Major component of Subsystem

Project Task or Subsystem activity of ALMA
Computing

PAR Preliminary Acceptance Review

PDR Preliminary Design Review

R0-5 Release of software (and its number)

http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm
http://www.alma.nrao.edu/development/computing/docs/joint/draft/Glossary.htm

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 7 o3635

Subsystem Subsystem of the ALMA Software System

1.4 References

1. http://www.testing.com/ , B. Marick

2. UML Distilled, second edition, M. Fowler, S. Kendall, 1999
Addison-Wesley

3. ALMA-SW-NNNN, 1.1, 20021-1107-1023, ALMA Computing
Plan for Phase2, G. Raffi

4. ALMA-SW-NNNN,2,2001-05-15, ALMA Computing Plan for
Phase 1, B. Glendenning, G. Raffi

5. The Common Object Request Broker Architecture & Specification,
2.4.2, 2001-02-01, OMG

6.ALMA-PRO-ESO-xxxxx-xxxx,1,2000-07-28, Software Devlopment
Process: Methodology and Tools, G.Chiozzi, R.Karban. P.Sivera

7.6. ALMA-SW-0015, 1, ALMA Software Document Review
Procedure, M. Zamparelli

8.7. VLT-MAN-PECS for Users, Administrators, Application
Developers and PECS Developers, 1, 30-11-00. A. Huxley

9.8. ALMA-SW-0008,5, 2001-06-06, ALMA Software Documentation
Standard, A.Bridger

10.9. ALMA-SW-0012, 1, ALMA Software and Hardware Standards,
M. Zamparelli

11.10. VLT-MAN-ESO-17200-0780, 1.3, 2001-04-23, Configuration
Management Module User Manual

12.11. ALMA-SW-0009, 3, 2001-06-06, C Coding Standards, A.
Bridger, M. Brooks, J. Pisano

13.12. ALMA-SW-0010, 4, 2001-06-11, C++ Coding Standards, A.
Bridger, J.Pisano

14.13. ESO Action Remedy System: http://support.eso.org/ars/cgi-
bin/arweb

15.14. http://www.omg.org/gettingstarted/omg_idl.htm

16.15. Linux Installation manual TOBESPECIFIED

17.16. AcsMakefile manpages

18.17. http://www.alma.nrao.edu/development/computing/docs/index.
html

http://support.eso.org/ars/cgi-bin/arweb
http://support.eso.org/ars/cgi-bin/arweb
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.alma.nrao.edu/development/computing/docs/index.html
http://almaedm.tuc.nrao.edu/

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 8 o3635

19.18. Code Complete, Steve McConnel [1993]; Microsoft
Press,TOBESPECIFIED

19. CMM to CVS Transition Plan, ALMA-SW-XXXX, M.Zamparelli
(Technical Memo)

20. Agile Developmen in ALMA, Markus Völter (Technical Memo)

21. ALMAEDM, http://almaedm.tuc.nrao.edu/

22. ALMA Software Engineering webpage. http://www.eso.org/projects/alma/develop/alma-
se/reference/IntegrationTools.html

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 9 o3535

2. Software Process

2.1 Goal

Several distinct tasks are necessary to deliver a software product, and a
methodology is needed to know who should be doing what, when and how in
order to reach the target.

Every software development group requires a reference scheme to achieve an
organized, controlled way of working. A framework specifying tasks, timelines,
methods, deliverables and exchange formats guides the developers towards their
goal, and helps in pulling the group together.

To achieve this, a process inspired to the Unified Software Development
Process (UP), currently an industry mainstream methodology, will be used.

This process, defined in [6], divides the development effort into several phases,
to be carried out following an iterative improvement scheme. The UP It is based
on the Unified Modeling Language (UML) which provides a standard way to
visualize, specify, construct, document and communicate the artifacts of a
software system design and architecture (more on UML can be found in [2]).

The software life cycle as defined in the UP is divided into 4 Phases (the first
iteration of Inception is done only once). The end of each phase is marked by a
milestone, when a certain set of artifacts are made available by the project
developers: some are new, some are artifacts from previous milestones which
are enriched with a deeper level of detail or a broader coverage. For a list of
artifacts see Appendix A. The milestones are properly addressed in [6], and can
be summarized in the following table:

Phase
Milestone/
Document
Name

Purpose

First
Inception

Software
Requirements Understand the basic requirements of the system to be

developed.

Inception Preliminary
Design

• Define system scope, i.e. it has to identify what is inside
and what is outside the system. The basic interfaces
between the system and the Actors are sketched and they
fit with what is provided or foreseen for the Actors.

• Identify an architecture that can implement the
requirements expressed for the system. The high level
internal structure of the system is defined in a realistic
way.

• Identify and mitigate the risks critical to the successful
implementation of the system. Risks can come from
many technical and non-technical areas.

ALMA ALMA Software Engineering Practices

Revision: 2

Elaboration Critical Design

Identify a robust and resilient architecture baseline

Identify and mitigate major risks

Support with a proper project plan a realist estimate of
schedule, cost and quality.

The Critical Design Review must demonstrate that these
objectives have been reached and the stakeholders officially
accept the proposed architecture. On the other side, the
organization responsible for the development finally commits
itself in delivering the product with the agreed features and
within the agreed budget and planning forecasts.

This milestone is the no-return point in the project and all
major risks must have been investigated.

Construction Preliminary
Acceptance

actually build the systemConstruction of the system..

The System Delivery milestone marks the end of the
Construction Phase and shall demonstrate that the system has
reached a level of product capability suitable for initial
operation in the final environment.

In the first iteration, the system still contains bugs and
imperfections, but can be used.
Page 10 o3635

Transition Commissioning make the system ready for unrestricted release to the development or
user community.

It has to be pointed out that not all of these milestones need to correspond to
resource-intensive formal reviews, in most cases an update of previous
artifacts will suffice. Notice also that the basic activities (core workflows) of
requirement capturing, analysis, design, implementation and testing are
found, with different emphasis, in each phase.

No methodology is mandated as to how to get from the deliverables of one
phase those of the next.

The end of a cycle is marked by a release. The number of releases per year
planned for the ALMA software system is specified in [3]. Each release will
have a running number or label identifying it, in the form :

This numbering scheme is meant to easily identify whether a release
represents a major change (interface or design document change), a minor
change (extension of functionality according to planned design) or a patch
due to the necessity to correct a software error.

Prior to each release, a particular person or group will be assigned the
responsibility for the producing the release. This will entail certification of

Major.Minor.Patch

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 11 o3635

the testing (see [11]) and review of the documentation to assess its quality
and sufficiency. More on the release procedure can be found in chapter 10.

2.2 Scope

All software subsystems in ALMA.

2.3 Applicability

Phase 1 and Phase 2.

2.4 Procedures and Tools

To engineer a model of the system, ALMA software designers are entitled
to use any drawing tool or UML tool. The use of will use the tool Rational
Rose (. It will be mmade available at all ALMA development sites) is
encouraged since it provides the broadest range of model verification
possibilities. Any similar tool generating artifacts in a mainstream format
(XMI) is accepted.

The document: [6] is currently in preparation for submission as draft and
describes a set of tools to facilitate the creation and handling of printed and
online documentation necessary for the various milestones.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 12 o3535

3. Document Reviews

3.1 Goal

Explicit agreement in certain technical areas or on some procedural issues is
required before programming activities start in earnest.

Therefore a system of formal reviews for ALMA software documents will
be set up and applied systematically. This will force the software team to
reach agreement before development occurs. The purpose is also to achieve
a sufficient level of discussion for all those topics, which are relevant
enough to the software development or maintenance.

Though large review boards usually imply long discussions or hot debates,
they also ensure that key information is properly disseminated to a
significant sample of the concerned parties.

Updates to existing documents do not need to be formally reviewed if the
changes are minor (for example, formatting) and the SPR system described
in chapter 8 can be used to keep track of these changes. Unless they contain
proprietary or otherwise confidential information, all documents are to be
made publicly available.

3.2 Scope

All Computing Memos (see 4), released by the ALMA computing group for
internal or external usage are subject to formal review processes specified in
[67] and made available online.

All documents, which may be given to outside companies for contractual
ends will have to be signed by the appropriate authority.

3.3 Applicability

Phase 1 and Phase 2

3.4 Procedures and Tools

A simple tool can be engineered, which sorts comments according to
originator and page number in order to make collection easier.

The document review procedure is contained in [67].

ALMA ALMA Software Engineering Practices

Revision: 2

4. Document Formats, Templates and Numbering Scheme

4.1 Goal

All documents issued by the ALMA Computing group must follow similar
layout and stylistic conventions. It must be possible and easy to identify and
exchange documents among the various ALMA sites and institutions.

The ALMA Software Management has adopted Microsoft Word as the
format for its documentation. Other tools capable to truly interoperate with
this format may also be used. The choice, while controversial, is motivated
by the large availability of the product, the wealth of third-party add-ons
and its expected long term availability on the market.

The ALMA Software Management has adopted a general layout for all
documents concerning software or software activities. The layout is
accompanied by a template for Microsoft Word.

As specified in [89], the document will have a label of the form:

where NNNN is a running number provided by the ALMA Software
Management. Most software documents will be sorted into one of the

 ALMA-SW-NNNN
Page 13 o3535

following main categories:

• Computing Memos: documents that have been approved by all
concerned members of the ALMA project's Computing Division. While
anyone may submit a general ALMA memo, only memos that follow
the review procedures described in [3] will be considered to represent
the technical consensus or policy of the group

• Technical Memo: informal technical reports with limited scope, which
are not likely to change in time.

In addition to this, several kinds of documents are produced during the
software life cycle and are bound to a specific subsystem release: User
Manuals, Installation Manuals, Interface Control Documents, Test
Procedures; most of them will be part of the deliverables for the various
milestones at subsystem level.

The interfaces of subsystems will be represented by Application
Programming Interface (API) documents. These documents will contain
information generated from heavily annotated source code interface files
(e.g. *.h or *.java files) and are not supposed to follow the standards
specified in [89] nor the review of [67]. Instead, they are meant to be
periodically regenerated whenever the source code changes. Tools have
been purchased which roughly measure the sufficiency of such
documentation for C++ and Java programming languages.

With the exception of the code extracted documentation, all documents will
comply to the standard defined in [89] and will be either made available on

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 14 o3635

the web (isee Appendix C) or inn the a designated yet to be selected
document management system (21). In either case previous releases of each
document plus the minutes of the review meetings will be available.

4.2 Scope

All documents created by the ALMA Computing Group.

4.3 Applicability

Phase 2

4.4 Procedures and Tools

The ALMA Software documentation standard is specified in [89].

There is currently noThe officially defined ALMA or ALMA-SW
documentation or product documentation archive for storage, and retrieval
can be found in (21) and has the following features:. Such a system will
have to:

• allow reliable access from geographically dispersed locations

• be web based with minimum amount of client side dedicated code

• allow document workflow, with e-mail messaging to author, reviewers
and management for each document state change

• allow grouping of documentation in areas protected by suitable access
control lists and authentication mechanism.

Such a system is currently being selected among various industry-standard
candidates. The product Forum from PTC has been recently selected. In the
meantime dDocuments archived so far have been are stored in [1718],
where a librarian ensures they are in the correct format, adds the minutes of
the reviews, and ensures they are up-to-date.

The document extraction tool currently in use is doxygen.

5. Interface Control

5.1 Goal

Interface Control documents specify the interchange between two or more
software systems. Due to their importance, they must be subject to special
control, in order to avoid arbitrary change by responsible of individual
software packages or subsystems.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 15 o3635

Interface documents will be specified using IDL (Interface Definition
Language) whenever possible and will be initially defined following a
formal review process as specified in [67]. Other information as data
formats or reference to external tools may also be needed.

Subsequent changes will be discussed using the SPR system explained in
chapter 11.

Interfaces between hardware and software subsystems will be administered
directly by the ALMA System Engineering Group.

5.2 Scope

All interfaces for all software modules developed in parallel.

5.3 Applicability

Phase 2

5.4 Procedures and Tools

The IDL specifications can be found in [5] or in [1415].

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 16 o3535

6. Development Environment

6.1 Goal

The software/hardware environment used by ALMA software developers must
be as similar and homogeneous as possible. This is crucial to the project’s
success all the more if one considers ALMA’s geographical dispersion. It
concerns not only operating systems and tools in the developer’s workbench,
also generic middle layer or third party software are involved.

To achieve this goal, the usage of the ALMA Common Software (ACS), of the
Pluggable Environment Contribution System (PECS)) and of the acsMakefile
is mandatory.

The ACS has been designed to provide the communication layer between the
majority of user applications needed for the ALMA software system.
Applications utilizing the ACS are guaranteed to have a common messaging,
event notification and logging system, just to mention a few.

Furthermore, ACS provides:

1. detailed OS installation manual, covering step by step an installation from
scratch, up to partition layout, kernel tuning etc. etc.

2. software toolbox needed for development, with compilers, editors,
debuggers. A single project compiler for instance, is needed in order to
ensure maximum build stability.

3. the acsMakefile, an extension of the GNU makefile allowing a clear
separation between system wide rules and settings and the specifics of a
module’s build procedure.

4.PECS, a complex but extremely versatile system to harmonize two or more
applications and their required environment variables at default, system, and
user level. It allows for instance the addition of a new application system
wide, by simply adding files to a directory, without need of modification of
system wide files.

It has to be pointed out that though delivered together, the ACS library and the
set of tools and workbench for software development are two separate entities.

The Software Engineering group of ALMA Computing will gradually take over
from ACS the responsibility of choosing and maintaining the abovementioned
tools and OS.

6.2 Scope

The ACS covers software tools running mostly on Unix systems and VxWorks,
the only exception being IDEs for Java, which run on Windows.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 17 o3635

6.3 Applicability

Phase 1 & Phase 2

6.4 Procedures and Tools

The ACS comes with the so-called ACS Standard Environment. This
influences developers’ activities in a variety of ways, but most notably
through the following environment variables:

$MODROOT the development area where you are now working

$INTROOT the integration area currently in use

$ACSROOT the ACS SW root currently in use

The hierarchy in using files is: development area, integration area, system areaand
is obtained using the following search paths:

commands $MODROOT/bin $INTROOT/bin $ACSROOT/bin

include files $MODROOT/include $INTROOT/include $ACSROOT/include

libxxx.a: $MODROOT/lib $INTROOT/lib $ACSROOT/lib

CLASSPATH $MODROOT/lib $INTROOT/lib $ACSROOT/lib

 The ACS also provides standard templates for directories, makefiles and C++
header files.

The development tools contained in the ACS toolbox are listed in the
release notes for each release.

The ALMA Software Management will decide the OS release the ACS will
have to be ported to. It is anticipated that the ACS will lag behind the latest
release for a specific OS, until the latter has achieved the desired amount of
stability. In a similar way, the latest version of any tool will not be adopted
by the ACS until it has reached sufficient guarantees of stability in the
software community. OS installation manuals for ACS can be found in
[1516]

The ALMA Software Management shall be notified should some requested
functionality not be available in the ACS.

More info on the acsMakefile can be found in [1617].

A detailed description of PECS and its raison d’être can be found in: [8].

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 18 o3535

7. Integration Environment

7.1 Goal

An integration of all modules, packages and subsystem composing the
ALMA software system will have to be carried out periodically. It is
necessary that this task be automated as much as possible.

Each institution contributing to the ALMA Software effort will have
integration responsibility for the subsystem, package or module it produces.
This means to allocate enough manpower and hardware resources to this
end (dedicated integration machines). The Integration and Test group will
assume opportunity and the extent of a centralized integration responsibility,
and promote or at least of a strong coordination among subsystems in
integration issues.

will have to be assessed during Phase 2.

It’s important to realize that the integration for the purely data processing
part and for the hardware-coupled control system follow different
guidelines.

The integrators will carry out following steps:

�verification
that all

development
code

compiles and
links

successfully
(anything
additional

for
CORBA????

)

I1

�verification that all development code compiles and
links successfully

�I2
verification

of the
adoption of
approved

coding
standards

(see chapter

verification of the adoption of approved coding
standards (see chapter 8)

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 19 o3535

8)

�

�I3analysis
of test

coverage for
each module,

using a
suitable tool.

�exercise unit testing to verify whether the test suite
specified by the developer are executed successfully.

�I4
exercise unit

testing to
verify

whether the
test suite

specified by
the

developer
are executed
successfully.

�analysis of test coverage for each module, using a
suitable tool.

�I5run–time
checking
against
memory
leaks and
boundary
violations

using
suitable
tools.

� run–time checking against memory leaks and
boundary violations using suitable tools.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 20 o3635

� �

The integration shall be carried on a monthly basis. Every first of the month
releases by the various subsystems will have to be made available to the
Integration and Test group. This will happen in addition to the release
schedule outlined in The frequency and depth of the integration process
must be chosen by the ALMA Software Management and should respect the
importance or critical role of the various subsystems. Regional competence
centers for the integration of the various subsystems will be established.

7.2 Scope

All software subsystems

7.3 Applicability

Phase 2

7.4 Procedures and Tools

A tool to be used for checking memory leaks will be made available for
developers at all sites. An up-to-date table summarizing tools adoption for
the various development and integration phases can be found in: 22 Sites
with specific integration responsabilities will use Rational Purify for C++
and Sitraka Jprobe for Java. The majority of tools has still to be evaluated
and selected. Notice that subsystems are entitled to deviate from the
suggestions of Software Engineering, but the latter will only have sufficient
manpower to support one tool for each category/language/operating system.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 21 o3735

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 22 o3735

8. Coding Standards

8.1 Goal

ALMA software must be readable, easy to maintain and as least error prone
as possible. It will have to use official standards as much as possible.

To this purpose, coding standards will be applied systematically and a list
of general computing standards will be compiled and made available in
[910].

Coding standards range from proper code documentation to file naming
conventions and in general help in preventing a certain category of software
bugs. They do not address specific implementation details like algorithms or
programming methodologies.

The application of coding standards is deemed crucial to any modern
software undertaking.

8.2 Scope

Coding standards have been approved and are applicable for the languages
C and C++ and may be found in [1112] and [1213]. The opportunity to
mandate Coding standards for other languages are planned as well (IDL,
Java, Python). is currently open to debate.

8.3 Applicability:

 Phase2

8.4 Procedures and Tools

Applicable standards are defined in: (11) and (12).

SA suitable tools to verify their adoption has to bebeen selected and are
currently being phased in (Codewizard and JTest). Such a tools will be
made available both to software developers and integrators, it will have to
be executable in batch mode and provide clearly readable reports. The tools
will be first used in a centralized way as Quality Control, and then
distributed to the SDT as appropriate. Possibilities range between all out
commercial packages and GNU based public domain tools whose
configuration would have to be maintained in house.

General computing standards will be described in: (9)

 currently in preparation.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 23 o3735

9. Code Inspections

9.1 Goal

Adoption of approved coding standards must be periodically monitored and
the results of this monitoring process must be made available to developers
and management.

This can be achieved by inspections of the code (“code copping”). Both
manual (human) and automatic inspections are possible, though it's
important to recognize the limitations and the costs of both. Source code
will be subject to periodic scrutiny (at package level) by suitable software
tools (see 8.4) which will rate the code according to compliance to
predefined guidelines.

Note that code inspection is not meant primarily to detect faults, but merely
to check the programming style.

Furthermore, to achieve a certain homogeneity within the ALMA
Computing group, to promote similar techniques and methodologies and
facilitate re-tasking of human resources, the ALMA SW board will
 promote periodic cross inspections of code by developers. Inspections
will not be carried out for each release nor for each software subsystem.

Management may decide that human inspections are mandatory for certain
packages of special relevance or for those code segments which exhibit a
remarkably high algorithmic complexity.

9.2 Scope:

Inspections will not cover the design or the interface parts, but will be
applied mostly to source code or to testing code.

9.3 Applicability :

 Phase 2

9.4 Procedures and Tools

Coding standards/Best practices adoption tools are mentioned in See 8.4.
Also, tools measuring McCabe cyclomatic complexity have been purchased
and are being phased in. This measure, together with other industry standard
metrics is going to be used merely as a maintenance tool, to determine for
instance which software modules are more prone to exhibit faulty
behaviour, and should therefore be tested more thoroughly.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 24 o3735

10. Configuration Management

10.1 Goal

Software produced by the ALMA Computing group must be stored in a
centralized archive and accessible by each group member. It must be
possible to track and identify previous system configurations.

A Configuration Management tool must be adopted to this end.

Configuration Management “is the discipline of identifying the
configuration of a system at discrete points in time for purposes of
systematically controlling changes to this configuration and maintaining the
integrity and traceability of this configuration throughout the system life
cycle”. 1

Software developers use a Configuration Management tool to baseline
configurations, prepare releases and to deal with synchronous update of
items. For release preparation in particular, code freezing or “tagging” is
required i.e. a simple notification by the subsystem responsible, that a
certain version of the corresponding module has achieved its planned
objectives and may be taken from the repository for the release.

The Configuration Management tool for ALMA must enable:

• identification of items

�strict locking mechanism

• traceability of changes (who did what, when)

• accessibility of previous configurations for any item

10.2 Scope

 Both source code and documentation will be subject to strict version
control, though in principle, two different software tools may be used.

10.3 Applicability

 Phase 1 and Phase 2

10.4 Procedures and Tools

Developers using Configuration Management will adopt the following
minimal set of rules:

1 Technical Report CMU/SEI-99-TR-004

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 25 o3735

• Each module shall have one responsible person, who will be entitled to
delegate activities on the module but shall retain responsibility at all
times.

• items should be locked for the minimum period of time consistent with
completing the work required

• source code should be checked in after verification that it does not break
the build

• descriptive, non-empty comments are required for each file/module on
check in. They must be complete and readable, making reference to
SPR calls (see section 12) when applicable, avoiding “standard”
phraseology like “fixed typo” or “fixed bug”

�The system chose for Phase 2 is CVS (Concurrent Version system) a
public domain tool which has been available for many years and offers
sufficient guarantees of reliability and stability. comments will be
entered both at module level in the Changelog file, and at file level in
the header part.

As of this writing the system under evaluation is CMM with The a source
and documentation repository has been set up at the ESO facilities. It
requires a one-sentence comment when checking in a module.

Such repository will have to guarantee a high level of fault tolerance and
availability. Duplication of repositories to be used in case of network
outage is currently not foreseen. The current system will undergo a review
in accordance to plan [4].

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 26 o3735

11. Testing

11.1 Goal

The amount of software faults or incorrect behaviours in the ALMA
software system must be kept to a minimum and the system must be
validated, i.e. it must be guaranteed that it is working according to its
specifications, prior to Final Acceptance Test.

The application of a consistent testing scheme and the diffusion of a “testing
culture” will help to achieve this goal.

Although the developer is encouraged to delegate test code writing to
someone else, it is his/her final responsibility to make sure that his/her
module has achieved a sufficient degree of testing. Scripting languages are
deemed practical for writing test code since they attain the necessary
simplicity, but in general no specific language is mandated.

A formal testing scheme will be adopted to ensure developers check-in only
modules, which have been previously tested. During integration (see section
7), software subsystems may be rejected if they do not provide sufficient
testing certification.

Developers are required to start working on their test suites as a result of
design, prior to implementation. The responsible for each software
subsystem will make sure that two types of regression tests are performed:

• Unit tests: the smallest compilable unit is tested under
isolation. If needed, the behaviour of other code units
interacting with the unit under test will be mimicked by
building stubs.

• System tests: the system (or subsystem) as a whole is tested
against its functional specifications

For exact definitions of regression, unit, black box and functional tests see
[1] and [1819].

11.2 Scope

All source code. Currently, no executable UML models will be used, so no
design will be “tested”.

11.3 Applicability

Phase 2

11.4 Procedures and Tools

Agreement will have to be reached on:

• language to use

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 27 o3735

• directory names for test code, test code names for unit and functional
tests

• testing environment to be used, giving the developers the freedom to
express all initial conditions and testing requirements they might have

The configuration specification and the testing code will be used by
appropriate integration groups for integration activities.

Additional testing guidelines will be provided either in terms of a separate
ALMA document or as reference to well established testing literature.

In order to determine the amount of code coverage of each test suite
and thus its sensibility an appropriate tool will be distributed both to
developers and integration groups. There will have to be a tool for
Unix and one for the real time OS.

The TAT tool, which comes along with the ACS shall be used as an interim
solution.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 28 o3735

12. Change Management

12.1 Goal

Keeping track of faults in software products whenever these are discovered
is of fundamental importance.

To this end, a Software Problem Report (SPR) has been put in place for the
ALMA Computing Group. It is based on Action Remedy, located and
maintained via a Web interface at the ESO premises. The SPR system asks
its user to provide the application field plus all configuration management
specific information necessary for developers to reproduce the incorrect
behaviour or fault. The latter includes the specification of the concerned
software subsystem.

An ALMA SPR Board will convene periodically to address, prioritize and
task all new calls. At the end of each such meeting, every new SPR will
have been either closed (as mistaken or already solved) or assigned to
somebody to be implemented for a certain release or milestone.

Is it suggested to follow a zero based planning for handling the SPRs:
following each major release an additional ALMA SPR Board will convene
to assess the situation of all those calls which are still in progress, to
rediscuss their priority and importance.

The SPR system is meant to be used to raise the attention on issues of
limited scope with immediate impact on daily work. All other issues, like
long term strategy changes are outside of its scope.

The workflow for an SPR call is briefly: open, in progress or closed. Each
closed SPR has an additional label (closed status) specifying if it was:
solved (a solution has been put in place), clarified (a misunderstanding or
dispute about documentation) or rejected (the SPR has no basis to exist). A
notification is sent by e-mail to the SPR originator plus all those listed as
Carbon Copy for the package, whenever a status change takes place.

The SPR system constitutes the main mechanism for feedback from the
users community during ALMA’s operational lifetime.

12.2 Scope

Software and documentation

12.3 Applicability

Phase 1 and Phase 2

12.4 Procedures and Tools

The SPR system is available in: [1314].

G.Chiozzi
GFI: How is warrantied traceability between User Requirements \(SoW,….\) and Use Cases?
GCH REPLY: In principle Use Cases become the new User Requirements once written for the first time, and the SoW and other documents are no any more important. Stakeholders have to approve the Use Cases. Some books anyway suggest a traceability matrix from SoW to Use Cases. This is probably a good solution.

G.Chiozzi
GFI: Add more detailes and examples, pointing to ATCS doc

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 29 o3735

12.5

G.Chiozzi
RKA: We have discussed of how CDTs should look like: we should use OCL (Object Constraint Language). Some description should be added here.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 30 o3735

Appendix A. Deliverables for the Software Process
This Appendix assumes familiarity with UML and the Use-Case concepts.
Notice that in general the deliverables for one phase also contain the
deliverables of the previous phase in a refined, up-to-date or more detailed
version.

A.1. Software Requirements Review

Deliverables:

Glossary and overall system description. A general description of the system
to be developed and a glossary with the definition of the terms used. They must
create a common background between all stakeholders and team members and
avoid misunderstanding. If the domain of the project is not well known domain
analysis should be done and a domain model produced.

System Context Diagram. The context diagram shows the system under design
as a black box and all the Actors that interact with the system.

Actors. A description of all the entities interacting with the system. Primary
Actors are the users of the system (not necessarily human, also other software
systems). Secondary Actors are all the sub-systems that are part of the system
and that have to be controlled by software or that are needed to fulfill the
requirements (like a Time Reference System, that is necessary to satisfy time
precision requirements).

Use Case Model. All the Use Cases are derived from the user requirements and
from higher level documents. The development team is responsible for writing
the Use Cases based on whatever information is initially provided by the
stakeholders. When Use Cases have been inferred from the available initial
documentation they are discussed with the stakeholders and accordingly
modified. The language used to write the Use Cases is simple enough for the
stakeholders to understand it, but the process to obtain them requires technical
knowledge that only the development team can have.

When use cases have not been written, textual requirements information in form
of numbered lists will be provided.

General and non-functional requirements These requirements specify the
adoption of specific standards, hardware architectures, software libraries or
system performances, maintainability, extensibility and reliability. Some of
these requirements fit in the bodies of the Use Cases, but for most of them
specific document sections have to be written, imposed by project standards and
by contour constraints.

Risk assessment. A first basic analysis of the areas of major risks in the project.

A.2. Design Preliminary Review

Purpose

Preliminary Design is aimed at defining the system scope, identify the
architecture and the risks involved in the system.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 31 o3735

The Preliminary Design Review has to demonstrate that all these objectives
have been reached and that it is feasible for the team to proceed with the project,
i.e. the team has the technical capabilities to implement the proposed
architecture.

A successful Preliminary Design Review also demonstrates that the stakeholders
agree on the requirements identified and on the objectives stated. They give
their agreement to proceed with the next phase.

Deliverables:

All deliverables of the previous phase must be reviewed and detailed.

Package Documentation consisting of:

• Package Description. A textual description of the package, following a
predefined template

• Package Class Diagram. A first Class Diagram where every package is just
represented by a class. It allows representing the basic relations between the
packages

• Package Use Case Diagram. It shows all Use Cases that are responsibility
of the package and the relations with Actors.

Interfaces. There must be one ICD sub-section per Actor. Every ICD is
subdivided in Interfaces, where every Interface describes a small number of
Operations that are highly internally coherent and loosely coupled with other
interfaces.

The ICD sections are used to extract the ICD documents for not already
implemented/existing Actors and to check the already implemented interfaces
with the existing Actors.

It has to be ensured that all the needed Interfaces are specified. As soon as more
detailed information are available the ICDs are updated.

No IDL files are expected for preliminary design.

Deployment Diagram and Process view. The Deployment Diagram is a
Structural Diagram. It shows a set of nodes and their relationships. This diagram
is used to show the static deployment view of the architecture, i.e. the allocation
of processes, as identified in the packages, to the processing nodes in the
physical design of the system. It is essential to be able to perform a performance
analysis.

Performance Analysis. It is essential for PDR to demonstrate that a reasonable
estimation of the performances required is available and that they can be met
with the available HW. This has been done through a table with
processes/packages allocated to HW:

• CPU power/budget

• Estimated CPU consumption of SW, based on experience or previous
projects

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 32 o3735

Prototypes. If applicable, a prototype of user interface will be provided

Testing Specifications: Definition of test environments and simulation
conditions for software to be integrated during the various releases.

Design of critical Use Cases: For the most important and/or complex Use
Cases it is necessary to provide more details, and in particular it is necessary to
demonstrate how the proposed system design is going to allow the
implementation of the Use Cases.

For this purpose some behavioral diagrams can be used:

• Activity diagrams. An activity diagram shows the flow from activity to
activity within a system (and in particular for what concerns a specific Use
Case). The diagram is especially important in modeling the function of a
system and emphasizes the flow of control among sub-systems or, going to
higher design details, objects.

• Interaction (Collaboration and Sequence) Diagrams. These diagrams are
essential to model the dynamic aspects of a system. An interaction diagram
shows an interaction, consisting of a set of objects (at our design level, sub-
systems) and their relationships, including the messages that may be
dispatched among them. The Sequence Diagram emphasizes the time
ordering of messages. The Collaboration Diagram emphasizes the structural
organization of the objects that send and receive messages.

• State Diagrams. State Diagrams show a state machine, consisting of states,
transitions, events and activities. They are particularly important in
modeling the behavior of an interface, class and collaboration. They
emphasize the event-ordered behavior of an object, which is especially
useful in modeling reactive systems.

Though these diagrams are suggested, this list is not exhaustive and other types
of interaction diagrams may be used to complement or as alternative.

Planning for the PDR documentation kit a planning has to be provided,
showing planned dates for Milestones, description of the purpose of each
milestone plus deliverables. The planning activity is described in more detail in
a separate managerial document outlining the specifics of subsystems
development.

An essential part of the planning activity consists also in assigning a priority
level to all Use Cases or eventually to Use Cases sub-flows, i.e. to scenarios.
The content of a release and of iteration in the Construction Phase is actually
determined by identifying which Use Cases (or scenarios) will have to be
implemented, based on their priority.

This will be formalized in the planning delivered for CDR, that has to contain a
mapping of all Use Cases associated to any release, to allow formal tracing.

The System Design Description document contains also ALL information that is
part of the Requirements Specification. Readers interested only in requirements

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 33 o3735

should get this last document. Readers interested also in more details and in the
system architecture need to get only the System Design Description.

A.3. Critical Design Review

Deliverables

During the whole Elaboration Phase the team works on the items already
delivered for the Preliminary Design Review, adding new details.

It is very important in this phase to develop prototypes to verify the proposed
architecture and to analyze the major risks. The prototypes also help in
estimating the time and resources necessary for the implementation, in particular
when no historical data coming from previous projects are available.

Building prototypes as complete as possible in terms of control electronics and
including a number of hardware components is considered very critical. These
prototypes are used in the elaboration phase to assess the proposed architecture
and verify that critical requirements can be satisfied.

During this phase, most of the time is used in the Analysis and Design work-
flows to build the architecture of the packages

The basic analysis classes of a package are obtained from the step by step
analysis of all the Use Cases under the responsibility of the package itself.

These analysis classes always fit in one of the following basic three categories:

Boundary classes A boundary class is used to model the interaction between
the package and the Actors, i.e. an exchange of information or of action requests
between the package and the Actors or other packages in the system.A change
in an interface is usually isolated in one or more boundary classes.In every
packages there is typically one boundary class per every Actor interacting with
it. It implements all interactions identified in the Use Cases assigned to the
package.

Entity classes An entity class holds information that typically lasts beyond the
life of a Use Case. Entity classes are identified by:

• Finding from each Use Case description the information-bearing objects

• Finding them from the problem domain

• Finding them from the original requirement documents

Only classes needed in some Use Case must be introduced. One has to begin the
search in the Use Cases and use the other sources to confirm the choice and
structure of the classes identified.

Control classes A control class represents coordination, sequencing,
transactions and control of other objects. The dynamics of the system are
modeled by control classes. There is typically a control class per each Use Case,
although simple Use Cases may not need a control class.

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 34 o3735

A.4. Preliminary Acceptance Review

Purpose:

In the Construction Phase, the emphasis shifts from the accumulation of the
knowledge necessary to build the system to its actual construction

Deliverables:

Executable System: the set of binary executable files for the appropriate
Operating System as extracted and build from the repository, when released.

List of implemented Use Cases for each Package.

Test Cases for each Package. Each package will be tested independently.
Black box testing is based on Use Cases. Scenarios are used to produce Test
Cases. Stubs replace external packages. Open box test is based on Class Tests.
Test Cases for system integration are obtained from the Use Cases.

The prototype developed for the Elaboration phase becomes now a "Control
Model" and used for modular testing of subsystem packages (that need to have
access to specific electronic or hardware components) and for integration
testing. Code is organized in modules where each contains a regression test that
can be run in an autonomous and automatic way.

Component diagrams are created, which derive from the package and class
diagrams and map directly to implementation units.

If detailed design affects the system and high level design the corresponding
documentation has to be updated.

The code documentation is integrated in the online documentation to have a
complete reference available. In particular they are linked to the component
diagrams.

A.5. Final Acceptance Test

The only area that needs changes to be properly integrated in the Use
Case driven process is the definition of the Test Cases. Test Cases for
final acceptance are directly extracted from the Use Cases. This is needed
in order to meet the objective of tracing requirements through the whole
process down to final acceptance test by using Use Cases. All test
procedures must be fully automatic or, when this is not possible, based on
a detailed checklist.

Purpose:

The purpose of the Transition Phase is to make the system ready for unrestricted
release to the user community.

Deliverables:

mailto:vltmgr@eso.org
mailto:remedy@eso.org

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 35 o3735

External release of final system.

Acceptance Test procedure reports

Final user and maintenance documentation. Use Cases can be extremely
valuable for writing maintenance and user documentation

mailto:alma-sw-workers@nrao.edu
mailto:alma-sw-announce@nrao.edu
mailto:alma-sw-practices@nrao.edu
mailto:alma-sw-common@nrao.edu

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 36 o3735

Appendix B. List of supported Third-Party Software Tools

Type Name Licence Info Point

of
Contact

Status

Word
Processor

Microsoft
Word 97

OEM

local in use

Software
Modeling Tool

Rational
Rose

alma-sw-semgr@eso.org local in use

Configuration
Management

CMM inernal ESO ESO in use

Software
documentation
extractor

Doxygen GPL local in use

Fault
Reporting
System

Action
Remedy

remedy@eso.org ESO in use

ALMA ALMA Software Engineering Practices

Revision: 2
 Page 37 o3735

Appendix C. Information Technology Support
The following mailing lists have been put in place for the ALMA Computing Group.
Searchable email archives of all lists will be made available on the web.

Listname Meaning

alma-sw-workers@nrao.edu everybody active in software development

alma-sw-announce@nrao.edu everybody interested in new draft documents
available for review

alma-sw-practices@nrao.edu everybody concerned with Software
Engineering Practices

alma-sw-common@nrao.edu everybody concerned with ALMA Common
Software

The following WWW Addresses are used by the ALMA Computing Group:

 drafts repository

http://www.alma.nrao.edu/development/computing/docs/m
emos/index.html

reviewed documents repository

	Introduction
	Scope
	Structure
	Glossary
	References

	Software Process
	Goal
	Scope
	Applicability
	Procedures and Tools

	Document Reviews
	Goal
	Scope
	Applicability
	Procedures and Tools

	Document Formats, Templates and Numbering Scheme
	Goal
	Scope
	Applicability
	Procedures and Tools

	Interface Control
	Goal
	Scope
	Applicability
	Procedures and Tools

	Development Environment
	Goal
	Scope
	Applicability
	Procedures and Tools

	Integration Environment
	Goal
	Scope
	Applicability
	Procedures and Tools

	Coding Standards
	Goal
	Scope
	Applicability:
	Procedures and Tools

	Code Inspections
	Goal
	Scope:
	Applicability :
	Procedures and Tools

	Configuration Management
	Goal
	Scope
	Applicability
	Procedures and Tools

	Testing
	Goal
	Scope
	Applicability
	Procedures and Tools

	Change Management
	Goal
	Scope
	Applicability
	Procedures and Tools

