

Atacama
Large
Millimeter
Array

ALMA-SW-
NNNN

Revision: 0

2001-08-02

Initial Software Analysis

Software analysis

P. Grosbol, J. Schwarz (jschwarz@eso.org), R. Warmels
European Southern Observatory

G. Harris
National Radio Astronomy Observatory

D. Muders
Max-Planck-Institut für Radioastronomie

R. Lucas (SSR Consultant)
Institut de RadioAstronomie Millimétrique
Keywords: ALMA, software
Released by: Signature:

Institute: Date:
Approved by: Signature:

Institute: Date:
Author Signature: Date:

mailto:jschwarz@eso.org)

ALMA Initial Software Analysis

Created: 08/02/01 Page 2 of 84

Change Record
DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION

REMARKS
2001-02-22 J. Schwarz et al. All 0
For comments at Grenoble SSR meeting, 1-2 March, 2001
2001-04-12 PG & JS Many 0.1
Incorporate SSR comments
2001-05-18 J. Schwarz 0.2
For circulation to ALMA s/w workers & SSR for comments
2001-08-02 J. Schwarz All; document reorganized 0.3
Version for review

ALMA Initial Software Analysis

Created: 08/02/01 Page 3 of 84

Table of Contents

Change Record ...1

Change Record ...2

1 Analysis: Purpose & Content ...7

1.1 Purpose ...7

1.2 Analysis: Method & History ..7

1.3 ALMA Use Case Roadmap..9

1.3.1 Actors ...9

1.4 Observe With ALMA Use Case...11

2 Analysis Classes and Packages ..13

2.1 Observing Tool Package ..13

2.1.1 Observing Program Specification Package ..13

2.1.2 Observing Template Package...14

2.1.3 Simulator Package..14

2.1.4 Correlator Package ...14

2.2 Observing Program Administration Package...15

2.3 Observing Program Refereeing Package..15

2.4 Observing Project Package...15

2.5 Program Package..16

2.6 Scheduling Block Package ...16

2.7 SB Script Package ..17

2.8 Command Package...17

2.9 ALMA Executive Package...18

2.10 Resource Management Package...18

2.11 Submission Package...18

2.12 Scheduling Package..19

2.13 Script Execution Package..19

2.14 Online Calibration Package..20

2.15 Data Processing Service Package...20

ALMA Initial Software Analysis

Created: 08/02/01 Page 4 of 84

2.16 Supervised Image Pipeline Package...21

2.17 Science Archive System Package ..21

2.18 Archive Package...21

2.19 Catalog Package ...22

2.20 Repository Package ..22

2.21 System Administration and Management Package..22

2.22 Utility Package ...23

2.23 Internet Package ...23

2.24 Class lookup table ..23

2.25 Package Diagrams ..26

2.26 Class Diagrams/Hierarchies ...26

3 Use Case Realizations ..38

3.1 Initial Sequence Diagrams & Description..38

3.1.1 Create & Submit Observing Proposal ..38

3.1.2 Create & Submit Observing Program & SBs...41

3.1.3 Dispatch SBs ..44

3.1.4 Schedule SB ...46

3.1.5 Execute SB ...47

3.1.6 Observe Single Field ..50

3.1.7 ObservePointingCalibration ...52

3.1.8 ProcessData ..53

3.2 Proposal/Project Preparation Activity Lifecycle..55

3.2.1 Phase I Proposal Preparation State Diagram..56

3.2.2 Phase II Project Preparation ...56

3.3 Additional Sequence Diagrams..57

3.3.1 Sequence Diagram: Operate ALMA System ...57

3.3.2 Sequence Diagram: Manage ALMA Facility...60

3.3.3 Sequence Diagram: Administer Observing Program.......................................61

4 Error Conditions & Handling Matrix ...62

ALMA Initial Software Analysis

Created: 08/02/01 Page 5 of 84

5 Security considerations ..65

6 Architecture..66

6.1 Overall system flow ...66

6.2 Major services ..67

6.3 Deployment ..68

7 What now ?...69

8 Operational Issues ..70

9 Appendix: Revised Use Cases..71

9.1 Use Case: Operate ALMA System..71

9.2 Use Case: Manage ALMA Facility..74

9.3 Use Case: Administer Observing Programs...76

9.4 Use Case: Dispatch Scheduling Block ..77

9.5 Use Case: ScheduleSB (Revised)...79

9.6 Use Case: Execute Scheduling Block (Revised)...82

 Table of Figures

Figure 1-1: The Software Analysis Process ...7

Figure 1-2: ALMA Use Case Roadmap...11

Figure 1-3: Observe With ALMA..12

Figure 2-1: ALMA Logical Packages (Connections Illustrative Only)26

Figure 2-2: Observing Tool Class Diagram ...28

Figure 2-3: Observing Proposal Class Diagram...29

Figure 2-4: Observing Project Class Diagram ...30

Figure 2-5: Object Diagram for Galaxy Mosaicing Project ...31

Figure 2-6: Scheduling Block Class Diagram..32

Figure 2-7: Sequencer Class Diagram..33

Figure 2-8: Calibration Class Diagram ..34

Figure 2-9: Scheduler Class Diagram ..35

Figure 2-10: Pipeline Class Diagram ...36

ALMA Initial Software Analysis

Created: 08/02/01 Page 6 of 84

Figure 2-11: InfoServices Class Diagram ..37

Figure 3-1: Create & Submit Observing Proposal ...39

Figure 3-2: Create & Submit Observing Program & SBs..42

Figure 3-3: Dispatch SBs ...45

Figure 3-4: Schedule SB ..46

Figure 3-5: Execute SB ..48

Figure 3-6: Observe Single Field...50

Figure 3-7: Observe Pointing Calibration ...52

Figure 3-8: Process Science Data...53

Figure 3-9: Proposal/Project Preparation Activity Diagram..55

Figure 3-10: Operate ALMA System ...58

Figure 3-11: Manage ALMA Facility ..60

Figure 3-12: Administer Observing Program...61

Figure 6-1: ALMA Swimlane Diagram ...67

Figure 6-2: ALMA Deployment Nodes ...69

ALMA Initial Software Analysis

Created: 08/02/01 Page 7 of 84

1 Analysis: Purpose & Content

1.1 Purpose

“The Unified Software Development Process” (Jacobson, Booch & Rumbaugh, 1999) defines
software analysis as:

“A core workflow whose primary purpose is to analyze the requirements as described
in requirements capture by refining and structuring them. The purpose of doing this is
(1) to achieve a more precise understanding of the requirements, and (2) to achieve a
description of the requirements that is easy to maintain and that helps us give structure
to the system as a whole—including its architecture.”

1.2 Analysis: Method & History

The process of software analysis is shown in terms of the requirements it starts with and the
intermediate and final documents that it produces in the following figure.

Figure 1-1: The Software Analysis Process

The first step in the analysis was to examine the requirements and Use Cases produced by the
SSR and UC groups ("ALMA Software Science Requirements and Use Cases", Document
No. ALMA-SW-0011) to identify analysis classes and their responsibilities.

The derived initial list of classes was then grouped according to the main services
(Proposal/Program Preparation, Scheduling, Executing, Imaging & Archiving; see Chapter 2,
Analysis Classes and Packages). Initial class hierarchies (mainly for the observing objects;
similar to the hierarchy shown in the above report) were identified.

ALMA Initial Software Analysis

Created: 08/02/01 Page 8 of 84

The next step involved translating the most important Use Cases into UML Sequence
Diagrams. We decided to merge and rearrange some of the SSR Use Cases in order to
represent the major functionalities of the ALMA software system. Since Sequence Diagrams
show an explicit sequence of actions, we chose the "Observe Single Field" Use Case as an
example of the execution of a typical Scheduling Block. We thus arrived at the following list
of initial Sequence Diagrams (see Chapter 2, Diagrams & Descriptions):

• Create & Submit Observing Proposal

• Create & Submit Observing Program and Scheduling Blocks

• Schedule SB

• Dispatch SB (from a new Use Case, split off from the original Schedule SB)

• Execute SB

• Observe Single Field

• Process Data
The Sequence Diagrams are a representation of the steps in the basic course of the Use Cases
along a time line. The actions specified in the basic course are translated into messages
between instantiations of analysis classes. During the process of creating the Sequence
Diagrams, additional necessary Analysis Classes were identified. It became clear that an
overall Executive process was needed to manage the various services (Dispatcher, Scheduler,
Sequencer, Subarray Allocator, Pipeline, Error Monitor) that are needed to operate the
observatory, so an additional Use Case, "Operate ALMA System," and the corresponding
sequence diagram were generated. Similarly, a sequence diagram for the SSR's
"ObservePointingCalibration" Use Case was developed, mostly to show features that were
obscured in "ObserveSingleField". We then identified additional (mainly administrative)
software services that need to be present to operate the ALMA system. Use Cases and
Sequence Diagrams for "Manage ALMA Facility" and "Administer Observing Programs"
were developed (see Section 3.3, Additional Sequence Diagrams).

In addition, we found that significant implementation assumptions had made their way into
the original Use Cases, and that these were making it difficult for us to outline the features of
a system that would be adaptable to the requirements that would inevitably change (and that
in fact are currently changing) as the ALMA project matured. Accordingly, we rewrote the
Schedule SB, Execute SB and Dispatch SB Use Cases so that they would better reflect the
spirit of the requirements. These revised Use Cases will be found in Section 9, Appendix.

State / Activity diagrams for the major entity classes (Observing Project, Scheduling Block)
were developed to show the state changes as the classes / objects are passed through the
ALMA system during the proposal, approval, observation and data reduction phases (see
Section 2.2, State Diagrams).

The Sequence Diagrams were then used to identify relations between classes. These relations
are shown in Class Diagrams (see Section 2.26, Class Diagrams/Hierarchies), which depict
the dependencies of classes and the class hierarchies. We invented a number of superclasses
to simplify the system and group common classes.

To arrive at a modular system that allows distributing the future analysis, design and
prototyping work, the classes were grouped into Class Packages. The splitting was done such
that the number of interfaces between packages was minimized (see Chapter 2, Analysis

ALMA Initial Software Analysis

Created: 08/02/01 Page 9 of 84

Classes and Packages). This work is not complete.

Next we considered possible error conditions and handling as well as security on the level of
the current analysis software system. It turned out that there will be many layers of error
conditions that need to be handled differently (e.g. how far errors or warnings will be passed
up, logging and/or control activities). A matrix of possible high-level error conditions and
subsequent actions was created (see Chapter 4, Error Conditions & Handling Matrix).

1.3 ALMA Use Case Roadmap

The ALMA Use Case Roadmap shows the highest-level Use Cases that we have considered
in the software analysis. The first two, Manage ALMA Facility and Administer Observing
Programs, represent the indispensable administrative tasks needed to keep the observatory
running and the needs of the observers (namely, to have their programs reviewed and
executed) satisfied.

The Operate ALMA System Use Case covers the day-to-day operation of the ALMA array
and its associated computing infrastructure. Finally, the Observe With ALMA Use Case gives
a proposer’s/observer’s/archive researcher’s view of the system.

1.3.1 Actors

The stick figures shown on the borders of the Use Case diagrams are known as Actors.
Although they are anthropomorphic, Actors represent any external entities with which the
software system must interact, the most notable example of which is, of course, the ALMA
hardware.

The UML definition of an Actor is:

A coherent set of roles that users of use cases play when interacting with the use case.

One consequence of this is that the same person may appear as two or more different actors,
when he/she plays two or more roles. The same person, for example, may act as proposer,
observer, Staff Astronomer, Scientific (Archive) User and Reviewer.

The following table describes the Actors we have defined.

ALMA Initial Software Analysis

Created: 08/02/01 Page 10 of 84

Proposer A scientist applying for observing time on the ALMA facility. This person
has a deep understanding of the physical problem to be investigated through
the proposed observations but not necessarily of the details of aperture
synthesis and the ALMA instrument. The main objective of this actor is to
specify an observing proposal for ALMA

Referee May be either a scientist who can judge the scientific importance of
observing proposals or ALMA staff who can assess their technical
feasibility. The actor reviews a set of proposals and provides an evaluation
that can be used for the final ranking of all proposals.

Observer The person responsible for the detailed specification of an accepted
observing program, i.e., the full specification of Scheduling Blocks, their
dependencies and reduction requirements for all data obtained. The person
in the Observer role may well be identical to the Proposer but is not required
to be.

Scientific User The end user of data from ALMA. The User obtains the data either as
member of the team proposing the observations for which they were
acquired, or as a researcher who has retrieved a useful data set from Science
Archive.

Program
Administrator

The role is generally responsible for all tasks related the administration and
processing of observing programs. This includes general user support,
management of the review process, overview of the status of observing
programs, check of data quality, and preparation of data deliveries. As such,
this role may later be detailed into several more specific actors.

ALMA
Operator

Supervises the operations of ALMA. The Operator is responsible for the
smooth execution of Scheduling Blocks and oversees the performance of all
components.

ALMA
Administrator

Responsible for administrational tasks related to the general ALMA facility.
Such tasks may include making the long-term schedule for the array
configuration, arranging availability of staff and visits of observers, and
ensuring that maintenance action are planned and executed.

Technician Responsible for maintenance of ALMA Hardware, using tools provided by
the software system where necessary.

ALMA
Hardware

Antenna, receiver, correlator and related communications and electronic
hardware that is controlled by and from which data is acquired by the
software system.

ALMA Initial Software Analysis

Created: 08/02/01 Page 11 of 84

Technician
Observer

ScientificUser

ALMA_Hardware

ObserveWithALMA

Reviewer

Proposer

StaffAstronomer

ProgramAdministrator

OperateALMASystem

AdministerObservingPrograms

Operator

ALMA_AdministratorManageALMAFacility

Figure 1-2: ALMA Use Case Roadmap

1.4 Observe With ALMA Use Case

Most of our attention has been on the details of the Observe With ALMA Use Case, whose
lower-level Use Cases are shown in Figure 1-3. Each of these Use Cases appears either in the
Science Software Requirements or in the Appendix to this document. Note that some
“factoring” of the Use Cases has been done: ScheduleSB is used by DispatchSB (a situation
somewhat analogous to the inclusion of one file in another), and Retrieve Archived Data
extends Process Science Data in the sense that it represents an optional path through the latter
Use Case. The Observe Single Field Use Case is a special case of ExecuteSB.

ALMA Initial Software Analysis

Created: 08/02/01 Page 12 of 84

ProcessScienceData

Create&SubmitObservingProposal

Proposer Reviewer

ReviewObservingProposal

ALMA_Hardware

ObserveSingleField

ExecuteSB

is a special
case of--

ScientificUser

CreateObservingProgram&SBs

RetrieveArchivedData

Observer

DispatchSBs

ScheduleSB

<<include>>
Operator

Figure 1-3: Observe With ALMA

ALMA Initial Software Analysis

Created: 08/02/01 Page 13 of 84

2 Analysis Classes and Packages
This section lists and explains the purpose of the analysis classes used to satisfy the
requirements from the SSR Use Cases and the additional classes identified during the
analysis process. The list is organized according to the analysis class packages that we
developed. The purpose of class packages is the grouping of classes such that the interfaces
between packages are minimized. This modularizes the system and facilitates the distribution
of subsequent detailed analysis, design and prototyping tasks among several software groups.

Package discussion needs to be rewritten.

2.1 Observing Tool Package

2.1.1 Observing Program Specification Package
Class Name Description Responsibilities
ObservingTool Enables the user to prepare an

Observing Proposal and to
transform it into an Observing
Programme

know Observing Modes
know Observing Programmes
know SB repository
order Observing
Proposals/Programme

ObserverUI Provides the main GUI to the
Observing Tool to prepare and
Observing Proposal/Programme
or display Programme results

display results
forward input to Observing Tool

ALMA Initial Software Analysis

Created: 08/02/01 Page 14 of 84

2.1.2 Observing Template Package
Class Name Description Responsibilities
FieldSpecification Specifies the reference position

and the geometric pattern that the
antennas should follow during one
observation.

know reference position
know geometric pattern
compute next point on path

NutatorSpecification Specifies the nutator
configuration, necessary to
prevent data taking while the
nutator is moving.

know nutator mode status

ObservingModeParameter Is an abstract class for all
Observing Mode parameters that
are required for an Observing
Mode

know range of all valid
parameter input

ObservingModeTemplate Defines the framework in which a
user can insert scientific and
technical parameters in order to
specify a valid Observing Mode
Programme.

know available Observing
Modes
check valid parameter input
create an observing script

SBTemplate Defines the framework in which a
user can insert scientific and
technical parameters in order to
create an SB for a specific
Observing Mode

know Observing Mode
create an observing script

SpectralSpecification Contains the spectral setup for one
Observation according to the
pattern described in the Field
Specification

know Observing Mode
know spectral specs

TemplateScript Is an abstract class, which can
produce a standard observing
script from a set of information
provided such as observing mode,
source specifications, and antenna
setup.

create an observing script

2.1.3 Simulator Package
Class Name Description Responsibilities
Basic Simulator Estimates flux, noise and beam for

an observation given a detailed
setup, observing conditions and a
simple source model.

compute flux map
compute noise estimate
compute beam

2.1.4 Correlator Package
Class Name Description Responsibilities

ALMA Initial Software Analysis

Created: 08/02/01 Page 15 of 84

CorrelatorTool Provides a mapping of science
specifications to Correlator
configurations.

know correlator configurations
find configuration

2.2 Observing Program Administration Package
Class Name Description Responsibilities
OperatorUI Is a user interface class that forwards

operator command to the ProgramTool
and displays information from it.

display Program information
forward commands to
ProgramTool

ProgramTool Provides the business model for the high
level administration of
ObservingPrograms.

change status of programs or/
scheduling blocks
generate reports
write data package

2.3 Observing Program Refereeing Package
Class Name Description Responsibilities
RefereeUI Is a user interface for reviewers of

observing proposal and serves as a front
end for the RefereeTool

display Proposal information
forward referee rating and
comments to RefereeTool

RefereeTool Defines the referees access to a proposal
and provides options for appending
ratings and comments.

view proposal
add rating and comments
submit review package

2.4 Observing Project Package
Class Name Description Responsibilities
Observing Project Contains the Observing Proposal and

the associated main Observing
Program.

know Observing Proposal
know main Observing
Program
know Project Control

ObservingProposal Contains all mandatory scientific and
technical information on the basis of
which a proposal can be evaluated to
granting observing time by the OPC.

know science objectives
know performance goals
know PI

ControlBlock Contains status information such as the
time allocated to the Observing Project
and the Observing Programs. It may
include Breakpoint Conditions

know status information

ProjectControl Is the ControlBlock for the Observing
Project

know Observing Project
status

ObsUnitControl Is the ControlBlock for the Observing
Unit

know ObservingUnit status

ObservingUnit Is an abstract prototype class to build an
Observing Object hierarchy. Observing

knows ObsUnitControl
knows ImageScript

ALMA Initial Software Analysis

Created: 08/02/01 Page 16 of 84

Programs (branch nodes) and
Scheduling Blocks (leaf nodes) are
derived from the ObservingUnit.

ObservingUnitSequence Contains a sequence of Observing
Units.

know observing units
know flow control script

FlowControlScript Defines programmatically the sequence
in which the Observing Units of an
Observing Unit Sequence are executed.

know flow control
commands

2.5 Program Package
Class Name Description Responsibilities
ArchivingSpecification Defines which scientific data need

to be archived.
know archiving specs

BreakpointConditions Defines the conditions that will halt
future execution of SBs of the
Observing Programme.

know conditions for
suspending Programme

ObservingProgram Contains all technical and scientific
information required to execute an
Observing Program. It consists of
an Observing Unit Sequence.

know science objectives
know performance goals
know scheduling blocks
know breakpoints
know data processing scripts
know program status
know archiving specs

2.6 Scheduling Block Package
Class Name Description Responsibilities
PerformanceGoal Defines the observing goals (noise

level, SNR, or image dynamic
range) that are intended to be
achieved by the Observing
Programme.

know goal(s)

SchedulingBlock Defines a sequence of observing
scans and is the smallest part of an
Observing Programme that can be
individually scheduled and
calibrated.

know calibration requirements
know required observing
conditions
know required configuration
know observing instructions

ALMA Initial Software Analysis

Created: 08/02/01 Page 17 of 84

2.7 SB Script Package
Class Name Description Responsibilities
ImageScript Defines how the quicklook or

final image is to be produced.
know reduction commands

ObservingScript Is an abstract class for Observing
Scripts which are association
classes created from Script
Templates and Observing Mode
Parameters

know observing script
commands
know observing mode
parameters

2.8 Command Package
Class Name Description Responsibilities
Command Is an abstract class for all

commands (e.g. observing,
pipeline)

execute command

ObservingDescriptor Contains the parameters that
describe the array configuration
during the execution of the
Observation.

know array configuration
during scan execution

PipelineCommand Defines a reduction step in the
image pipeline script

know commands
execute command

ScanCommand Defines a set of observations with
a common goal and is the smallest
unit which can be executed by an
observing script.

know command
execute command

ALMA Initial Software Analysis

Created: 08/02/01 Page 18 of 84

2.9 ALMA Executive Package
Class Name Description Responsibilities
MasterUI Is a graphical user interface through

which the ALMA facility is controlled
and monitored.

display system status
forward control commands to
Executive

Executive Starts and supervises all operations
processes such as sub-array allocation,
scheduling and error monitoring.

control subsystems
change observing mode

ErrorMonitor Checks periodically the state of all major
subsystems and notifies the Executive if
any problems are found.

know state of subsystems
monitor subsystems

ExecWatchdog Waits for a signal and raises an alarm if
none arrives within a specific time.

know time since reset
reset timer

ObservatoryPolicy Contains all rules that govern the
observatory policy.

know submission rules
know review rules
know observing modes
know guaranteed data quality

2.10 Resource Management Package
Class Name Description Responsibilities
SubarrayAllocator Allocates resources associated to sub-

arrays such as antennas and parts of the
correlator.

know antennas and their status
know correlator and its status
allocate subarray

ArrayConf Is a logical set of antennas and associated
resources.

know antennas
know correlator

Resource Is an abstract base class for all ALMA
resources such as antennas, correlator and
computer systems.

know status
know allocation state
know resource name and type

2.11 Submission Package
Class Name Description Responsibilities
Authorization Performs all security checks concerning

the access to data related to observing
programs.

generate security keys
verify authority

Validator Checks the correctness of observing
proposals and programs.

verify observing proposal
verify observing program

ALMA Initial Software Analysis

Created: 08/02/01 Page 19 of 84

2.12 Scheduling Package
Class Name Description Responsibilities
Dispatcher Forwards either single scheduling blocks

or, in dynamic mode, groups of
scheduling blocks to be executed.

know operations mode
dispatch scheduling block

Scheduler Determines the optimal order of a set of
scheduling blocks that are ready to be
executed.

rank scheduling blocks

2.13 Script Execution Package
Class Name Description Responsibilities
Sequencer Interprets and executes observing scripts

to control antennas, receivers, correlator
and data processing.

execute observing script

Subarray Defines a set of ALMA antennas
including all resources associated to them
and required to perform a set of
observations.

know allocated antennas
know allocated part of
correlator
perform calibration
observation
execute scan command

CalPipeline Performs the processing of calibration
data and provides new calibration results
in near real-time.

reduce calibration data

ALMA Initial Software Analysis

Created: 08/02/01 Page 20 of 84

2.14 Online Calibration Package
Class Name Description Responsibilities
CalSolver Coordinates the execution of all necessary

calibration observation.
know calibration required
perform calibration
observations

Calibration Is an abstract base class for all
calibrations of a subarray and provides
generic methods to access the status of a
particular calibration.

know validity
know validity period
signal expiration
estimate time to perform
calibration
know when must be done
(might be deferrable)
acquire calibration data

ArrayCal Indicates that this is a calibration that is
performed for the array as a whole (e.g.,
baseline, delay, pointing session & beam
shape)

As for Calibration class

ProjectCal Indicates that this is a calibration that is
performed for a single project or
Observing Unit (although it could be
shared among different ones)

As for Calibration class

CalStatusMonitor Checks the calibration status of a
subarray.

estimate time for calibration

CalPipeline Performs the data reduction required to
derive the calibrations.

reduce calibration data

Configurator Sets up receivers, correlator as requested Set hardware configuration
AntennaConfig Contains information characterizing an

antenna
Know antenna location
Know antenna electronics
configuration

ReceiverConfig Contains information characterizing a
receiver

Know receiver band
Know receiver tuning
Tune receiver

2.15 Data Processing Service Package
Class Name Description Responsibilities
ImagingPipeline Generates all standard science data

products.
know data processing server
reduce data

QuickLookPipeline Performs a fast data reduction of recent
observations and provides the results in
near real time.

know data processing server
reduce data
display results

ALMA Initial Software Analysis

Created: 08/02/01 Page 21 of 84

2.16 Supervised Image Pipeline Package
Class Name Description Responsibilities
PipelineUI Is a user interface for off-line usage of the

Imaging Pipeline
display pipeline status and
results
forward commands to the
PipelineTool

PipelineTool Accepts high-level requests for off-line
reduction of science data and forwards the
explicit processing tasks to a server.

know data reduction server
reduce data set

2.17 Science Archive System Package
Class Name Description Responsibilities
ArchiveUI Is a user interface for access to the

Science Archive
display results and status
forward requests to
ArchiveTool

ArchiveTool Provides high level tools for doing
research on the Science Archive.

know Science Archive server
query archive
retrieve data

Class Name Description Responsibilities
InfoService Is an abstract class for archives,

catalogs, repositories, data bases,
etc.

know the archives
know repositories
know catalogs

2.18 Archive Package
Class Name Description Responsibilities
Archive Is an abstract base class for all

archives containing science related
data

know available archive and
their status

CalArchive Contains all results produced by
the Calibration Pipeline

know calibrator data
search for calibrator data

LogArchive Contains all logging information
of the ALMA array

know all logging data
search for logging data

RawDataArchive Provides access to all raw science
data acquired by ALMA.

know raw science data
search for raw science data

ScienceArchive Provides access to all calibrated
science data acquired by ALMA

know calibrated science data
search for calibrated science
data

ManualArchive Contains all documentation
explaining the characteristics and
potential usage of ALMA

know available manuals
search for manuals

ALMA Initial Software Analysis

Created: 08/02/01 Page 22 of 84

2.19 Catalog Package
Class Name Description Responsibilities
CatalogSet Is a base class for catalogs

containing astronomical objects or
spectral lines

know catalog server
know available catalogs and
their status

CalibratorCatalog Provides catalog of sources
suitable for pointing or phase
calibration of the array.

know calibrator data
search for calibrator data

LineCatalog Provides access to all physical
data of molecular and/or atomic
spectral lines relevant for
observations.

know line data
search for line data

SourceCatalog Provides access to a database of
astronomical objects

know source properties
search for source properties

2.20 Repository Package
Class Name Description Responsibilities
RepositorySet Is an abstract base class for

collections of objects from the
Observing Object hierarchy.

know repository server
know available repositories
and their status

ObservingProjectCatalog Provides access to all ALMA
Observing Projects

know Observing Project
search for Observing Project

ConfigurationRepository Contains technical data related to
the antenna configuration,
correlator, receiver, pointing
models, and baseline solutions

know configurations

PersonRepository Contains all information about
persons such as Programme PIs
and Co-Is, reviewers.

know person information
search for person info

SB-Repository Contains all valid SBs. know SB information
search for SB

ScheduleDB Contains all information related to
schedules for equipment or
operational staff.

know schedules
search for schedules

MaintenanceDB Contains all information on
maintenance actions.

know maintenance actions
search for maintenance actions

Bodega Maintains all information on spare
parts and supplies

know spare part and supply
critical limits
signal low supplies
search for parts

2.21 System Administration and Management Package
Class Name Description Responsibilities

ALMA Initial Software Analysis

Created: 08/02/01 Page 23 of 84

AdminUI Provides a user interface to the general
administration tool.

forward requests to
administration tool
display reports

AdminTool Controls all general administrational tasks
for the ALMA facility such as generation
of reports, scheduling of maintenance,
and long term planning of array
configurations and staff availability.

generate status and
performance report
define maintenance schedule
define array configuration
schedule
define staff schedule

2.22 Utility Package
Class Name Description Responsibilities
Person Contains all relevant information about a

person.
know name
know contact information

Class Name Description Responsibilities
EnvironmentData Provides access to all environment data

relevant to the ALMA facility.
know wind speed
know water vapor
know temperature
know phase stability

ObsCondition Contains all parameters describing the
observing conditions and obtained
directly from observations of calibrator
sources.

know pointing
know focus
know phase calibration
know bandpass calibration

2.23 Internet Package
Class Name Description Responsibilities
WebPage Contains general information on Web

pages made available to users.
know author, name and
version
know availability
know page content
post page

EmailService Provides access to e-mail through Internet
with a specified level of security.

know security level
send e-mail
verify receipt of e-mail
check incoming e-mail

2.24 Class lookup table

For convenience we list all analysis classes alphabetically. The class descriptions and class
packages can be found on the associated page numbers.

ALMA Initial Software Analysis

Created: 08/02/01 Page 24 of 84

A
AdminTool, 23
AdminUI, 23
AntennaConfig, 20
Archive, 21
ArchiveTool, 21
ArchiveUI, 21
ArchivingSpecification, 16
ArrayCal, 20
ArrayConf, 18
Authorization, 18

B
Basic Simulator, 14
Bodega, 22
BreakpointConditions, 16

C
CalArchive, 21
Calibration, 20
CalibratorCatalog, 22
CalPipeline, 19, 20
CalSolver, 20
CalStatusMonitor, 20
CatalogSet, 22
Command, 17
ConfigurationRepository, 22
Configurator, 20
ControlBlock, 15
CorrelatorTool, 15

D
Dispatcher, 19

E
EmailService, 23
EnvironmentData, 23
ErrorMonitor, 18
Executive, 18
ExecWatchdog, 18

F
FieldSpecification, 14
FlowControlScript, 16

I
ImageScript, 17

ImagingPipeline, 20
InfoService, 21

L
LineCatalog, 22
LogArchive, 21

M
MaintenanceDB, 22
ManualArchive, 21
MasterUI, 18

N
NutatorSpecification, 14

O
ObsCondition, 23
ObservatoryPolicy, 18
Observing Project, 15
ObservingDescriptor, 17
ObservingModeParameter, 14
ObservingModeTemplate, 14
ObservingProgram, 16
ObservingProjectCatalog, 22
ObservingProposal, 15
ObservingScript, 17
ObservingUnit, 15
ObservingUnitSequence, 16
ObsUnitControl, 15
OperatorUI, 15

P
PerformanceGoal, 16
Person, 23
PersonRepository, 22
PipelineCommand, 17
PipelineTool, 21
PipelineUI, 21
ProgramTool, 15
ProjectCal, 20
ProjectControl, 15

Q
QuickLookPipeline, 20

R
RawDataArchive, 21
ReceiverConfig, 20

ALMA Initial Software Analysis

Created: 08/02/01 Page 25 of 84

RefereeTool, 15
RefereeUI, 15
RepositorySet, 22
Resource, 18

S
SB-Repository, 22
SBTemplate, 14
ScanCommand, 17
ScheduleDB, 22
Scheduler, 19
SchedulingBlock, 16
ScienceArchive, 21
Sequencer, 19

SourceCatalog, 22
SpectralSpecification, 14
Subarray, 19
SubarrayAllocator, 18

T
TemplateScript, 14

V
Validator, 18

W
WebPage, 23

ALMA Initial Software Analysis

Created: 08/02/01 Page 26 of 84

2.25 Package Diagrams

Ref eree
+ Ref ereeUI

ObsTool
+ Obs erv erUI

+ Observ ingTool

ObsAdmin
+ ProgramTool
+ OperatorUI

AlmaExec
+ Executiv e
+ MasterUI

+ ErrorMonitor
+ ExecWat chdog

+ Observ atory Policy

AlmaAdmin
+ AdminTool
+ Adm inUI

Archiv e
(f rom Inf oServ ice)

+ LogArchiv e
+ Archiv e

+ CalArchiv e
+ Manuals

+ RawDataArchiv e
+ ScienceArchiv e

Pipeline
+ I mag ingPipeline

+ QuickLookPipeline

Scheduler
+ Dispatcher
+ Scheduler

Command
+ C om mand

+ ScanCommand
+ PipelineComm and

+ Observ ationDescriptor

SBScript
+ Obs erv ingScrip t

+ ImageScript

ObsProgram
+ Observ ingProgram
+ BreakpointCondition

+ Archiv ingSpecif ication

SchedBlock
+ Perf ormanceGoal
+ Scheduling Block

ObsTemp
+ SBTemplate

+ Observ ingModeTemplate
+ NutatorSpecif ication

+ Observ ingModeParameter
+ TemplateScript

+ FieldSpecif ication
+ SpectralSpecif ication

ObsSimulator
+ Simulator

General
+ Person

Catalog
(f rom Inf oServ ice)
+ SourceCatalog

+ CalibratorCatalog
+ Catalogs

+ LineCatalog

Repository
(f rom Inf oServ ice)

+ Repositories
+ SB-Repository

+ Conf igurationRepository
+ MaintenanceDB

+ ScheduleDB
+ Bodega

+ PersonRepository

Correlator
+ CorrelatorTool

ResourceMng
+ Subarray Alloca tor

+ Array Conf
+ R es ource

AlmaSy stem
+ Subarray

+ Sequencer
+ CalPipeline

SciArchiv e
+ Archiv eUI

+ Archiv eTool

ImagePipeline
+ PipelineUI

+ PipelineTool

Submission
+ Authorization

+ Validator

Internet
+ WebPage

+ EmailServ ice

Inf oServ ice
+ I nfoServ ice

Sit eCondi tion
+ Env Dat a

+ ObsCondition

CalibrationPkg
+ CalSolv er

+ CalStatusMonitor
+ Calibration

ObsProject
+ Observ ingProject

+ Observ ingProposal
+ Observ ingUnit

+ Observ ingUnitSet

Figure 2-1: ALMA Logical Packages (Connections Illustrative Only)

2.26 Class Diagrams/Hierarchies

Most of the analysis classes presented are those that were necessary in order to express the
Use Cases in terms of sequence diagrams. The methods for each class were similarly derived
out of the need to serve other classes in order to complete the Sequence Diagrams. The class
diagrams show each class, its methods and what other classes use these methods. They are
more abstract than the sequence diagrams since they do not show when or how often each
class makes use of a particular method in another class, but only that a connection is made.

ALMA Initial Software Analysis

Created: 08/02/01 Page 27 of 84

It is clear that many classes have common functionalities, and these are best expressed by
inheritance hierarchies, in which several classes inherit attributes and methods from a
common parent. The class diagram for Calibrations is probably the best example in this
document: Baseline, Gain, Beam shape and Bandpass calibrations are all variations on the
theme of a general calibration class. It is to be expected that this commonality will lead to
considerable savings in code development, since much of the software developed should be
reusable in children of the same parent class.

ALMA Initial Software Analysis

Created: 08/02/01 Page 28 of 84

ObservingTool

createObservingTool()
inputProposalDetails()
inputSimulatorSetup()
returnSimulationResults()
validateProposal()
submitObservingProposal()
selectObservingMode()
inputObservingModeDetails()
requestToValidateSubProgram()
inputSBDependencies()
splitOPintoSBs()
inputBreakpointConditions()
inputArchivingSpecification()
modifySchedulingBlock()
submitObservingProgram()
requestManuals()
returnValidationResult()
requestToCreateObservingProposal()
notifyAcceptedDenied()
inputScientificJustification()
inputScienceGoals()
determineObservingMode()
determineArrayConfiguration()
determineCorrelatorSetup()
checkHardwareLimits()
calculateObservingTime()
calculateDataRateAndVolume()
saveObservingProposalLocally()
modifySuggestedSetup()
requestToCreateObservingProgram()
modifyScripts()
inputMappingDetails()
inputCalibrationSpecifications()
requestToSplitOPintoSBs()
putPIInfo()
requestToValidateObservingProgram()
modifyCalibrationSpecification()
requestToCreateObservingProject()
requestObservingProject()
requestToValidateObservingProposal()

(from ObsTool) Validator

validateObservingProposal()
validateObservingProgram()
checkObservingToolVersion()

(from Submission)

Simulator

runSimulator()

(f rom ObsSimulato r)

CorrelatorTool

determineCorrelat...

(f ro m Co rrelator)

Manuals

getManuals()

(from Archive)

ObservingProjec tCatalog

putObservingProposal()
checkForConflicts()
getObservingProject()
getProgramStatistics()
getProgramInfo()
putObservingProgram()
storeObservingProgram()
getObservingProposal()
addReviewPackage()
getReviewPackage()
addRating()
subscribe()
updateObservingProgram()

(from Repository)

LineCatalog

getLineFrequenc. ..

(f ro m Ca tal og)

SourceCatalog

getSourceCoord...

(from Catalog)

SB-Repository

getReadySBs()
getSB()

(from Repo sito ry)

SBTemplate
(from ObsTemp)

ObservingModeTemplate

getObservingModeTempla...

(from ObsTemp)

11

ObservingScript

...

(f rom SB Scrip t)

TemplateScript
(from ObsTemp)

FieldSpecification
(from ObsTemp) NutatorSpecification

(from ObsTemp)
SpectralSpecification

(from ObsTemp)

ObservingModePar
ameter

(from ObsTemp)

1..n1..n

11
0..10..111

1..n

Figure 2-2: Observing Tool Class Diagram
The class diagram that shows the ObservingTool and the objects it references gives an early indication
of the many methods, associated classes/objects, and InfoServices objects that will be needed to make
this tool work. All these objects, in some form, will need to be exported to the Proposer at his/her
home institution, or at least be reliably and efficiently accessible via a network connection to the

ALMA Initial Software Analysis

Created: 08/02/01 Page 29 of 84

ALMA Science Operations Center or to one of the Regional Centers. The diagram also shows how
ObservingModeTemplates, the bases for the generated SB scripts, are themselves built up out of
lower level templates, which in turn are generated from a generic TemplateScript that takes uses an
ObservingModeParameters object to "fill in the blanks". The ObservingModeParameters object itself
is built from a FieldSpecification, an (optional) Nutator Specification, and a SpectralSpecification.

Person

Name
Institution
ContactInfo

(from General)

ArchivingSpecificat ion
(from ObsProgram)

Sc ient ificJust ification
(from ObsProject)

ObservingProposal

createObservingProposal()
getObservingProposal()
updateObservingProposal()

(from ObsProject)

1

+PrincipleInvestigator

1

0..*
+CoInvestigator

0..*

11
11

PerformanceGoals
(f rom Ob sProject)

Figure 2-3: Observing Proposal Class Diagram

The class diagram for the ObservingProposal displays its various supporting entity classes:
scientific justification, performance goals, archiving specification, and so on.

ALMA Initial Software Analysis

Created: 08/02/01 Page 30 of 84

ControlBlock

ObsUnitControl

ImageScript

ObservingUnit

11

FlowControlScript

ObservingProposal

ProjectControl

ObservingScript

ObservingUnitSequence

1..*1..*

11

ObservingProject

Scheduling Block

11

ObservingProgram

11

1

+MainProgram

1

Figure 2-4: Observing Project Class Diagram

When an Observing Proposal is approved, its associated Observing Project must be filled in
with the appropriate Phase II information. The class diagram for the Observing Project shows
the way in which this information can be hierarchically organized into Observing Units, each
of which contains an Observing Unit Sequence. An Observing Unit Sequence may
recursively contain one or more Observing Units, but eventually this hierarchy must
terminate in Scheduling Blocks, which are by definition non-recursive. An approved and
ready-to-schedule Observing Project must contain at least one Scheduling Block.

Each Observing Unit Sequence has its own Flow Control Script, which establishes the order
(if any) in which the component Observing Units are to be executed. The Observing Unit’s
Control Block includes status information (e.g., how much observing time has been allocated
to and used by this Observing Unit) and may include Breakpoint Conditions (indicating
whether execution of this Observing Unit must be delayed pending a decision by the
Project’s PI). Associating such conditions with each level in the hierarchy allows the PI to
temporarily halt a project at, for example, the start of an ACA or single-dish observation
(each of which would naturally be characterized by a single Observing Unit), or at the more
finely-grained level of a Scheduling Block.

The presence of a Control Block at all levels of the hierarchy also permits prioritization
(presumably by the ALMA Time Allocation Committee, but if desired, also by the PI and by
the ALMA Operations Staff) at any level of detail desired. If ALMA Operations Policy

ALMA Initial Software Analysis

Created: 08/02/01 Page 31 of 84

forbids articulated prioritization by PIs, reviewers or ALMA staff, then this capability will
either not be implemented or can easily be disabled; the point to note is that the infrastructure
to support it will exist.

Because the abstract nature of the above diagram can be somewhat hard to follow, we present
an object diagram to illustrate how a particular kind of project might be handled. We
hypothesize a mosaic of a galaxy that combines OTF, ACA and single-dish observations. The
project hierarchy for this particular case might be as shown schematically in the following
figure.

Joe's Project : ObservingProject

CombinedProcessingInstructions : ImageScript

Galaxy Mosaic : ObservingProgram

Galaxy Mosaic : ObservingUnitSet

OTF Mosaic : ObservingProgram ACA Observations : ObservingProgram Single Dish Observations : ObservingProgram

*
*

*

*

*

*

*

*

*

*

OTF SB : SBOTF Imaging Instructions : ImageScript

1

1..*

*
1

Joe's Proposal : ObservingProposal

Ordering&Dependencies : FlowControlScript
**

ACA SB : SBACA Processing : ImageScript

** * *

*

*

Scientific Priority
Time Allocated

 : ControlBlock

11

1

1

Scientific Priority
Time Allocated

OTF Control Block : ControlBlock

1

1

Figure 2-5: Object Diagram for Galaxy Mosaicing Project

Note that control blocks appear at the highest (project) level and also at the lower levels
(shown here only for the OTF portion of the project). ImageScripts are shown attached to the
OTF and ACA portions of the project, as well as to the higher-level “Galaxy Mosaic”
Observing Program. A Flow Control Script takes care of any orderings and/or dependencies
among the OTF, ACA and Single Dish Observing Programs. In order not to clutter the
diagram with unnecessary details, we have left off various instances of the Image Scripts,
Flow Control Scripts (which could, for example, be attached to a set of SBs) and Control
Blocks.

ALMA Initial Software Analysis

Created: 08/02/01 Page 32 of 84

ObservationDescriptor
(from Command)

ScanCommand
(from Command)

1..n1..n

Pipel ineCommand
(from Command)

Command
(from Command)

ImageScript
(from SBScript)

1..n1..n

ObservingScript
(from SBScript)

1..*1..*

Schedul ing Block
(from SchedBlo...

11
11

CalibrationRequirements
(from SchedBlo...

ObsUnitControl
(from ObsProje...1

PerformanceGoal
(from SchedBlo...

1

Figure 2-6: Scheduling Block Class Diagram

The Scheduling Block Class Diagram shows its component scripts (for observation and for
imaging), as well as control parameters such as initial and final calibration requirements and
performance goals.

The remaining class diagrams mostly show objects in a star configuration, with the principal
object at the center, and all the objects it references and/or manages arranged around it. Thus
the Sequencer, the Scheduler and the Imaging Pipeline are all control classes that make use
primarily of other entity objects (although the Sequencer and Scheduler, for example, do have
simple interactions with each other).

ALMA Initial Software Analysis

Created: 08/02/01 Page 33 of 84

Sequencer

execute()
adjustCycleTime()
newCorrectionsReady()
notifyDataArchived()
notifyNewReducedData()
notifyNewObsConditions()
returnPhaseRMS()

(from AlmaSystem)

Scheduling Block

updateSBStatus()
arrayConfOK()
isVisible()
conditionsOK()
getImageScript()
observeCalCandidates()
createSchedulingBlock ()
updateSchedulingBlock()
getInitialCalRequirements()
getDesiredHWConfig()
getObservingScript ()
getFinalCalRequirements()

(from SchedBlock)

1

Subarray

performBandpassCal()
performDelayCal()
observeCalCandidates()
performPointingScan()
performFocusScan()
observePhaseCalibrator()
observeTarget()
correctAntennaPtg()
configureHW()
opname()

(f rom Al maSystem)

1

CalibratorCatalog

getCalibratorCandidates()
addMostRecentFlux()

(from Catalog)

1..n

CalArchive

getPhaseRMS()
ingestPtgCorrections()
getPtgCorrections()
putPhaseRMS()
getFocusCorrections()
getCalibData()

(from Archive)1ImagingPipeline

processData()
executeImageScript()
noti fyDataArchived()
makeFinalImage()

(from Pipeline) 1

CalPipeline

newPhaseCalData()
calcPhaseRMS()
calcPtgCorrections()
newPointingData()
newFocusData()
calcFocusCorrections()
compareCorrectedUncorrected()
reducePointingScan()

(f rom Al maSystem)

1

RawDataArchive

newTargetScan()
saveData()
getData()
newCalData()
getArchiveStatistics()
getRawData()
newPointingScan()

(from Archive)

1

Figure 2-7: Sequencer Class Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 34 of 84

Calibration

getLastDone()
getLifetime()
isValid()
getCurrAccuracy()
acquireCalData()
updateCalibration()
getTimeToDo()
deferrableUntil()

TempScaleCal

GainCal

BandpassCal

PointingFocusCal

returnPtgCorrections()

FluxCal

PolarizationCal

SidebandGainCal

BaselineCal

PtgSessionCal

DelayCal

BeamShapeCal

AntennaConfig

getLocation()

CalStatusMonitor

getTimeToCalibrate()

ReceiverConfig

getBand()
tune()

CalSolver

doIt()
updateCalibrationState()
updatePointingFocus()

nn

ArrayCals

update()

ProjectCals

Figure 2-8: Calibration Class Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 35 of 84

Calibration objects have the responsibility to know their states and the dependencies of those
states (on elapsed time and on the relevant hardware configuration), to be able to direct the
hardware to perform the observations necessary to provide data for an update of the
calibration, and to be able to initiate and control the near-real-time reduction of this data as
necessary. When requested, each object will also be able to return the time required to
perform such an update (useful for scheduling purposes). These capabilities are intended to
be common to (almost) all calibration objects, whose classes are therefore shown as an
inheritance hierarchy. Where appropriate, mechanisms will be provided for notification by
the calibration objects when they become invalid; direct programmatic interrogation will
always be possible. An additional control class, CalSolver, is provided to bring a set of
resources (antennas, receivers, correlator) to a desired calibration state (or to do nothing if
that state has already been reached).

Scheduler

rankSBs()
start()
subscribe()
isAlive()
orderSBs()

(f rom Scheduler)

ObsCondition

putObsConditions()
getObsConditions()

(f rom SiteCondition)

Dispatcher
(f rom Scheduler)

SB-Repository

getReadySBs()
getSB()

(f rom Repository)

1

1

Scheduling Block

updateSBStatus()
arrayConfOK()
isVisible()
conditionsOK()
getImageScrip t()
observeCalCandidates ()
createSchedulingBlock()
updateSchedulingBlock()
getInitialCalRequi rements()
getDesi redHWConfig()
getObservingScript()
getFina lCalRequirements()

(f rom SchedBlock)

1..n1..n

1..n

ObservingProgram

updateProgramStatus ()
getProgramStatus()
getArchivingSpec()
toBeArchived()
getImageScript()
createObs ervingProgram()
updateObservingProgram()

(f rom ObsProgram)

1..n1..n

ObservingProjectCatalog

putObservingPropos al()
checkForConflicts()
getObservingProject()
getProgramStatis tics()
getProgramInfo()
putObservingProgram()
storeObservingProgram()
getObservingPropos al()
addReviewPackage()
getReviewPackage()
addRating()
subscribe()
updateObservingProgram()

(f rom Repository)

1
1..*1..*

Figure 2-9: Scheduler Class Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 36 of 84

ImagingPipeline

processData()
executeImageScript()
notifyDataArchived()
makeFinalImage()

(from Pipel ine)

RawDataArchive

newTargetScan()
saveData()
getData()
newCalData()
getArchiveStat is tics()
getRawData()
newPoint ingScan()

(f rom Archive)

1

ScienceArchive

saveData()
getImageData()

(from Archive)

1 CalArchive

getPhaseRMS()
ingestPtgCorrections()
getPtgCorrections()
putPhaseRMS()
getFocusCorrections()
getCalibData()

(f rom Arch ive)

ObservingProgram

updateProgramStatus()
getProgramStatus()
getArchivingSpec()
toBeArchived()
getImageScript()
createObservingProgram()
updateObservingProgram()

(from ObsProg ram)

Figure 2-10: Pipeline Class Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 37 of 84

Inf oServ ice

start()
subscribe()
isAliv e()
ref reshContent()
uploadNewData()

(from InfoServi ce)

Archiv e
(from Archive)

Catalogs
(from C atalog)

Repositories
(from Repository)

RawDataArchiv e

newTarget Sc an()
sav eData()
getData()
newCalData()
getArchiv eSta tis tic s()
getRawData()
newPointingSc an()

(from Archive)

ScienceArchiv e

sav eData()
getImageData()

(from Archive)

LineCatalog

getLineF requenc ies()

(f rom Catalog)

SourceCatalog

getSourceCoordinates()

(from Catalog)

Observ ingProjectCatalog

putObserv ingProposal()
checkForConf licts()
getObserv ingProject()
getProgramStatistics()
getProgramInf o()
putObserv ingProgram()
storeObserv ingProgram()
getObserv ingProposal()
addRev iewPackage()
getRev iewPackage()
addRating()
subscribe()
updateObserv ingProgram()

(from Repository)

SB-Repository

getReady SBs ()
getSB()

(from R epos itory)

CalArchiv e

getPhaseRMS()
inges tPtgCorrections()
getPt gCorrect ions ()
putPhaseRMS()
getFocusCorrections()
getCalibDat a()

(from Archive)

CalibratorCatalog

getCalibra to rCandidates()
addMostRec entFlux()

(from Catalog)

Manuals

getManuals()

(from Archive)

LogArchiv e

getLogRecords()

(from Archive)

Conf igurationRepository

AntennaConf iguration
CorrelatorConf ig
PointingModel
BaselineSolutions

(from Repository)

Figure 2-11: InfoServices Class Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 38 of 84

3 Use Case Realizations

3.1 Initial Sequence Diagrams & Description

Each of the following sequence diagrams is derived (not necessarily line-by-line) from the
corresponding Use Case. Each follows a timeline that proceeds from top to bottom. Each
class used for analysis is one of three kinds and has a corresponding icon below which is
displayed its name. (Informal definitions of the classes used can be found in the preceding
section, along with class diagrams, where the relationships among the classes warrant
display.)

Messages are shown as directed horizontal lines between objects; we say that the originating
object is invoking a method in the receiving object.

It is important to understand that a sequence diagram represents a single scenario, that is,
only one of many possible paths through a Use Case. Some conditional branching may be
shown on a sequence diagram, but this is the exception rather than the rule. Ultimately, one
hopes to explore all the “interesting” scenarios for each Use Case.

3.1.1 Create & Submit Observing Proposal

The proposer creates, validates and submits a Phase I Proposal to the ALMA Observatory for
review, using an observatory-supplied Observing Tool. (Note that creation of an Observing
Proposal implies the creation—by the system—of an enclosing Observing Project; see the
previous chapter for details of this relationship.) He/she can either create a new or retrieve
and edit a locally existing Phase I Proposal and normally works off-line. Network access is
required for consulting the on-line ALMA Observer manuals, catalogues, etc., and to verify
that the version of the Observing Tool in use is current.

 : CalArchive

 : OperatorUI

Entity class: responsible primarily for accepting, storing and
retrieving persistent data. Archives are typical examples. Icon is a
circle resting on a horizontal line.

Boundary class: represents an interface, either to a human or to
another hardware or software system (or subsystem, depending
on the context). Icon is a vertical line connected to a circle by a
horizontal one.

Control class: responsible for control, coordination and/or
processing. The Dispatcher and the Observing Tool are
examples. Icon is a circle with an arrow pointing
counterclockwise

ALMA Initial Software Analysis

Created: 08/02/01 Page 39 of 84

 : Observ erUI : Observ ingTool : Manuals

 : Observ ingProposal

 :
Observ ingProjectCatalog

 : LineCatalog : SourceCatalog : CorrelatorTool : Validator : Simulator : Authorization

 : Observ ingProject

32: runSimulator(SimulatorSetup)

1: createObserv ingTool()

3: requestManuals()

4: getManuals()

30: display SubmissionResult()

24: submitObserv ingProposal()

31: inputSimulatorSetup()

21: requestToValidateObserv ingProposal()
22: v alidateObserv ingProposal()

25: putObserv ingProposal()

26: v alidateObserv ingProposal()

29: notif y AcceptedDenied()

6: inputScientif icJustif ication()

7: inputScienceGoals()

13: determineObserv ingMode()

14: det ermi neArray C onf iguration()

16: checkHardwareLimits()

17: calculateObserv ingTime()

18: calculateDataRateAndVolume()

27: checkForConf licts()

23: saveObservingProposalLoc ally ()

11: get LineFrequencies(LineNames)

12: getSourceCoordinates(SourceNames)

15: determineCorrelatorSetup()

19: modif y SuggestedSet up()

Expert
Observ er

2: checkObserv ingToolVersion()

20: updat eObservingProposal ()

28: get ProjectID()

5: putPII nf o()

8: requestToCreateObserv ingProposal()

9: c reateObservingProject()

10: createObserv ingProposal()

Figure 3-1: Create & Submit Observing Proposal

1. The Proposer starts the Observing Tool (OT).

2. The OT asks the Validator (which is located within the ALMA system) to check if
this is the most recent OT version.

ALMA Initial Software Analysis

Created: 08/02/01 Page 40 of 84

3. The Proposer asks for the ALMA Manuals to learn about the instrument. This step
could happen at any time.

4. The OT fetches the Manuals.

5. The Proposer inputs his/her name, institution, address, etc., along with similar
information concerning Co-Investigators, if any. We assume for simplicity that the
Proposal is being prepared either by the PI or his/her proxy.

6. The Proposer enters the Scientific Justification for the Observing Proposal (OProp).

7. The Proposer enters the Scientific Goals of the OProp. The Science Goals comprise:

• source ID or coordinates.

• desired angular resolution and largest structure.

• source flux and S/N or rms.

• line identification or frequencies.

• desired velocity resolution and width.

• desired dynamic range.

• archiving specification.
8. The Proposer requests the OProp to be created and the calculations necessary for

Phase I to be done.

9. The OT creates a new Observing Project, the top level container holding the
Observing Proposal and later the hierarchy of Observing Programs (see Create &
Submit Observing Program and SBs).

10. The OT creates the OProp.

11. The OT gets line frequencies from the Line Catalog.

12. The OT gets source coordinates and properties from the Source Catalog.

13. The OT determines the Observing Mode necessary to perform the proposed project
based on the largest structure.

14. The OT determines the necessary Array Configuration based on the angular
resolution.

15. The OT determines the Correlator Setup based on the line frequencies and the desired
velocity resolution.

16. The OT checks whether the proposed setup is within the hardware limits.

17. The OT calculates the necessary observing time under average observing conditions.

18. The OT calculates the expected Data Rate and Data Volume.

19. The (expert) Proposer optionally modifies the suggested setup.

20. The OT updates the OProp.

21. The Proposer optionally asks to validate the OProp.

22. The OT asks the Validator to validate the OProp.

23. The Proposer optionally saves the OProp locally.

ALMA Initial Software Analysis

Created: 08/02/01 Page 41 of 84

24. The Proposer submits the finished OProp.

25. The OT sends the OProp to the Observing Project Catalog.

26. The Observing Project Catalog asks the Validator to validate the OProp.

27. The Observing Project Catalog checks for conflicts with other Observing
Proposals/Observing Programs

28. The Observing Project Catalog gets a unique ID for the OProp from Authorization

29. The Observing Project Catalog notifies the OT whether the OProp has been accepted
or denied.

30. The OT informs the Proposer about the submission result. In case of acceptance it
returns the ProjectID as unique identifier.

31. At any time the Proposer optionally runs the Simulator to find out if a given project is
feasible with ALMA.

32. The OT asks the Simulator to simulate the given setup.

3.1.2 Create & Submit Observing Program & SBs

Starting from an approved Observing Proposal, the proposer/observer uses the Observing
Tool to deliver the complete technical specifications for the Observing Programme to the
Phase II Scheduling Block Repository. The Observing Programme adds one or more
subprograms and Scheduling Blocks and relations/dependencies among them to the approved
Proposal

ALMA Initial Software Analysis

Created: 08/02/01 Page 42 of 84

 : Observ erUI : Observ ingTool :
Observ ingProjectCatalog

 :
Observ ingModeTemplate

 : Observ ingProgram OP Break Point
Condi tions...

 : Scheduling Block SB Control Block :
Obs UnitControl

SB Observ ing Script :
Observ ingScript

 : Va lidator : Observ atory Policy : AuthorizationOP Flow Control Script :
FlowControlScript

1: createObserv ingTool()

4: getObserv ingProject(ProjectID)

6: getObserv ingModeTemplate()

8: inputCalibrationSpecif ications()

11: createObserv ingProgram()

20: inputSBDependencies()

16: splitOPintoSBs()

17: createSchedulingBlock()

22: inputBreakpointConditions()

26: modif y SchedulingBlock()

24: modif y CalibrationSpecif ication()

Expert Mode
Actions

30: submitObserv ingProgram()

3: requestObs erv ingProject(ProjectID)

13: v alidateObserv ingProgram()

34: notif y SubmissionResult()

7: display Preliminary Setup()

10: requestToCreateObserv ingProgram()

12: requestToValidateObserv ingProgram()

14: requestToSplitOPintoSBs()

28: modif y Scripts()

9: inputMappingDetails()

23: createBreakPointConditions()

15: getObserv atory Policy ()

2: checkObserv ingToolVersion()

5 : v er if y ProjectI D()

27: updateSchedulingBlock()

25: updateSBControlBlock()

29: updateSBObserv ingScr ipt()

21: createFlowControlScript()

18: createControlBlock()

19: createObserv ingScript()

31: putObserv ingProgram()

32: v alidateObserv ingProgram()

33: notif y AcceptedDenied()

Steps 8 to 29 can be
repeated and/or
nested to generate
more than one or a
hierarchy of Observ ing
Programs

Figure 3-2: Create & Submit Observing Program & SBs

1. The Observer starts the Observing Tool (OT).

2. The OT asks the Validator (which is located within the ALMA system) to check if
this is the most recent OT version.

3. The Observer requests his/her Observing Project using the previously assigned
ProjectID.

4. The OT asks the Observing Project Catalog to fetch the given Observing Project

5. The Observing Project Catalog asks Authorization to verify the ProjectID.

6. OT fetches the Observing Mode Templates according to the Observing Modes listed
in the Observing Proposal.

ALMA Initial Software Analysis

Created: 08/02/01 Page 43 of 84

7. The OT displays the preliminary setup.

8. The Observer enters the desired calibration specifications.

9. The Observer enters the desired mapping details.

10. The Observer asks the OT to create the Observing Program (OP).

11. The OT creates the OP.

12. The Observer optionally asks the OT to validate the OP.

13. The OT asks the Validator to validate the OP.

14. The Observer requests the OP to be split into Scheduling Blocks (SBs).

15. The OT fetches the Observatory Policy to determine policies such as maximum time
per SB.

16. The OT splits the OP into SBs according to the Observatory Policy.

17. The OT creates the SBs.

18. The SB creates the necessary SB Control Block.

19. The SB creates the necessary SB Observing Script.

20. The Observer optionally enters SB dependencies.

21. The OT creates a Flow Control Script which encodes the SB dependencies.

22. The Observer optionally enters Breakpoint Conditions to be able to check preliminary
observing results.

23. The OT creates the Breakpoint Conditions.

24. The Observer optionally modifies the Calibration Specifications.

25. The OT updates the Calibration Specifications.

26. The (expert) Observer optionally modifies the SB(s).

27. The OT updates the SB(s).

28. The (expert) Observer optionally modifies the SB Observing and/or Image Script(s).

29. The OT updates the SB Observing and/or Image Script(s).

Note: Steps 8 to 29 can be repeated and/or nested to generate more than one or a
hierarchy of Observing Programs.

30. The Observer submits the finished OP.

31. The OT sends the OP to the Observing Project Catalog.

ALMA Initial Software Analysis

Created: 08/02/01 Page 44 of 84

32. The Observing Project Catalog asks the Validator to validate the OP.

33. The Observing Project Catalog notifies the OT whether the OP has been accepted or
denied.

34. The OT informs the Observer about the submission result.

3.1.2.1 Main Findings:

1. The Validator and the Simulator need to be exportable in order to be able to use the
Observing Tool locally. The Observing Tool and the Validator need to be
synchronized with the internal ALMA version.

2. Identified the need for an authorization / security mechanism to allow access to
proposals/programs only for the PI/CoI's, the reviewers and the ALMA staff.

3. Need details on how to determine the ideal Observing Mode, the necessary Array
Configuration, the Observing Time and the Data Rate and Volume from given
Science Goals for further analysis.

4. The requirements say that the general user does not have to modify anything in the
setup that was suggested when the proposal was created. All modification steps are
thus optional or for expert observers.

3.1.3 Dispatch SBs

The Dispatcher is responsible for marshalling commands and scripts for execution. It can
receive these commands and scripts in any of four modes: dynamically scheduled, interactive,
manual and technical. The first two of these modes require the passing of complete
Scheduling Blocks; only the dynamic and interactive modes are displayed here. The SB's
script itself is executed by the Sequencer, which might be a simple script interpreter, or might
be required to know something about an SB’s structure as well (in particular, its
configuration and calibration requirements, to the extent that these are not embedded in a
script); execution of the instrument-specific commands is performed by the Subarray object,
described in the "Observe Single Field" Sequence Diagram.

ALMA Initial Software Analysis

Created: 08/02/01 Page 45 of 84

 : OperatorUI : Dispatcher : Sequencer : Scheduler : Scheduling Block : ObservingProgram : ArrayCals : ImagingPipeline : SubarrayAllocator

1: setMode()

3: rankSBs(Subarray)

4: displayRankedSBs()

5: dispatchNewSB()

8: updateSBStatus()

7: execute(SBId, Script, ArchivingSpec)

9: updateProgramStatus()

[dynamic]

6: update()

10: rankSBs(Subarray)

11: displayRankedSBs()

12: dispatchNewSB()

14: execute(SBId, Script, ArchivingSpec)

15: updateSBStatus()

16: updateProgramStatus()

[dynamic]

[dynamic]

13: makeFinalImage(,)[end of session]

[dynamic]

2: getArrayConfig()

Figure 3-3: Dispatch SBs

1. The operator instructs the Dispatcher to use either dynamic or interactive scheduling:
setMode().

2. Dispatcher asks the SubarrayAllocator for the antennas and correlator resources that it
may use: getArrayConfig().

3. If dynamic mode is in use, the Dispatcher asks the Scheduler for an ordered list of
Scheduling Blocks that can run with currently allocated antennas and correlator
resources: rankSBs(Subarray)

4. If dynamic mode is in use, the Dispatcher requests the Operator UI to display the
ranked SBs to the operator: displayRankedSBs().

5. Operator may request the Dispatcher to choose a different SB for execution; a reason
for the change is given at the same time: dispatchNewSB(Reason). In interactive
mode, this step is mandatory

6. Dispatcher asks the ArrayCals to update any array calibrations that have become
invalid and that cannot or should not be deferred: update().

7. Dispatcher asks the Sequencer to execute the highest-ranked (dynamic mode) or
manually selected (interactive mode) SB: executeSB(). Although the Dispatcher waits
for the Sequencer to return (along with a status) after executing the SB, it may timeout
and request abnormal SB termination if the SB’s time limit is exceeded: During the

ALMA Initial Software Analysis

Created: 08/02/01 Page 46 of 84

wait period, Dispatcher may request execution of 1 or more SBs that can use any
antennas not required by the currently executing highest-ranked SB, i.e., it may loop
on steps 2-8.

8. Upon completion (or abnormal termination) of the SB, the Sequencer updates the
SB’s status: updateSBStatus().

9. Sequencer updates the status of the ObservingProgram corresponding to the just-
terminated SB: updateProgramStatus().

10. In dynamic mode, Dispatcher requests another ordered list of SBs from the Scheduler:
rankSBs().

11. See Step #3.

12. See Step #4.

13. If the new SB is from a different Programme (or Subprogramme) than the previously
executed one, then the session is ending, and the Dispatcher instructs the
ImagingPipeline to create a definitive image with all data taken so far:
makeFinalImage().

14. execute(SBId,SBScript,ArchivingSpec).

15. See Step #8.

16. See Step #9.

3.1.4 Schedule SB

Important to note in the following Sequence Diagram is that the Scheduler relies on other
objects to let it know which SBs are actually ready to run; having assembled the
necessary information, the Scheduler uses the TBD algorithm referred to in requirements
4.0-R3 to prioritize these SBs.

 : Dispatcher : Scheduler : Scheduling Block : SB-Repository : ObsCondition : ObservingProgram : CalStatusMonitor

1: rankSBs(Subarray)

3: getReadySBs(LST, ObsConditions, ArrayConfig)

2: getObsConditions

7: orderSBs()

4: getProgramStatus()

5: getInitialCalRequirements()

6: getTimeToCalibrate()

Figure 3-4: Schedule SB

ALMA Initial Software Analysis

Created: 08/02/01 Page 47 of 84

1. Dispatcher tells Scheduler to return an ordered list of Scheduling Blocks:
rankSBs(ArrayConfig).

2. Scheduler requests observing conditions from ObsCondition: getObsConditions().

3. Scheduler requests from SB Repository all SBs that can run with the current array
configuration and observing conditions, are visible in the current LST range, and are
not currently being edited or waiting on breakpoints and that do not have
dependencies on other SBs that have not yet been run:
getReadySBs(LST,ObsConditions,ArrayConfig).

4. Scheduler queries the ObservingProgram of each remaining SB to determine its
status: getProgramStatus().

5. Scheduler gets each SB’s startup calibration requirements:
getInitialCalRequirements().

6. For each SB, Scheduler asks the CalStatusMonitor to determine the time necessary to
bring SB to its required calibration state: getTimeToCalibrate().

7. Scheduler uses all its information concerning program status, scientific priority, time
to execute (including time to calibrate) and conditions to rank the SBs: orderSBs().

3.1.5 Execute SB

The Dispatcher passes the highest-priority (or manually-selected) Scheduling Block to the
Sequencer for execution. The Sequencer acquires configuration, calibration and observing
instructions from the Scheduling Block and carries them out with the help of objects that
know how to configure, calibrate and observe via the hardware and processing engines (not
shown here). The calibration objects can (optionally) skip a requested calibration update if
the desired calibration state has already been reached.

ALMA Initial Software Analysis

Created: 08/02/01 Page 48 of 84

 : Dispatcher : Sequencer : Subarray : Scheduling Block : CalSolver : PointingFocusCal
1: execute(SBId, Script, ArchivingSpec)

2: getDesiredHWConfig()

3: configureHW()

4: getInitialCalRequirements()

5: updateCalibrationState()

6: getObservingScript ()

Do observat ions,
calculat ions , etc. as
dictated by SB's observing
script.

10: getFinalCalRequirements()

11: updateCalibrationState()

8: isValid()

9: updateCalibration()

7: updatePointingFocus()

[not Valid]

Figure 3-5: Execute SB

1. Dispatcher instructs the Sequencer to execute a Scheduling Block

2. Sequencer gets the SB’s hardware configuration requirements (correlator setup,
receiver tuning, etc.)

3. Sequencer instructs the Configurator to configure the hardware.

4. Sequencer gets the SB’s initial calibration requirements.

5. Sequencer instructs the CalSolver to perform any necessary calibrations to bring the
calibration state to that required by the SB.

6. Sequencer gets the SB’s observing script and executes its commands.

7. Periodically, the Sequencer (as instructed by the script) will instruct the CalSolver to
update the Pointing and Focus calibrations. (It is also possible to use an asynchronous
notification mechanism, in which the PointingFocusCalibration object itself could
notify the Sequencer when its validity expires).

8. CalSolver asks the PointingFocusCalibration object whether it is still valid.

9. If the calibration is no longer valid (either because a determined time has elapsed

ALMA Initial Software Analysis

Created: 08/02/01 Page 49 of 84

since the last calibration update or because the antenna has slewed beyond a certain
amount) CalSolver requests the PointingFocusCalibration object to update itself.
(These two steps could be combined so that the PointingFocusCalibration object
updates itself if necessary. The choice made her leaves more explicit control in the
hands of the CalSolver.) See Section 3.1.7, ObservePointingCalibration, for details.

10. Once the observing script has finished, the Sequencer gets the SB’s final calibration
requirements.

11. Sequencer requests the CalSolver to ensure that the final calibration state has been
reached or, if desired, that particular calibrations are redone.

ALMA Initial Software Analysis

Created: 08/02/01 Page 50 of 84

3.1.6 Observe Single Field

This Sequence Diagram shows the execution of the script of an SB designed to execute a
(part of a) Single Field interferometric observation. A basic mechanism used here is that
of notifying objects when new data (either raw or processed) is available, but requiring
those objects to request the data when they are ready for it.

 : Di spatche r : Sequencer : Scheduling Block : Configurator : CalSolver : Scan : QuickLookPipeline : GainCal

1: execute(SBId, Script, ArchivingSpec)

2: getDesiredHWConfig()

3: configureHW()

4: getInitialCalRequirements()

5: updateCalibrationState()

6: observe()

8: observe() target

phase calibrator

9: newDataAvailable()

7: updateCalibration()

13: adjustCycleTime()

14: getFinalCalRequirements()

15 : updateCali brat io nState()
16 : up dateSBStatus()

12: returnPhaseRMS()

11: updateCalibration()

10: observe()

phase calibrator
target-cal
loop

Figure 3-6: Observe Single Field

1. Sequencer receives instruction from Dispatcher to execute a Scheduling Block:
execute(SBId,PreambleScript,ArchivingSpec).

2. Sequencer gets the SB’s hardware configuration requirements (correlator setup,
receiver tuning, etc.)

3. Sequencer instructs the Configurator to configure the hardware.

4. Sequencer gets the SB’s initial calibration requirements.

5. Sequencer instructs the CalSolver to perform any necessary calibrations to bring the
calibration state to that required by the SB. If this is the first SB in a session, these
will include gain, bandpass, focus and pointing calibrations. If suitable calibration

ALMA Initial Software Analysis

Created: 08/02/01 Page 51 of 84

sources have not been defined, CalSolver will coordinate the actions necessary to find
them.

6. Sequencer instructs the Observation object to observe the phase calibration source:
observe().

7. Sequencer instructs the GainCal object to process (asynchronously) the calibration
data just acquired: updateCalibration()

8. Sequencer instructs the Observation object to observe the target source: observe().

9. Sequencer notifies the QuickLookPipeline that there is new target data to process; the
pipeline will proceed asynchronously: newDataAvailable().

10. Sequencer instructs the Observation object to observe the phase calibration source:
observe().

11. Sequencer instructs the GainCal object to process (asynchronously) the calibration
data just acquired: updateCalibration()

12. CalPipeline asynchronously returns a new value of the phase rms when it has
accumulated and processed enough phase calibrator data: returnPhaseRMS().
(CalPipeline adds this new result to the Observing Conditions; this interaction is not
shown here.)

13. If the rms is too high, the Sequencer adjusts the calibrator cycle time to compensate:
adjustCycleTime().

Sequencer loops through Steps 7 to 13 until the desired performance goal is reached
or the SB’s time (minus some tolerance for final calibrations) is exhausted.

14. Sequencer gets SB’s final calibration requirements.

15. Sequencer instructs CalSolver to update all calibration states (performing whatever
calibrations are necessary) accordingly.

16. Dispatcher updates the status of the just-completed SB: updataSBStatus(newStatus).

3.1.6.1 Questions & Issues

1. How should the asynchronous delivery of the CalPipeline’s results be handled for the
various types of calibration? Is there some point at which lack of calibration results
becomes fatal to execution of the SB?

2. So many SBs from the same program or sub-program might be executed contiguously
that some parts of the calibration lose enough accuracy to become invalid. As a
framework for a mechanism to handle this, the CalStatusMonitor (see class diagrams)
has been defined; this object can be asked whether the current calibration status is
satisfactory for any specified SB, as well as how long it should take to bring any
needed calibrations up-to-date. Each calibration object would include a “maximum
time interval between runs” to make sure that it gets executed as often as necessary;
for calibrations for which this concept makes no sense, e.g., gain and temperature
scale calibrations, this capability would be suppressed, and the calibrations would be
performed under direct programmatic control.

ALMA Initial Software Analysis

Created: 08/02/01 Page 52 of 84

3.1.7 ObservePointingCalibration

Pointing and Focus calibrations require concurrent observing and processing activities. A
PointingFocusCal object has the responsibility for managing these activities and ensuring that
a satisfactory result is reached unless a preset time expires or a manual interrupt occurs.

 : PointingFocusCal : Subarray : CalPipeline : RawDataArchive : CalArchive : CalSolver

2: performPointingScan()
3: newPointingScan()

8: ingestPtgCorrections()

Repeat 2-10 until
desired accuracy
reached
OR timeout
OR manually stopped

5: calcPtgCorrections(ScanData, PhaseCorrected)

7: compareCorrectedUncorrected()
2-3 proceed
in parallel
w/steps 4-10

1: updateCalibration()

10: correctAntennaPtg()

9: returnPtgCorrections()

6: calcPtgCorrections(ScanData,PhaseUnCorrected)

4: reducePointingScan()

Figure 3-7: Observe Pointing Calibration

1. CalSolver instructs PointingFocusCal to update its state.

2. PointingFocusCal instructs the Subarray (in this case, all the antennas at its disposal)
to perform a pointing scan: performPointingScan().

3. When scan is completed, Subarray stores scan data in RawDataArchive:
newPointingScan().

4. PointingFocusCal tells CalPipeline to reduce the pointing scan: reducePointingScan().
These steps are repeated while the CalPipeline performs steps 4-8 below.

5. CalPipeline calculates the pointing offset corrections using phase-corrected data.

6. CalPipeline calculates the pointing offset corrections using phase-uncorrected data.

CalPipeline compares the errors on the offset corrections calculated in Steps 5 and 6,
choosing the set with the smaller errors: compareCorrectedUncorrected(). (S. Scott: “errors
estimated by taking a series of offset estimates and computing their scatter. These estimates
may have a weight, for example, from the fitting process, or by measuring the scatter of the
visibilities on shorter timescales.”)

7. CalPipeline stores the new pointing offset corrections and errors in the CalArchive:
ingestPtgCorrections().

ALMA Initial Software Analysis

Created: 08/02/01 Page 53 of 84

8. CalPipeline returns the new corrections to PointingFocusCal

9. If necessary, results so far are used to correct the pointing of one or more antennas:
correctAntennaPtg(Antenna_#)

10. Steps 2-10 are repeated until the desired pointing accuracy is reached, the preset time
limit has been reached, or the calibration is terminated manually.

3.1.8 ProcessData

This Sequence Diagram displays the interactions necessary to process raw data into calibrated
images and to archive the results. Sequence diagrams for Quicklook and standard Image
reduction are virtually identical. The major difference is the particular Image Script that is
executed (deconvolution is included only for the standard reduction). Thus the Process Data
diagram covers both cases.

 : OperatorUI : Sequencer : ObservingProgram : RawDataArchive : ScienceArchive : ImagingPipeline : CalArchive

3: getData(RawDataSpec)

5: executeImageScript(ImageScript, DataSet)

6: toBeArchived(Data)

7: saveData(ReducedData)
8: notifyNewReducedData(ReducedData)

9: noti fyDataArchived()

10: notifyNewReducedData(ReducedData)

1: processData(ImageScript, RawDataSpec)

2: processData(ImageScript, RawDataSpec)

4: getCalibData(RedDataSpec)

[save == true]

[manual]

[automatic]

Figure 3-8: Process Science Data

1. In automatic mode, the Sequencer has been notified that new data are available and
decides (perhaps at the end of a session) that the ImagingPipeline should process
them. This is done asynchronously to enable the observatory to proceed with
observing while the data are being reduced.

2. In manual mode, the User has been notified that new data are available and may
decide that the ImagingPipeline should process them. This is done asynchronously to
enable the User to perform other tasks while the data are being reduced.

3. The ImagingPipeline retrieves the data to be reduced from the RawDataArchive by
'getData'. This migrates the data to a place convenient for the ImagingPipeline.

4. The Image Production Script specifies what types of calibration data are required to

ALMA Initial Software Analysis

Created: 08/02/01 Page 54 of 84

reduce the raw data in hand. These calibration data are obtained from the Calibration
Archive using the method 'getCalibData(RedDataSet)'.

5. Once the IPScript and the data are available, the script is executed by
'executeImageScript(ImageScript, DataSet)'.

6. The Pipeline checks with the Observing Program if the reduced data actually should
be stored using 'toBeArchived(Data)'.

7. In case they should be stored in the Science Archive, they are saved by the method
'saveData(ReducedData)'.

8. When the Reduced Data have been saved in the Science Archive, the Imaging
Pipeline notifies Sequencer of its availability.

9. The Science Archive notifies the Pipeline that the data have been saved successfully
so that temporary copies can be removed.

10. Also the User is notified when a final, deconvolved image is available.

ALMA Initial Software Analysis

Created: 08/02/01 Page 55 of 84

3.2 Proposal/Project Preparation Activity Lifecycle

END

SUBMITTED
Proposal

Review Proposal
OPC

Valid?
ALMA

Review Proposal
OPC

Reject

Valid?
ALMA

Yes

APPROVED
Proposal

Approve

Local
User
Activity

ALMA
Activity

To Phase II -
Project
Preparation

Phase I
Proposal Preparation

EDIT
Proposal

Submit
Proposal

Editing
Proposal

Valid?
User

Submit
Proposal

Editing
Proposal

No

Valid?
User

Yes

No

SUBMITTED
Project

Review Project
ALMA Staff Optional?

Valid?
ALMA

Review Project
ALMA Staff Optional?

Valid?
ALMA

Yes

APPROVED
Project

Enable Observing
Units

Enable Observing
Units

Approve

Phase II
Project Preparation

EDIT
Project

Submit Project

Edit ing
Project

Valid?
User

Submit Project

Edit ing
Project

No

Reject

Valid?
User

Yes

No

Phase I I - P roj ect Prepara tionPhase I - Proposa l Preparation

Figure 3-9: Proposal/Project Preparation Activity Diagram

ALMA Initial Software Analysis

Created: 08/02/01 Page 56 of 84

3.2.1 Phase I Proposal Preparation State Diagram

Description

In Phase I Proposal Preparation the Observer creates a Proposal and submits it to the
Observatory. The Proposal is reviewed and either accepted or rejected.

States

1. EDIT Proposal

The Observer enters all mandatory Phase I information. Optionally, Phase II information can
be provided.

The editing process ends with the submission of a locally validated proposal to the
Observatory.

The OT provides a number of additional services to help the Observer with the creating of the
Observing Proposal, e.g., array configuration, correlator setup, observing time required,
anticipated data rates and data volumes.

2. SUBMITTED Proposal

The submitted proposal is validated by the Observatory and is reviewed by the Observing
Programme Committee (OPC) on its scientific and technical merits

The Observer is informed in case:

• the proposal is accepted;

• the proposal is rejected;

• the validation failed (proposal needs to be corrected and re-submitted).

3. APPROVED Proposal

The proposal is granted observing time and the Observer is required to submit Scheduling
Blocks.

3.2.2 Phase II Project Preparation

Description

In Phase II Proposal Preparation the Observer creates one or more Observing Units (detailed
down to the Scheduling Blocks [SB] level) for the Observing Project and submits these to the
Observatory. The Observing Units are stored in the Observing Project Catalog, and the
validated SBs (which are the only form of the Observing Units that can be scheduled) are also
stored in (or pointed to be) the Observatory SB repository.

States

1. EDIT Program

The Observer enters all mandatory Phase II information and creates Observing Units, down

ALMA Initial Software Analysis

Created: 08/02/01 Page 57 of 84

to the level of Scheduling Blocks (Observing Scripts and initial and final calibration
requirements). An Observing Unit may be either 1) an Observing Program (which itself
includes an Observing Unit Set), including specifications for the order (if any) in which the
Set is to be observed, and how the data from the Set is to be reduced, or 2) a Scheduling
Block. Templates are provided all standard observing modes.

The Observing Unit creation process ends with the submission of a locally validated project
to the Observatory.

Again, the OT provides a number of additional services to help the Observer with the creating
of Observing Units, e.g., array configuration, correlator setup, observing time required,
anticipated data rates and data volumes.

2. SUBMITTED Program

The submitted Observing Units are validated by the Observatory and optionally reviewed by
the ALMA Operations Staff.

The Observer is informed in case:

• the Project is accepted and stored;

• the Project is not accepted and needs further work.

3. APPROVED Program

The approved SBs are accessible from the SB repository, and waiting for scheduling and
execution.

3.3 Additional Sequence Diagrams

During the process of creating the Sequence Diagrams, it became clear that an overall
Executive process was needed to manage the various services (Dispatcher, Scheduler,
Sequencer, Subarray Allocator, Pipeline, Error Monitor) that are needed to operate the
observatory, so an additional Use Case, "Operate ALMA System," and the corresponding
sequence diagram were generated. We then identified additional (mainly administrative)
software services that need to be present to operate the ALMA system. Use Cases and
Sequence Diagrams for "Manage ALMA Facility" and "Administer Observing Programs"
were developed. The additional Use Cases are given in the Appendix, while their realization
through sequence diagrams are presented in this section.

3.3.1 Sequence Diagram: Operate ALMA System

This is the top-level executive program in the ALMA Observing System [AOS]. It initializes,
operates and supervises the interfaces, services, observations and hardware.

ALMA Initial Software Analysis

Created: 08/02/01 Page 58 of 84

 : MasterUI : Executive : ErrorMonitor Local : InfoService : SubarrayAllocator : Dispatcher Remote : InfoService : ExecWatchdog
1: start()

3: start()

4: start()

5: start()

6: start()

7: subscribe()

8: subscribe()

9: subscribe()

10: subscribe()

11: isAlive()

12: res tart()

13: isAlive()

14: isAlive()

15: isAlive()

16: refreshContent()

17: uploadNewData()

20: shutdown()

18: error()19: error(OriginatingSubsystem)

2: reset()

Figure 3-10: Operate ALMA System

1. The operator at the MasterUI instructs the Executive to begin operations: start().

2. Executive resets the ExecWatchdog.

3. Executive starts the Error Monitor.

4. Executive starts the local set of InfoServices.

5. Executive starts the SubarrayAllocator.

6. Executive starts the Dispatcher.

7. Executive subscribes to the notifications of the ErrorMonitor.

8. ErrorMonitor subscribes to the error notifications of the local InfoServices.

9. ErrorMonitor subscribes to the error notifications of the SubarrayAllocator.

ALMA Initial Software Analysis

Created: 08/02/01 Page 59 of 84

10. ErrorMonitor subscribes to the error notifications of the Dispatcher.

11. Executive periodically polls the ErrorMonitor to check that it is still operating:
isAlive().

12. If the value returned by isAlive() is false, the ErrorMonitor has died, and the
Executive attempts to restart it: restart().

13. Executive periodically polls the local InfoServices to check that it is still operating:
isAlive().

14. Executive periodically polls the SubarrayAllocator to check that it is still operating:
isAlive().

15. Executive periodically polls the Dispatcher to check that it is still operating: isAlive().

16. When the Dispatcher finds the supply of SB's insufficient, it asks the local
InfoServices to download more: refreshContent().

17. Local InfoServices instructs a remote version of InfoServices to upload new SB's:
uploadNewData().

18. In case of an error encountered by the Dispatcher, it notifies the ErrorMonitor (via the
subscription mechanism): error().

19. ErrorMonitor distributes the error notifications to Executive (again via the
subscription mechanism): error().

20. After fifty or sixty years of successful operation the operator shuts down the
Executive and brings the ALMA project to a conclusion: shutdown().

ALMA Initial Software Analysis

Created: 08/02/01 Page 60 of 84

3.3.2 Sequence Diagram: Manage ALMA Facility

 : OperatorUI : AdminTool : LogArchive :
ObservingProjectCatalog

 : RawDataArchive : SubarrayAllocator : MaintenanceDB : ScheduleDB : Bodega

1: requestReport()

2: getLogRecords()

3: getProgramStatistics()

4: getArchiveStatistics()

5: generateReport()

6: displayReport()

7: requestMaintenanceAction()

8: requestEquipment()

9: updateStatus()

10: updateSchedule()

11: getParts()

12: makeSiteSchedule()
13: getProgramInfo()

14: getStatus()

15: getPersonnelSchedule()

16: updateSchedule()

Figure 3-11: Manage ALMA Facility

1. The User requests a report containing information on the general performance of ALMA
such as efficiency, number of SB's and Programs executed, reliability, etc. This may be
done for a given period and for a specific set of subsystems.

2. All log records relating to the period and equipment in question are retrieved. They are
then scanned for relevant information.

3. Statistics on all active Programs are obtained.

4. General information on data volume and access rates is retrieved from the Archive.

5. The information is collected into a report.

6. This report is displayed.

7. Such a report may suggest that certain maintenance actions be performed. The User
judges if this should be done and submits a request.

8. The equipment to be placed under maintenance is requested to be reserved so that
maintenance can start.

9. When the equipment is allocated to maintenance this and related information are recorded

ALMA Initial Software Analysis

Created: 08/02/01 Page 61 of 84

in the Maintenance Database.

10. Changes in schedules due to the maintenance are made in the Schedule Database.

11. Spare parts are obtained from the Warehouse, which also is responsible for replenishing
supplies.

12. The User requests a general long-term schedule to be made for the site. This may include
array configurations, availability of staff etc.

13. The specifications of the Observing Programs to be scheduled are obtained.

14. The maintenance status of equipment is retrieved.

15. General information of availability of staff is obtained to ensure that personnel can
perform the schedule.

16. The schedule is updated.

3.3.3 Sequence Diagram: Administer Observing Program

 : OperatorUI : ProgramTool :
ObservingProjectCatalog

 : SB-Repository : RawDataArchive : ScienceArchive : LogArchive : EmailService : ObservingProgram

1: start()
2: subscribe()

3: requestReport()

4: getProgramInfo()

6: generateReport()

7: displayReport()

10: requestDataPackage()

11: getProgramInfo()

5: getSB()

12: getSB()

13: getRawData()

14: getImageData()

15: getLogRecords()

16: writeMedia()

18: updateProgramStatus()

17: informPI()

8: newEvent()
9: displayEvent()

Figure 3-12: Administer Observing Program

1. The User starts the Program Administration Tool.

2. The Program Tool subscribes to the Observing Program Catalog in order to be informed a

ALMA Initial Software Analysis

Created: 08/02/01 Page 62 of 84

Program changes its state e.g. reaches a breakpoint or become complete.

3. The User requests a general report of the current state of all active Observing Programs.

4. The Tool the status of each active Program.

5. From the Program information associated SB's are identified and they are obtained from
the Repository.

6. With this information the Tool generates a complete report as specified by the User.

7. The report is displayed to the User.

8. A Observing Program has changed its state to one which require the PI to be informed
and obtain data. As the Tool has subscribed to such event, it is informed.

9. The Tool communicates the event to the Operator.

10. If the Operator acknowledges a data package is generated and the PI informed.

11. The full information for the Program is retrieved from the Catalog.

12. All relevant SB's are obtained.

13. From Program and SB information, all associated data produced for the Program are
identified. The raw data are retrieved from the Archive.

14. All processed image data are then retrieved.

15. All important log messages related to the Program are obtained from the Log Archive.

16. The information (e.g., data, logs) is collected into a standard data package format. This
package is then transferred to media that the PI can access. This could be media like
DVDs, which can be shipped to the PI but may also be an ftp server that s/he has access
to.

17. The PI is informed (e.g., by e-mail) that the Program state has changed and related data
are available. The system verifies (e.g., by requiring a return receipt for the e-mail) that
the notification has been received.

18. The Program status is updated to record that the PI has obtained access to the data.

4 Error Conditions & Handling Matrix
Error conditions of all types will of course be a fact of life for ALMA. In the accompanying
matrix, we have begun to make an incomplete matrix of examples of the different kinds of
things that can go wrong, who should be notified, what effect these faults are likely to have
on ALMA as a whole, on the faulty subsystem, and on the further performing of Observing
Programs. Guesses at the time necessary to get the system up and running again, as well as
that necessary to provide a definitive fix for the fault are given. For example, a system may
crash or hang because of a memory leak due to faulty software. While rebooting the affected
computer may allow the system to continue to run for a certain period of time, finding the
source of the memory leak and fixing it will take much longer.

ALMA Initial Software Analysis

Created: 08/02/01 Page 63 of 84

Subsystems wishing to be informed of errors in another subsystem can subscribe to the other
subsystem's error publishing mechanism. Only some errors can be signaled by the error
handling system, however. Crashes or hangs of major subsystems will only be recognized if
those subsystems are polled regularly, and such a procedure is foreseen in the "Operate
ALMA" Use Case and Sequence Diagram presented later in this document.

ALMA Initial Software Analysis

Created: 08/02/01 Page 64 of 84

Error Type Se
ve

rit
y

O
p?

PI
?

St
af

f a
st

ro
no

m
er

?

D
is

ab
le

 A
LM

A
?

D
is

ab
le

 s
ub

sy
st

em
?

SP
R

?

Lo
g?

`

R
eb

oo
t?

H
ol

d
O

B
/S

B
?

G
o

to
 n

ex
t p

gm
?

B
la

nk
?

Fl
ag

?

Ti
m

e
to

 re
su

m
e

op
s

Ti
m

e
to

 fi
x

Su
bs

ys
te

m
s

to
 n

ot
ify

Fire Y N Y Y N Y N Y N
Hardware

Antenna alarm Y N N Y N Y N Maybe Maybe Y ~5 min ~3 days
Receiver Y N N Y N Y N Maybe Maybe Y ~5min
Correlator Y N N N N Y N Maybe Maybe

Computer
Archive Computer Y N Y N Y Y N N ~5min
Pipeline Computer Y N N N Y Y N N
Scheduling Computer Y N N N Y Y N N

Comm facilities Y N Maybe Maybe N Y Maybe N N
Active Components ~10min
Passive Components

Software
Crash or hang Y N N N Y Y Y Maybe Maybe ~5min
SB times out Y Y N N N Y N Maybe Maybe ~1min days
SB fails Y Y N N Y Y N Y Y ~1min days
Pointing failure Y N N Maybe Y Y N Y N
Focus failure Y N N Maybe Y Y N Y N
Tsys out of bounds Y N N Maybe N Y N
Raw Data Archive Y N Y N Y Y Maybe N N ~5 min days
Cal Pipeline

Anomalous data Y N N N

One-time (e.g., crash
or memory leak) Y Y Y N N N N mins days
Design/implement'n Y N N Y Y Y Maybe Maybe Maybe N N ? weeks

QL Pipeline Y ? Y N N Y Y Maybe Maybe Maybe N N mins days
Bad images

System-detected
QC-detected

Proposal Preparation
OT General

Installation fails Y 1-3 d
Data can't be saved hours
Data can't be retrieved locally hours
Data corrupted hours
Wrong version mins

OT Subsystems
Editor crash/hang Y hours
Validator crash/hang Y hours
Validator wrong res Y hours
Data can't be sent hours
Correlator tool
Simulator

ALMA Proposal Ingest
Mail system down mins
PI/PII data can't be stored < 1 hr
Receipt notify fails Y Y < 1 hr
Validator crash/hang Y 1-2 hrs
Valid. Report not sent Y Y 1-2 hrs

Phase I/II Repository
Full mins

Notify

ALMA Initial Software Analysis

Created: 08/02/01 Page 65 of 84

5 Security considerations
In order to protect ALMA Operations from outside interference, whether well intentioned or
malicious, we envision a set of basic access restrictions on interactions with the outside
world. In particular, an Operations process must initiate any transfers into or out of databases
that are in use by Operations. For example, when the Scheduler or Exec notices that its
supply of SB's is low, it can request an update from, say, the ALMA Science Operations
Center (exact name and location TBD, but we imagine it as being, say, in Santiago).
Similarly, ALMA data is staged to mirror archives outside the charmed circle of Operations
before it can be freely accessed; this policy applies to the use of proprietary as well as public
domain data. Even the PI is not to access the online ALMA archive, which will presumably
be located at the OSF.
In many cases information such as observing proposals, SB’s and project status will be
exchanged between the ALMA observatory and external institutes and scientists via the
Internet. To ensure that this information arrives without being corrupted or compromised,
these exchanges must be protected and verifiable through the use of digital signatures and
checksums; some may need to be encrypted. Since e-mail delivery is not 100% reliable, it
must be possible to verify receipt when e-mail is used for information critical to either the
Observatory or to the PI.

ALMA Initial Software Analysis

Created: 08/02/01 Page 66 of 84

6 Architecture
Most of the major subsystems that emerge from the analysis are clients of some subsystems
and servers for others. Sequencer objects, for example, could serve not only the Dispatcher,
but also any simple engineering interface that can pass ASCII text (scripts or script
commands). We can foresee that, particularly as the entire ALMA observatory is being
implemented, each of these subsystems is likely to be implemented and tested, if not actually
used, in a more-or-less standalone mode before the entire system is integrated. We have tried
to minimize interference by one subsystem with the work of another: we have not yet seen
the need to introduce interrupt mechanisms for the high-level software. One subsystem may
subscribe to the service offered by another system, but these are usually subscriptions to a
notification service; more substantial tasks, such as large data transfers, are always initiated
by the subsystem needing the service.

We have tentatively defined where (e.g., on what piece of computer hardware) each piece of
the system will be located. The definition of minimal interfaces allows us to distribute the
pieces across different platforms, and to use a communications scheme such as that provided
by CORBA implementations. (This choice has already been made for the ALMA Common
Software and the software for the ALMA Test Interferometer.)

6.1 Overall system flow

The following activity (“swimlane”) diagram gives a schematic view of the general order of
events in the life of an ALMA program, as well as the parts of the system responsible.

ALMA Initial Software Analysis

Created: 08/02/01 Page 67 of 84

Create & Submit Observing
Proposal

OProp being
created

OProp being
created

Create & Submit OP and
SBs

OP / SBs
being created

OP / SBs
being created

Write Paper

Refereeing

OProp being
refereed

OProp being
refereed

Perform Archival
Research

Accept Proposals

OProp
submitted
OProp

submitted

Send to Referee

OProp being
sent to referee
OProp being
sent to referee

Accept refereed
OProp
OProp
refereed
OProp
refereed

Notify observer

OProp
accepted
OProp

accepted

Accept OP / SBs

OP / SBs
submitted / queued

OP / SBs
submitted / queued

Package OP Results

OP
completed

OP
completed

Schedule SB

SBs being
ranked

SBs being
ranked

Execute top level SB

SB being
executed
SB being
executed

Update OP Status

OP
observed

OP
observed

Monitor subsytems

Archive raw data

Raw Data
Archived

Raw Data
Archived

Archive calibrated data

Calibrated Data
Archived

Calibrated Data
Archived

Calibrate raw data

Raw Data being
calibrated

Raw Data being
calibrated

Deliver archived
data

Calibrate
archived data

Deliver OP Data

OP Data
Delivered
OP Data
Delivered

Remote DataPipelineRemote ArchiveDataPipelineArchiveALMA Master ControlProgram AdministrationRefereeProposer

Figure 6-1: ALMA Swimlane Diagram

6.2 Major services

The principal services that have emerged from this analysis are:

• Executive: the basic supervisor process

• Dispatcher & Scheduler: the process responsible for determining which Observing
Programme to perform next

• Sequencer: a script language processor

• Subarray: our abstraction for the ALMA hardware

• Subarray Allocator: a general ALMA resource allocator

• Pipeline: responsible for real-time (Calibration), not-so-real-time (Quicklook), and
Science Data (production of final images and datacubes) Reduction

• Error Monitor: receiver and notifier for fault conditions

ALMA Initial Software Analysis

Created: 08/02/01 Page 68 of 84

6.3 Deployment

We have made a first cut at allocating ALMA software to individual processors or nodes, and
have defined ten general types of nodes or processors to understand deployment and
communication issues. They are:

N1) Proposer: Used by the Proposer to prepare observing proposals for ALMA. It will often
be external to the secure ALMA network (e.g., because it is on the Proposer’s laptop) and
exist in several instances.

N2) Referee: Used by referees during their evaluation of proposals. It may be external to the
secure ALMA network and exist in several instances.

N3) ALMA Master Control: Controls the ALMA facility and can therefore only exist in one
instance. It is naturally in the secure ALMA network and accessed by the ALMA operator.

N4) ALMA Administration: Used by ALMA staff for administration of the general ALMA
facility. The node can exist in several instances, but all must be on the secure ALMA
network.

N5) Program Administration: Used by staff for performing tasks related to the
administration of observing programs.

N6) Data Processing: Performs general pipeline processing of data. It can both be internal or
external to ALMA.

N7) Archive: This type of node provides access to the InfoServices. It may exist in several
instances but normally on the secure ALMA network.

N8) Observer: Used by observers (A3) to detail observation (i.e. to specify Scheduling
Blocks) which then can be executed immediately after. This node is on the secure ALMA
network and normally only in one instance.

N9) Scientific User: Used by scientific users to perform their work when interacting with
ALMA data. It is normally external to ALMA and can exist in multiple instances.

N10) ALMA System: This is a generic node of the ALMA real-time system, e.g., antenna,
correlator, real-time computer.

ALMA Initial Software Analysis

Created: 08/02/01 Page 69 of 84

Proposer

manual

Referee

manual

AlmaControl

executive

AlmaAdmin

manual

Archive

preemptive

Observer

manual

ProgAdmin

manual

DataPipeline

preemptive

AlmaUser

manual

OP PackagingSB Queue Fill

OP/SB Fetching

Data Processing

AlmaSystem

preemptive

CorrelatorAntenna

SubArray Observing

Refereeing

Data Processing

Interactive / Manual Sessi...

ALMA ->

<- External

Possibly external
(remote observing)

Remote
Archive

preemptive

Remote
DataPipeline

preemptive

Synch.

Data Processing

OP Submiss...

Archival Research

Figure 6-2: ALMA Deployment Nodes

7 What now ?
The work of analysis, the "refining and structuring" of the requirements, is far from complete.
Obviously missing are diagrams and class definitions for archival research and the details of
pipeline processing. The requirements themselves are continuing to evolve, and a mixture of
further analysis, preliminary design, and prototyping of the major subsystems will be needed
to determine how difficult it will be to realize them.

ALMA Initial Software Analysis

Created: 08/02/01 Page 70 of 84

8 Operational Issues
The ALMA software development group will try to design a system that, by virtue of the
flexibility of its basic structure, should be able to accommodate significant variations in the
still yet-to-be-defined operational model for ALMA. Nevertheless, there are certain issues
whose resolution in one way or another can have important impacts on the complexity of the
resulting system, and therefore also on its cost.

a) Depending on the flexibility to be accorded to the Time Allocation Committee, the
software may need to support the assignment of differing priorities and time allocations to
pieces (Observing Units) of an Observing Project. This document has already defined the
necessary conceptual infrastructure, but whether such differential assignment will actually be
done is a policy issue.

b) Use Cases are needed for subarray examples, in particular for case of splitting array into
two or more subarrays and the synchronization requirements for reuniting them.

c) There will be an effect on the design of the Dispatcher and Scheduler if "filler"
programmes are to be scheduled when some antennas are not needed by the primary
programme.

d) If the simulator is needed early to allow automatic vetting of non-standard scripts (which
by hypothesis would be more frequent in the early years of ALMA operations), this will
affect the order of software development.

e) A mechanism that authorizes proposers to submit non-standard scripts is probably needed.

f) The SSR believes that evaluation of a test source (e.g., a calibrator) will provide sufficient
data quality evaluation for standard modes. We haven’t seen this done in software before, and
the effort needed is hard to predict.

g) If the scientific staff will have to adjust the array configuration schedule to reflect the
needs of accepted programs, some support software will be needed.

h) Should stringent control of Phase I/II consistency be needed, supporting software of
undefined complexity (undefined partly because explicit requirements are missing and we
don’t know the scope of the work) will be needed.

ALMA Initial Software Analysis

Created: 08/02/01 Page 71 of 84

9 Appendix: Revised Use Cases

9.1 Use Case: Operate ALMA System

This is the top-level executive program in the ALMA Observing System [AOS]. It
initializes, operates and supervises the interfaces, services, observations and
hardware.

Role(s)/Actor(s):
Primary: System Operators
Secondary: Observers, Staff Astronomers, Maintenance

Priority: The top priority process in the ALMA system.

Performance: Must be immediate and maximum. In addition, no outside programs or
requests should be able to prevent or degrade the control system from operating the
instrument.

Frequency: Continuous operation - Constantly used, available, and checked.

Preconditions: Initial hardware and software installed

1. The entire ALMA system is powered up

2. All major software and hardware devices are operational.

Basic Course: Startup and Normal operations

1. On the main ALMA control computer, the AOS executive program is started
as a process, either automatically or manually. A progress and status display is
maintained during this process for the operator and system monitor logs.

2. The executive program then starts:

1. System Initializer and Loader Processes:

1. Communications

2. Hardware Initialization

2. Information Services

1. Equipment and Service Monitors and Logs

2. Configuration Control

3. Archives:

1. Catalogs

2. Calibrators

3. Science and Image Data - Public

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 72 of 84

4. User Data:

1. Status

2. Proposals

3. Programs

4. SBs

5. Science and Image Data - Private or Proprietary

3. Processing Services

1. Calibrator Pipeline

2. Quick Look Pipeline

3. Imaging Pipeline

4. Operator Interfaces

1. System and Equipment Status Displays

2. Environmental Status Displays

3. Schedule Status Displays

4. Observation Status Displays

5. Observation System Services:

1. Dispatcher

2. Subarray Allocator

1. Antenna Manager

2. Correlator Manager

3. From the services and displays, the operator may start and stop any services,
observations or the entire ALMA system.

4. The system is then operating in its standard mode - dynamically scheduled
mode - automatic workload processing with dynamic scheduling.

5. The operator may also start other processes manually to perform system
operation and maintenance, including calibrations, antenna relocation or
backup operations. Or the operator may alter the mode of operation of the
instrument as follows.

6. Alternate Course: One or more of the observing subsystems is operated in
interactive mode. This mode provides for a guest or staff astronomer to
directly control an observation through a GUI.
The scheduler allows the operation of an observation activity from a user

ALMA Initial Software Analysis

Created: 08/02/01 Page 73 of 84

terminal.
Script and other parameters in use may be altered by the observer at the
terminal.
Postcondition: The system may be returned to any other mode.

7. Alternate Course: One or more of the observing subsystems is operated in
manual mode. This mode provides for direct control of the instrument through
its command language.
Dynamic Observation Scheduling is suspended.
All activity is initiated manually.
Postcondition: The system may be returned to any other mode.

8. Alternate Course: One or more of the observing subsystems is operated in
technical mode. This mode is provided for engineers for debugging and
maintenance purposes.
Dynamic Observation Scheduling is suspended.
All user observation activity is suppressed.
All activity is initiated manually.
Postcondition: The system may be returned to any other mode.

Subflow: System Shutdown

1. The Scheduler can suspend operations under command or clock control,
preventing any new observations from starting. Any existing observations may
be allowed to run to completion or be manually preempted.

2. The Executive can terminate the ALMA processes enumerated above.

3. The system platform may then be halted and powered off.

Alternate Course: System Error Processing

1. Error Detection - At any time, the system may detect errors and require a
response from the exec. Errors are detected by two methods: 1) Errors are
detected by direct response from the command and control system to
commands issued by the exec or related processes. 2) They are also detected
by other monitoring processes which evaluate data being published by the
equipment monitor stream. These error sources are two independent processes.
Errors are classified according to severity and urgency. Some errors may be so
catastrophic that these detection processes do not work. An example is the
failure of the exec itself, the command and control system, or the monitor
system. The instrument is unusable if this happens.

2. Minor System Problems - The exec is expected to diagnose, respond and
recover automatically to these errors if observing parameters can be met. -
These are errors which do not prohibit continued operations. They may range
from a temporary loss of pointing or communications to the permanent loss of
one or more antennas or image processing. They may also include software
errors that can be temporarily fixed by restarts.

3. Major System Problems - The exec is expected to diagnose these errors and

ALMA Initial Software Analysis

Created: 08/02/01 Page 74 of 84

await manual intervention. - These are severe errors that prohibit continued
operations. They include failure of the control, communications, correlator and
archiving system. This also includes software errors which are unfixable, even
temporarily, by a restart. Obviously one of these major errors is the failure of
the exec itself so a simple restart cannot compensate, even temporarily.

4. Recovery - Recovery from errors may range from:

1. unnecessary because later processing compensates as in correlator
output flagging, pointing flagging, etc.;
[- exec remains on line. - Observation continues - No action by exec is
necessary.]

2. restarting of a failed component, possibly giving a temporary fix;
[- exec remains on line. - Observation may be interrupted and resumed.
- Some items such as a crashed program can be restarted by the exec,
automatically or manually.]

3. replacement of a failed component;
[- exec may go offline. System , or part thereof, goes offline. - Time
and a maintenance period is required.]

4. fixing a design flaw in hardware or software.
[no fix by the exec or operator is possible. Engineering development
must handle this case, perhaps requiring scheduling observations
around the problem until it is fixed. The exec is only useful to
manipulate the instrument to perform manual intervention for
component replacement or possible temporary manual actions to work
around a failure.]

If the exec itself fails, recovery ranges from a restart of the top level processes
wherein they recapture their orphan processes, or otherwise the entire system
may require a restart.

Exception Course:

1. Instrument operation requires the exec for observations. Some maintenance
activities may be performed in manual processes without the entire instrument
operating.

Postconditions:

1. There are no postconditions. The system does not operate without the exec.

Issues to be Determined or Resolved:

1. Differences between Interactive and Manual modes.

9.2 Use Case: Manage ALMA Facility

The goal of this Use Case is to illustrate a set of general management tasks for the
ALMA facility. They include the generation of reports on the status and performance
of the facility, initiation of maintenance actions, verification of local supplies, and
management of visitors and staff (e.g., creation of schedules, reservations).

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 75 of 84

Role(s)/Actor(s):

Primary: System administrator, System Operator

Secondary: InfoServices

Priority: major

Performance: minutes

Frequency : several times per week

Preconditions :

1.Information Services are available.

Basic Course:

1. Actor specifies the period and ALMA systems for which a report should be
generated.

2. Logs for this period are retrieved.

3. Log records are scanned and relevant information extracted.

4. A report is generated.

5. Potential maintenance tasks are initiated which include:

• reserving the equipment for maintenance

• scheduling personnel and time for maintenance

6. Verify if supplies are in stock and, if not, initiate orders of new supplies.

7. Establish a general plan for availability of antennas and their configurations
considering information from Observing Program Catalog and maintenance
schedule.

8. Generate schedule for interactive observation

9. Generate schedule for staff considering the schedule for interactive observations,
calibration plan and preventive maintenance.

10. Allocate infrastructure resources to accommodate staff and visitors.

Postconditions:

1. Requested reports on the general ALMA status and performance are generated.

2. Required maintenance actions are taken.

3. Supplies are checked.

4. Plan for antenna and configurations is generated.

5. Staff and visitor schedules and associated arrangement are made.

ALMA Initial Software Analysis

Created: 08/02/01 Page 76 of 84

9.3 Use Case: Administer Observing Programs

The purpose of this Use Case is to perform a set of tasks required to administer the
execution of Observing Programs. This includes emission of e-mail to PI's at specific
Program events (e.g., reaching a Breakpoint), migration of user data, creation of final
user data packages, and generation of reports on the status of Observing Programs.

Role(s)/Actor(s) :

Primary: System Operator, Staff Astronomer

Secondary: E-mailService, InfoServices

Priority : Major

Performance : minutes

Frequency : several times per day

Preconditions :

1. Observing Program Catalog is available.

2. SB Repository is available.

3. Raw Data and Science Archives are available.

Basic Course:

1. The user starts the tool which checks if e-mail service and communication are
available and subscribes to Observing Program change event.

2. Status information for all active Programs is obtained from the Observing
Program Catalog.

3. A status report for all active Programs is generated

4. The actor may explicitly initiate migration of data and e-mail messages to PI.

5. When Program change events are received the Program information is retrieved.

6. If a breakpoint is reached or similar event which requires that the PI is informed
(e.g. Program complete), the following tasks are executed:

• data and logs associated with the Program are identified

• relevant data are migrated to a server to which the PI has access.

• an e-mail is sent to the PI to inform her/him of the event and the availability of
the data. Receipt of this e-mail by the PI is verified by the system.

7. Status of Program is updated.

Postconditions:

1. PI is informed by e-mail of changes in the Observing Program status.

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 77 of 84

2. Relevant user data are made available to PI

3. Requested reports on the status of Observing Programs are generated.

Issues to be Determined or Resolved:

1. Policy: at which Program status changes should a PI be informed?

2. Policy: when can a PI request data?

9.4 Use Case: Dispatch Scheduling Block

The goal of this use case is to obtain a ranked list of Scheduling Blocks (SBs) from
the Dynamic Scheduler or from an interactive observer (via the Observing Tool) and
pass this to the Sequencer. When a group of SBs from the same Observing
Programme is executed contiguously, an observing session is said to have been
executed. The system may initiate some data processing activities at the end of a
session.

Role(s)/Actor(s):
Primary: Operator, Scheduler, Sequencer
Secondary:

Priority: Critical

Performance: Seconds to hours

Frequency: Several times per minute/hour/day; One at a time per Sub-Array

Preconditions:

1. Need to have Scheduling Block(s) available in the Phase II SB
Repository

Basic Course:

1. System requests a priority-ordered list of SBs from the Dynamic
Scheduler in either "atomic" or "snapshot" dynamic scheduling mode.
(see UC_ScheduleSB)

Alternate course: System requests an SB from the Observing Tool in
Interactive mode.

2. The system displays this list to the Operator, who can choose to
override it, moving a different SB to the top of the list and furnishing a
reason for this decision to the log.

3. The system passes the SB at the top of the list to the Sequencer for
execution

4. Upon return from the Sequencer, the system updates persistent SB / OP
(Observing Program) parameters that have changed and saves SB / OP

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Priority.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Performance.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/BasicCourse.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 78 of 84

status

5. The system repeats Steps #1 and 2. If the newly selected SB requires
that the previous session be ended (because it is from a different
Observing Programme, for example), the system initiates the
appropriate session-processing activities on the Science Data Pipeline.

6. The system loops on Steps #3, #4 and #5 as long as the Scheduler or
the Observer can furnish an executable SB.

Exception Course:

No more SBs are available to be scheduled.

1. Stop SB execution

2. Notify operator / observer; request repopulation of SB-Repository

Postcondition: System waiting for input of SB or observing commands

Postconditions:

1. SB's have been successfully dispatched

Issues to be Determined or Resolved:

• Which calibrations can be shared across SBs from different programs?

• What happens in snapshot mode when conditions change rapidly?

Notes:

• Must have access to persistent program parameters.

Owner: Joseph Schwarz
Last updated by $Author: jschwarz $ on $Date: 2001/06/21 11:19 $

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/TBD.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 79 of 84

9.5 Use Case: ScheduleSB (Revised)

Retrieve SBs from Phase II SB Repository, assign priorities to Observing Programme
SBs and return prioritized list of SBs to the Dispatcher.

The Phase II Repository for a given Programme contains SBs as well as their
associated configuration and calibration requirements. The Scheduler will take
account of the time required to bring the array to the necessary calibration state when
assigning a rank to each SB.

In "local scheduling mode", the Scheduler will consider each SB independently. In
"global scheduling mode", on the other hand, the Scheduler will attempt to look
ahead, building a queue of SBs -- possibly from different Programmes -- that can
share a significant (in terms of observing time needed) amount of calibration
operations. The main goal here is to accommodate "snapshot" programmes, short
observing programmes that would be inefficient to schedule independently because of
their relatively high calibration time-to-target time ratios.

The Programme may contain relational links between SBs, in the sense that a given
SB may only be scheduled if specified other SBs have been previously executed, and
if some condition on their results (as indicated by the Observing Programme's status)
is fulfilled.

The programme may contain Breakpoints, i.e. conditions in the Observing
Programme's status that will inhibit further execution of SBs in that Programme,
pending release of the Breakpoint by the Observer.

Role(s)/Actor(s):
Primary: Dispatcher
Secondary: Phase II Repository, Array Observing System

Priority: major

Performance: order of seconds

Frequency: order of minutes

Preconditions:

1. The Repository of active Programmes from Phase II

Basic Course:

1. The system determines the current array configuration, in particular,
that part that is available for use

2. The system determines the current observing conditions

3. The system acquires all Phase II SBs that can be run with the current:

1. Array configuration

2. Observing conditions

http://groupware.eso.org:8000/bscw/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/Help/Priority.htm
http://groupware.eso.org:8000/bscw/Help/Performance.htm
http://groupware.eso.org:8000/bscw/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/Help/BasicCourse.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 80 of 84

3. LST range

and that:

4. fulfill any conditions imposed by their Programme (relational
links between SBs).

5. are not on hold because of a breakpoint.

4. The system determines the starting calibration requirements of each
ready-to-run SB and the time necessary to fulfill them.

5. System calculates SB priorities based on rules involving:

1. Initial scientific priority rating.

2. Environmental parameters (weather, LST, UT, ...)

3. System parameters (is the Programme started, is it currently in
execution, ...)

4. Pipeline results (current phase rms if available from calibrators,
possibly science results,...)

5. Time to execute SB and all necessary calibrations.

6. System returns priority-ordered list of SBs.

7. Whenever an SB makes it into the list of (TBD) ten top ranked ones or
the list of SBs likely to be executed within the next 24 (TBD) hours, an
e-mail is sent to the PI.

Alternate Course: "Global scheduling mode"

1. The system matches SBs that can share time-consuming calibration
operations and constructs separate queues for groups of these.

2. The system returns these queues

Postconditions:

1. SBs are passed to the Dispatcher.

Issues to be Determined or Resolved:

1. The actual set of rules to calculate priorities.

2. How to resolve the conflict between the "local" way of ranking SBs
(considering each one individually) and the "global" scheduling mode
(where the assumption is made that the observing conditions will
remain constant enough to allow more than one SB to be executed
using a common set of calibrations).

3. When calibrations are shared among programmes, their

http://groupware.eso.org:8000/bscw/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/Help/TBD.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 81 of 84

 time cost should not be entirely attributed to the first SB, but
 shared with the SBs in the repository that would benefit from them (in
 fact only those that may be executed during the validity period of
 that calibration). That might be difficult to compute. A policy
decision to charge time for shared calibrations to the observatory rather
than to individual observers might be worthwhile for the simplification
it would bring, and for the incentive it might give observers to propose
"snapshot" observations.

Notes:
Owner: Robert Lucas
Last modified by $Author: jschwarz $ on $Date: 2001/06/28 10:57 $

ALMA Initial Software Analysis

Created: 08/02/01 Page 82 of 84

9.6 Use Case: Execute Scheduling Block (Revised)

The goal of this use case is to execute Scheduling Blocks (SBs) that have been
scheduled by the Dynamic Scheduler. SBs are the building blocks of Observing
Programs (OPs). They include descriptions of configurations and the initial and final
calibrations needed for an Observing Session (an uninterrupted sequence of SBs
sharing the same calibration requirements). SBs are the smallest units to which the
Dynamic Scheduler assigns priorities. The Dispatcher sends the SB with the highest
priority (previously assigned by the Scheduler) to the Sequencer for execution on a
Sub-Array. Alternatively, in Interactive Mode, SBs are sent directly from the
Observing Tool to the Sequencer. Each SB includes all the project-level calibrations
necessary for its output to be processed autonomously. Calibrations that have been
performed prior to this SB but that are still valid for this SB's desired hardware
configuration/setup are used and not repeated unnecessarily.

Role(s)/Actor(s):
Primary: Dispatcher, Sub-Array (all hardware available to this SB)
Secondary:

Priority: Critical

Performance: Seconds to hours

Frequency: Several times per minute/hour/day; One at a time per Subarray

Preconditions:

1. Need to have Scheduling Block(s) from the Dispatcher

Basic Course:

1. Dispatcher sends SB (see UC_DispatchSB)

2. Perform initial setup and calibration operations. If existing calibrations
are still valid for this setup, do not repeat them.

1. Perform necessary system initializations and/or calibrations,
e.g., a bandpass calibration (see UC_
Observe_Interferometric_AstroBandpassCal)

2. Warn the PI that the observations are started if a previous
warning has not been sent within the last 96 (TBD) hours for
the same programme.

3. Execute standard Scans by interpreting the corresponding Observing
Scripts with the given user parameters (Observation Descriptors) and
controlling the antennas, the receiver and the correlator accordingly

Alternate course 1: For non-standard scan modes interpret the user

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Priority.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Performance.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/BasicCourse.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 83 of 84

supplied Observing Script
Alternate course 2: Alternatively, in manual mode, the user types in
commands to be executed directly via a Command Line Interface
(CLI).
Exception course: An existing calibration becomes invalid, either
because its validity has expired, or because a change of hardware
configuration has made it inapplicable. In either case, perform the
necessary calibration and proceed.
Exception course: The execution of an observation fails

4. Archive data with time and project tags continuously, i.e., while an
observation is being executed (see UC_ArchiveData)

5. For standard observing modes send standard Reduction Script to
Calibration Pipeline (see UC_ProcessCalibrations)

6. Perform final calibrations necessary to complete SB; if this SB turns
out not to be the last one in a session, these calibrations will still be
valid and will not be repeated when the next SB begins execution.

7. Return status to caller (usually the Dispatcher).

Exception Course:

The execution of an observation fails

1. Stop SB execution

2. Notify operator / observer; save status of OP

Postcondition: Execution of SB halted; operator / observer notified;
status saved

Postconditions:

1. SB has been successfully executed

Issues to be Determined or Resolved:

• Which calibrations can be shared across SBs from different programs?

• The Observing Tool must know about the possible default scan modes and the
necessary Observing Descriptors.

Notes:

• Must have access to persistent program parameters.

• Interactive observing will be setup via SBs that will be directly transmitted to
the Sequencer.

Owner: Dirk Muders
Last updated by $Author: jschwarz $ on $Date: 2001/06/28 11:19 $

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/TBD.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 84 of 84

	Analysis: Purpose & Content
	Purpose
	Analysis: Method & History
	ALMA Use Case Roadmap
	Actors

	Observe With ALMA Use Case

	Analysis Classes and Packages
	Observing Tool Package
	Observing Program Specification Package
	Simulator Package
	Correlator Package

	Observing Program Administration Package
	Observing Program Refereeing Package
	Observing Project Package
	Program Package
	Scheduling Block Package
	SB Script Package
	Command Package
	ALMA Executive Package
	Resource Management Package
	Submission Package
	Scheduling Package
	Script Execution Package
	Online Calibration Package
	Data Processing Service Package
	Supervised Image Pipeline Package
	Science Archive System Package
	Archive Package
	Catalog Package
	Repository Package
	System Administration and Management Package
	Utility Package
	Internet Package
	Class lookup table
	Package Diagrams
	Class Diagrams/Hierarchies

	Use Case Realizations
	Initial Sequence Diagrams & Description
	Create & Submit Observing Proposal
	Create & Submit Observing Program & SBs
	Main Findings:

	Dispatch SBs
	Schedule SB
	Execute SB
	Observe Single Field
	Questions & Issues

	ObservePointingCalibration
	ProcessData

	Proposal/Project Preparation Activity Lifecycle
	Phase I Proposal Preparation State Diagram
	Phase II Project Preparation

	Additional Sequence Diagrams
	Sequence Diagram: Operate ALMA System
	Sequence Diagram: Manage ALMA Facility
	Sequence Diagram: Administer Observing Program

	Error Conditions & Handling Matrix
	Security considerations
	Architecture
	Overall system flow
	Major services
	Deployment

	What now ?
	Operational Issues
	Appendix: Revised Use Cases
	Use Case:€ Operate ALMA System
	Use Case: Manage ALMA Facility
	Use Case: Administer Observing Programs
	Use Case:€ Dispatch Scheduling Block
	Use Case: ScheduleSB (Revised)
	Use Case:€ Execute Scheduling Block (Revised)

