Atacama | G
| Large
= Millimeter | *°
) Array 20010602

Initial Software Analysis

Sof tware anal ysi s

P, Groshal, J. Schwarz ((schwarz@eso.org)] R. Warmels
European Southern Observatory
G Harris
National Radio Adronomy Observatory
D. Muders
Max-Planck-Indtitut fUr Radicastronomie
R. Lucas (SSR Conaultant)
Indtitut de RadioAgtronomie Millimériaue

Keywords: ALMA, software

Author Signature: Date:
Approved by: Signature:
Institute: Date:
Released by: Signature:

Institute: Date:

mailto:jschwarz@eso.org)

ALMA Initial Software Analysis
Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFFECTED
REMARKS
0 2001-02-22 | J. Schwarzetal. | All
For comments at Grenoble SSR meeting, 1-2 March, 2001
0.1 2001-04-12 | PG & JS | Many
Incorporate SSR comments
0.2 2001-05-18 | J. Schwarz |
For circulation to ALMA s/w workers & SSR for comments
0.3 2001-08-02 | J. Schwarz | All; document reorganized

Version for review

Created: 08/02/01

Page 2 of 84

ALMA Initial Software Analysis

Table of Contents

[ChanQgE RECOM..........cuoveeeeeeeieteeeeeeeeee ettt ettt ettt eaeeneseteseseneseneseseneneseseseseneanas 1
ICaNQE RECOI ... 2|
L Analysis PUrPOSE & CONMENTiciviieiicisiesicisi st 7|
T - 7|
(.2 ANAlYSIS: MEOU & HISIOTY ...ttt ettt ses s ees e e sesnsesesaeseeaens 7|
.3 ALMA USeCase ROAIMAD..........cooveueveeeeieeeteeeieeereeeteeeeeeeeeeeteenseeeneeeeensseenssensensseens 9|
1.3.1 J e T 9|

.4 Observe With ALIMA USE CBSE........cccoveueireeeuieriereieteeteieteeteeeeeeseereeneseerenseseesennens 11]
P AnaysisClasses and PaCKageS...........ccoouuiierieiiiiieieiiesieceeseesiese e seeneeneeas 13|
P.1 ObServing TOOI PACKAGEccceveueeeeeeeieeeeetseieeeesreeeeesensesesensenseseesensessesesresnens 13|
p.1.1 Observing Program Specification Package..............ccveuveueeveveevererereeennenn. 13|
p.1.2 Observing Template Package.............cooueueeeueeeieeieieeeeeeeeeeeeeee e 14|
R.1.3 SIMUIBEOT PACKAJE. ...t 14|
p.1.4 COrTE @Or PACKBOR.........c.veeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeesenreneesnsenaeenes 14|

P.2 Observing Program Administration Package...............ccoueeuveeeovvveeerreneeensnsennn 15|
P.3 Observing Program Refereaing PaCkage............cccoveueveuveueeeeerieeeerenereenerneeeenennenen, 15|
R4 Observing Project Package.........coccceevceiieercisieesesicesse s ssssnsesnenaes 15|
T s e - 16|
P.6 Scheduling BIOCK PaCKAOE.cveoeeeeeeeeeseeeeeeereeeeeeseeesseeeeseenseseneesesnsesenansens 16|
N i A o o ¢ - N 17|
I L L o e ¢ L 17|
R.9 ALMA EXECULIVE PACKAGE.c.cveveieeeierieteietietieeeeteeteeete ettt teeere s e 18|
R.10 Resource Management PaCkage.couuvveieiienieieisieieesesec e 18]
P11 SUDMISSION PACKBOE.c.civeeiieeeiiteiee ettt 18]
P.12 SChedUIING PACKAGE............cueviveeeeeeteeeeeeereeeteeeeeeeeteteeveeeeneseseessseesesesesssseesssenssnesenseses 19|
R.13 Script EXeCUtion PaCkage............c.cveveveoveueuieieriiieieeeeteeeeeeeeee et eneanena 19|
R.14 Online Calibration Package.............cccucvieireieuieteeieietieieieteeeeeeeeteereeeereereeeereereenens 20|
P.15 DataProcessing Service PACKAGE.coo.eeeweeeeeeeeeeeeeeeeeeeeesreesevereesrensererensesensesen 20|

Created: 08/02/01 Page 3 of 84

ALMA Initial Software Analysis

P.16 Supervised Image Pipeling PACKAGE.ccoveuveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerensiensnnnns 21|
R.17 Science Archive System Packageccouveveveuveueeeeeieteieieeeeeeeeeeeeeeeeeeieerenane 21|
R.18 ArChiVe PaCKAOE.cuieieieieeieisie st 21|
P19 CaalOfg PACKBOEc.coeeeeeeeeeeeeeeeeeeeeeeteeeeeeseeeteereeeererenserenseseeeesesessesneesesessesenaeenns 22|
P.20 REPOSIONY PACKAGE.........eeeeeeeeeeeeeeteeeeseeeeeeeeeeeeeeeeesesreeereneesessenenensesesesenensesesesans 22|
p.21 System Administration and Management Package..............ccocoeuvveveviueuevererenreennnes 22|
R.22 Utility PACKAOE coccsceseeissesiesiee it 23|
R.23 INEINEt PACKAOE ... cveueeireiiesieiee i 23|
R.24 Class00KUD tabIE ..o 23|
R S I 0 T 26|
P.26 Class Diagrams/HIErarChiES...........cuoueueeieereeeeeeverreesseeseressesseesesesseseseesesssesesessns 26|
B USECASBREAIZAONS.......covoeveeveeeeeereeeteereeetreeeeesstereeseesseeeessseessseseseseesssesssesesserenees 33|
B.1 Initial Sequence Diagrams & DESCIIPLON..........c.cueveveveevererereeeeieteeeeeeeieteeee e 38|
B.1.1 Create & Submit Observing Proposalc.ccvceeveevereereeeeeeeereiceereeeveennes 38|
B.1.2 Create & Submit Observing Program & SBS...........cooeeeeeeeeeeeeevervveeenen. 41|
B.1.3 I R 44
BLA SCNBOUE SB o..ooooooosooooosoooosoooossesseeereeeeesseeeeseeeereeeeeeeeeeeseeeseeeereeeeseeeereeees 46|
B.l5 EXECUEE SB ...t 47|
B.1.6 OBSEIVE SINGIE FTEI.....oeoooeeeeeeeeeeeeeeeeeeeeeseeeeeeeesenseeeeenseeeneneeneancas 50|
B.1.7 ObservePoiNtiNGCAlTDIatiON...........co.oeeereeveeeeiereeeeeerstseeeesersseeenssseseesaneeesens 52|
B.1.8 R 53|
B.2 Proposal/Project Preparation ActiVity LifeCyCle.......ocovviviriiiiiiiierereeeen, 55]
B.2.1 Phasel Proposal Preparation State Diagram.........ccocceeeiicrsisiicrsseerscesserssees 56
B.2.2 Phase || ProjeCt PreDaratioNoeeeeeeeeeeeeeeeeseeeerenseeeeeenseesneeesnesnceessseeees 56|
B.3 Additional SEQUENCE DIAGIAIMS............cucveeereeeeeeeierreeseeeseeessesseesesensesseeseeessesesensens 57|
B.3.1 Sequence Diagram: Operate ALMA SYStEMcveveveevereeeerereeeeereensreerenanes 57|
B.3.2 Sequence Diagram: Manage ALMA FaGility...........ccccoooveeeveveverercrenerrarne. 60|
B.3.3 Sequence Diagram: Administer Observing Program.............c..cccccevevveveunenee... 61|

B Error Conditions & Handling MaEHiXooeooweeeeeeeeeeeeeeeeeeeeeesereeeeeerseeeesensenseeensnsens 62|

Created: 08/02/01 Page 4 of 84

ALMA Initial Software Analysis

B SECUItY CONSIBIBIIONSc.v.veeveteeeeeeeeeeeteeeeteeeeeteeeeteeeeteteeneeenesesseneresesensenesessseneenereneaes 65|
N = e 0 =T 66|
B.1 Overall SYStEM FlOW ..ot 66|
Y R i 67|
D i 68|
AR e —— 69|
B OPE@ioNal ISSUES......c.ceeeeeeieeeeeeeeisieseeiesesseeses s sessnss s 70|
D Appendix: ReVISE] USE CASES.......ovivcrciiiiisisii s 71]
B.1 UseCase: Operate ALMA SYSEM.....ccciiiiiiiiiiiiiicisissess s 71]
0.2 UseCase Manage ALMA FaCility.......cocooooooeeeeeeeeeeeeeeeeeeeeeeereeeeeerrerseeernannn 74)
0.3 UseCase: Administer ODServing ProQramsS...........c.ceceveuveevvuvveevrersresserereeseeensesens 76|
BD.4 UseCase: Dispatch Scheduling BIOCK...........c.ooveveeveveuverieereeeeeeeeteereteeeietrensreensnenns 77|
B.5 UseCase: Schedul€SB (REVISE)........ccoveveueeeeriieieeeeieteeieeeeeeeeeteee et ereenna 79|
B.6 UseCase: Execute Scheduling Block (Revised)...........ccceveuveeeeeverecreciericreienne, 82|
Table of Figures
Figure 1-1: The Software ANAYSIS PrOCESS............ovcueeveueererereeeeeeteersieereteteenseeesereeessseesssenesnssens 7|
Figure 1-2: ALMA USe Case ROAAMEDcuueuceieiiiiiie s 11|
Figure 1-3: ODSEVE W ALMAo.oeoeoeeeeeeeeeeeeeeeeeeeeeeeeveeeseeeseneeeesnceeseneeesnceeseeeenesns 12|
Figure 2-1: ALMA Logical Packages (Connections Illustrative Only)c.cveucnnen..... 26|
Figure 2-2: Observing TOOl Class DiagraiMcccooeueeeovveeeeersreeeersreeeesessesesenseseseesensnas 28|
Figure 2-3: Observing Proposal Class DiagraM...........cccvceeeeeeeieiiissssseseseeseseses s 29|
Figure 2-4: Observing Project Class Diagramcccocevceiieicsseis s 30|
Figure 2-5: Object Diagram for Galaxy MOSAiCING PrOJECEc..eeeeveeeeeeeeeeeeeevverserevenrereraenes 31|
Figure 2-6: Scheduling BIOCk Class DiagraM..............ccucveueueeeveeeeeeeeeeseeesesesseserensesnsesesnses 32|
Figure 2-7: Sequencer Class DiagraM.............cveveuveueueveeeeeerseeeeeeeeeeeteseeeseesssesseeseesssesseereesns 33
Figure 2-8: Calibration Class DiagraMceeueveueeuerieieeeeeseeeeeeeeeeeseesssessessssessessssessesnes 34|
Figure 2-9: Scheduler Class DIagramc.ccueueereeeeueireereietesieeeteereeeeeereereseresseseseeseseeseenas 35|
Figure 2-10: Pipeling ClasS DIiaOraMoo.oweeeeeeeeeeeeeeeeeeeeeeereeeeeeererseeensenseeaeserseesneeseesnes 36|

Created: 08/02/01 Page 5 of 84

ALMA Initial Software Analysis

Figure 2-11: INfoServices Class DiagraMc.c.eovueuveueueereeeeeeeeeeererereneseesssessnsreesssesseereenns 37|
Figure 3-1: Create & Submit ObServing PropoSalc.cveueeeevievereeriereeeeieieeeeersteseenssenas 39|
Figure 3-2: Create & Submit Observing Program & SBS..........cccecveeicecisisissssssseeiens 42|
FIQUIE 3-3: DISPAICN SBS...c..eieeeeeeeeeeeeeeeteeeeeeeeeeeteeeeeeeereeeeserenseseeseseeaesesssesessesesasseeesseees 45|
FIQUIE 3-4: SCREAUIE SB ...t eeses s e neneesesesesnansesesesasans 46|
BT e e oY = 48|
Figure 3-6: Observe SINAle FIeld. ..o 50
Figure 3-7: Observe Pointing Calibrationcocooceiiiieeieeeeeeeeeses s 52|
Figure 3-8: Process SCIENCE Dala. ..o 53|
Figure 3-9: Proposal/Project Preparation Activity Diagram..............eeeeeeeeeeeeeeesveeeevsvenenrn 55|
Figure 3-10: Operat@ ALMA SYSEEIMcuouveeeieeeeeeeeeeeeeeseeeeeeeeese et e s seseseeseensesenaesesansns 58|
Figure 3-11: Manage ALMA FaCHlitycveueueereeereeeeeeeeeeeeeeeeeeeeeeeeeteteenetenseeeeenssesseersennns 60|
Figure 3-12: Administer ObSErVING Program..............cveveueveueeveeereeereeeeeeteeeeeeeeeteeseiersenerennas 61|
Figure 6-1: ALMA SWimlan€ DIaQraMcocooveverercorererereresrererereresnereseneneseenensneneneenenes 6/
Figure 6-2: ALMA DeploymMeNnt NOUEScooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeerseeseeeesnseeeesensnes 69|

Created: 08/02/01 Page 6 of 84

ALMA Initial Software Analysis

1 Analysis: Purpose & Content

1.1 Purpose

“The Unified Software Development Process’ (Jacobson, Booch & Rumbaugh, 1999) defines
software analysis as.

“A core workflow whose primary purpose is to analyze the requirements as described
in requirements capture by refining and structuring them. The purpose of doing thisis
(1) to achieve amore precise understanding of the requirements, and (2) to achieve a
description of the requirements that is easy to maintain and that helps us give structure
to the system as a whole—including its architecture.”

1.2 Analysis: Method & History

The process of software analysisis shown in terms of the requirements it starts with and the
intermediate and final documents that it produces in the following figure.

W=
— | 538

0
e
o
=
]
i
-

EEE
— = | | | =
— =+ | o> | —— Class Definitions
— * A7 foos00
——— =_ _‘ §;

Llse Cases

sequence Diagrams

o
| O A
o t] —

State Diagrams

ALMA Science
Software Requirements

Figure 1-1: The Software Analysis Process

Thefirst step in the analysis was to examine the requirements and Use Cases produced by the
SSR and UC groups ("ALMA Software Science Requirements and Use Cases', Document
No. ALMA-SW-0011) to identify analysis classes and their responsibilities.

The derived initial list of classes was then grouped according to the main services
(Proposal/Program Preparation, Scheduling, Executing, Imaging & Archiving; see Chapter P
Analysis Classes and Packages). Initial class hierarchies (mainly for the observing objects;
similar to the hierarchy shown in the above report) were identified.

Created: 08/02/01 Page 7 of 84

ALMA Initial Software Analysis

The next step involved trand ating the most important Use Cases into UML Sequence
Diagrams. We decided to merge and rearrange some of the SSR Use Casesin order to
represent the magjor functionalities of the ALMA software system. Since Sequence Diagrams
show an explicit sequence of actions, we chose the "Observe Single Field" Use Case as an
example of the execution of atypical Scheduling Block. We thus arrived at the following list
of initial Sequence Diagrams (see Chapter EI Diagrams & Descriptions):

* Create & Submit Observing Proposal

* Create & Submit Observing Program and Scheduling Blocks

» Schedule SB

» Dispatch SB (from anew Use Case, split off from the original Schedule SB)
* Execute SB

e Observe Single Field

¢ Process Data

The Sequence Diagrams are a representation of the steps in the basic course of the Use Cases
along atime line. The actions specified in the basic course are translated into messages
between instantiations of analysis classes. During the process of creating the Sequence
Diagrams, additional necessary Analysis Classes were identified. It became clear that an
overall Executive process was needed to manage the various services (Dispatcher, Scheduler,
Sequencer, Subarray Allocator, Pipeline, Error Monitor) that are needed to operate the
observatory, so an additional Use Case, "Operate ALMA System," and the corresponding
sequence diagram were generated. Similarly, a sequence diagram for the SSR's
"ObservePointingCalibration" Use Case was developed, mostly to show features that were
obscured in "ObserveSingleField". We then identified additional (mainly administrative)
software services that need to be present to operate the ALMA system. Use Cases and
Sequence Diagrams for "Manage ALMA Facility" and "Administer Observing Programs’
were developed (see Section B.3] Additional Sequence Diagrams).

In addition, we found that significant implementation assumptions had made their way into
the original Use Cases, and that these were making it difficult for us to outline the features of
a system that would be adaptable to the requirements that would inevitably change (and that
in fact are currently changing) asthe ALMA project matured. Accordingly, we rewrote the
Schedule SB, Execute SB and Dispatch SB Use Cases so that they would better reflect the
spirit of the requirements. These revised Use Cases will be found in Section B} Appendix.

State / Activity diagrams for the major entity classes (Observing Project, Scheduling Block)
were developed to show the state changes as the classes / objects are passed through the
ALMA system during the proposal, approval, observation and data reduction phases (see
Section 2.2, State Diagrams).

The Sequence Diagrams were then used to identify relations between classes. These relations
are shown in Class Diagrams (see Section Class Diagramsg/Hierarchies), which depict
the dependencies of classes and the class hierarchies. We invented a number of superclasses
to simplify the system and group common classes.

To arrive at amodular system that allows distributing the future analysis, design and
prototyping work, the classes were grouped into Class Packages. The splitting was done such
that the number of interfaces between packages was minimized (see Chapter 2} Analysis

Created: 08/02/01 Page 8 of 84

ALMA Initial Software Analysis

Classes and Packages). Thiswork is not complete.

Next we considered possible error conditions and handling as well as security on the level of
the current analysis software system. It turned out that there will be many layers of error
conditions that need to be handled differently (e.g. how far errors or warnings will be passed
up, logging and/or control activities). A matrix of possible high-level error conditions and
subsequent actions was created (see Chapter El Error Conditions & Handling Matrix).

1.3 ALMA Use Case Roadmap

The ALMA Use Case Roadmap shows the highest-level Use Cases that we have considered
in the software analysis. Thefirst two, Manage ALMA Facility and Administer Observing
Programs, represent the i ndispensable administrative tasks needed to keep the observatory
running and the needs of the observers (namely, to have their programs reviewed and
executed) satisfied.

The Operate ALMA System Use Case covers the day-to-day operation of the ALMA array
and its associated computing infrastructure. Finally, the Observe With ALMA Use Case gives
aproposer’ s/observer’ sarchive researcher’ s view of the system.

1.3.1 Actors

The stick figures shown on the borders of the Use Case diagrams are known as Actors.
Although they are anthropomorphic, Actors represent any external entities with which the
software system must interact, the most notable example of which is, of course, the ALMA
hardware.

The UML definition of an Actor is:
A coherent set of roles that users of use cases play when interacting with the use case.

One consequence of thisis that the same person may appear as two or more different actors,
when he/she plays two or more roles. The same person, for example, may act as proposer,
observer, Staff Astronomer, Scientific (Archive) User and Reviewer.

The following table describes the Actors we have defined.

Created: 08/02/01 Page 9 of 84

ALMA

Initial Software Analysis

Proposer

A scientist applying for observing time on the ALMA facility. This person
has a deep understanding of the physical problem to be investigated through
the proposed observations but not necessarily of the details of aperture
synthesis and the ALMA instrument. The main objective of this actor isto
specify an observing proposal for ALMA

Referee

May be either a scientist who can judge the scientific importance of
observing proposals or ALMA staff who can assess their technical
feasibility. The actor reviews a set of proposals and provides an evaluation
that can be used for the final ranking of all proposals.

Observer

The person responsible for the detailed specification of an accepted
observing program, i.e., the full specification of Scheduling Blocks, their
dependencies and reduction requirements for all data obtained. The person
in the Observer role may well be identical to the Proposer but is not required
to be.

Scientific User

The end user of datafrom ALMA. The User obtains the data either as
member of the team proposing the observations for which they were
acquired, or as aresearcher who has retrieved a useful data set from Science
Archive.

Program
Administrator

Theroleis generally responsible for all tasks related the administration and
processing of observing programs. This includes general user support,
management of the review process, overview of the status of observing
programs, check of data quality, and preparation of data deliveries. As such,
thisrole may later be detailed into several more specific actors.

ALMA
Operator

Supervises the operations of ALMA. The Operator is responsible for the
smooth execution of Scheduling Blocks and oversees the performance of all
components.

ALMA
Administrator

Responsible for administrational tasks related to the general ALMA facility.
Such tasks may include making the long-term schedul e for the array
configuration, arranging availability of staff and visits of observers, and
ensuring that maintenance action are planned and executed.

Technician

Responsible for maintenance of ALMA Hardware, using tools provided by
the software system where necessary.

ALMA
Hardware

Antenna, receiver, correlator and related communications and electronic
hardware that is controlled by and from which datais acquired by the
software system.

Created: 08/02/01

Page 10 of 84

ALMA Initial Software Analysis

()
O PN
//////// T . .
- - ManageALMAFacility ALMA_Administrator
Q _— O
23 N
Operator S 7,////////
P /)/ ProgramAdministrator
() \\777
AdministerObservingPrograms\\\\
T— O
~—
Proposer i
/\ _
T StaffAstronomer
i e N \/
Obsener <;J> ; ;
OperateALMASystem Technician

()
\/

Reviewer

)
\/
////
-

_— ALMA_Hardware

S D///

()
7 N ObseneWithALMA

ScientificUser

Figure 1-2: ALMA Use Case Roadmap

1.4 Observe With ALMA Use Case

Most of our attention has been on the details of the Observe With ALMA Use Case, whose
lower-level Use Cases are shown in Each of these Use Cases appears either in the
Science Software Requirements or in the Appendix to this document. Note that some
“factoring” of the Use Cases has been done: ScheduleSB is used by DispatchSB (a situation
somewhat analogous to the inclusion of one file in another), and Retrieve Archived Data
extends Process Science Data in the sense that it represents an optional path through the latter
Use Case. The Observe Single Field Use Case is a specia case of ExecuteSB.

Created: 08/02/01 Page 11 of 84

ALMA Initial Software Analysis
/// Create&SubmitObsenvingProposal
8

Proposer <)

ReviewObseningProposal

b

Observer

Reviewer

CreateObseningProgram&SBs

Co—

DispatchSBs

\ "\ <<include>>
| \\
|

A

Operator
‘ ()/ p

ScheduleSB

is a special
/ case of--
ExecuteSB\]\

-

V. L “ObseneSingleField

rocessScienceData \;Q\

ALMA_Hardware

Retrieve ArchivedData

A

ScientificUser

Figure 1-3: Observe With ALMA

Created: 08/02/01

Page 12 of 84

ALMA

Initial Software Analysis

2 Analysis Classes and Packages

This section lists and explains the purpose of the analysis classes used to satisfy the
requirements from the SSR Use Cases and the additional classes identified during the
analysis process. Thelist is organized according to the analysis class packages that we
developed. The purpose of class packagesis the grouping of classes such that the interfaces
between packages are minimized. This modularizes the system and facilitates the distribution
of subsequent detailed analysis, design and prototyping tasks among several software groups.

Package discussion needs to be rewritten.

2.1 Observing Tool Package

2.1.1 Observing Program Specification Package

Class Name

Description

Responsibilities

ObservingTool

Enables the user to prepare an
Observing Proposal and to
transform it into an Observing
Programme

know Observing Modes
know Observing Programmes
know SB repository

order Observing

Proposal s/Programme

ObserverUl

Provides the main GUI to the
Observing Tool to prepare and
Observing Proposal/Programme

or display Programme results

display results
forward input to Observing Tool

Created: 08/02/01

Page 13 of 84

ALMA

Initial Software Analysis

2.1.2 Observing Template Package

Class Name

Description

Responsibilities

FieldSpecification

Specifies the reference position
and the geometric pattern that the
antennas should follow during one
observation.

know reference position
know geometric pattern
compute next point on path

NutatorSpecification

Specifies the nutator
configuration, necessary to
prevent data taking while the
nutator is moving.

know nutator mode status

ObservingM odeParameter

Is an abstract classfor all
Observing Mode parameters that
are required for an Observing
Mode

know range of all valid
parameter input

ObservingModeTemplate

Defines the framework in which a
user can insert scientific and
technical parametersin order to
specify avalid Observing Mode
Programme.

know available Observing
Modes

check valid parameter input
create an observing script

SBTemplate

Defines the framework in which a
user can insert scientific and
technical parametersin order to
create an SB for a specific
Observing Mode

know Observing Mode
Ccreate an observing script

Spectral Specification

Contains the spectral setup for one
Observation according to the
pattern described in the Field
Specification

know Observing Mode
know spectral specs

TemplateScript

Is an abstract class, which can
produce a standard observing
script from a set of information
provided such as observing mode,
source specifications, and antenna

setup.

create an observing script

2.1.3 Simulator Package

Class Name

Description

Responsibilities

Basic Simulator

Estimates flux, noise and beam for
an observation given adetailed

compute flux map
compute noise estimate

setup, observing conditions and a jcompute beam
Simpl e source model.

2.1.4 Correlator Package

[Class Name [Description [Responsibilities

Created: 08/02/01

Page 14 of 84

ALMA Initial Software Analysis

CorrelatorTool Provides a mapping of science know correlator configurations
specifications to Correlator find configuration
configurations.

2.2 Observing Program Administration Package

Class Name Description Responsibilities

OperatorUl Is auser interface class that forwards display Program information
operator command to the ProgramTool [forward commands to
and displays information fromit. ProgramTool

ProgramTool Provides the business model for the high |change status of programs or/
level administration of scheduling blocks
ObservingPrograms. generate reports

write data package

2.3 Observing Program Refereeing Package

Class Name Description Responsibilities

RefereeUl Isauser interface for reviewers of display Proposal information
observing proposal and servesasafront [forward referee rating and
end for the RefereeT ool comments to RefereeT ool

RefereeTool Defines the referees access to aproposal [view proposal
and provides options for appending add rating and comments
ratings and comments. submit review package

2.4 Observing Project Package

Class Name Description Responsibilities
Observing Project Contains the Observing Proposal and [know Observing Proposal
the associated main Observing know main Observing
Program. Program
know Project Control
ObservingProposal Contains all mandatory scientificand |know science objectives

technical information on the basisof [know performance goals
which a proposal can be evaluatedto [know Pl
granting observing time by the OPC.

ControlBlock Contains status information such as the [know status information
time allocated to the Observing Project
and the Observing Programs. It may
include Breakpoint Conditions

ProjectControl Is the Control Block for the Observing |know Observing Project
Project status

ObsUnitControl Is the ControlBlock for the Observing [know ObservingUnit status
Unit

ObservingUnit Is an abstract prototype class to build anfknows ObsUnitControl

Observing Object hierarchy. Observing [knows ImageScript

Created: 08/02/01 Page 15 of 84

ALMA

ObservingUnitSequence

FlowControl Script

Initial Software Analysis

Programs (branch nodes) and
Scheduling Blocks (leaf nodes) are
derived from the ObservingUnit.
Contains a sequence of Observing
Units.

Defines programmatically the sequence

know observing units
know flow control script
know flow control

in which the Observing Units of an commands
Observing Unit Sequence are executed.

2.5 Program Package

Class Name Description Responsibilities

ArchivingSpecification

Defines which scientific data need
to be archived.

know archiving specs

BreakpointConditions

Defines the conditions that will halt
future execution of SBs of the
Observing Programme.

know conditions for
suspending Programme

ObservingProgram

Contains all technical and scientific
information required to execute an
Observing Program. It consists of
an Observing Unit Sequence.

know science objectives
know performance goals
know scheduling blocks
know breakpoints

know data processing scripts
know program status
know archiving specs

2.6 Scheduling Block Package

Class Name

Description

Responsibilities

PerformanceGod

Defines the observing goals (noise
level, SNR, or image dynamic
range) that are intended to be
achieved by the Observing
Programme.

know goal(s)

SchedulingBlock

Defines a sequence of observing
scans and is the smallest part of an
Observing Programme that can be

know calibration requirements

know required observing
conditions

individually scheduled and
calibrated.

know required configuration
know observing instructions

Created: 08/02/01

Page 16 of 84

ALMA

Initial Software Analysis

2.7 SB Script Package

Class Name

Description

Responsibilities

ImageScript

Defines how the quicklook or
final image is to be produced.

know reduction commands

ObservingScript

Is an abstract class for Observing
Scripts which are association
classes created from Script
Templates and Observing Mode

Parameters

know observing script
commands
know observing mode
parameters

2.8 Command Package

Class Name

Description

Responsibilities

Command

|s an abstract class for all
commands (e.g. observing,
pipeline)

execute command

ObservingDescriptor

Contains the parameters that
describe the array configuration
during the execution of the
Observation.

know array configuration
during scan execution

PipelineCommand

Defines areduction step in the
image pipeline script

know commands
execute command

ScanCommand

Defines a set of observations with
a common goal and is the smallest
unit which can be executed by an

observing script.

know command
execute command

Created: 08/02/01

Page 17 of 84

ALMA

Initial Software Analysis

2.9 ALMA Executive Package

[Class Name Description Responsibilities

MasterUlI Isagraphical user interface through display system status
which the ALMA facility iscontrolled [forward control commands to
and monitored. Executive

Executive Starts and supervises all operations control subsystems

processes such as sub-array allocation,
scheduling and error monitoring.

change observing mode

ErrorMonitor

Checks periodically the state of all magjor
subsystems and notifies the Executive if
any problems are found.

know state of subsystems
monitor subsystems

ExecWatchdog

Waits for asignal and raises an alarm if
none arrives within a specific time.

know time since reset
reset timer

ObservatoryPolicy

Contains al rulesthat govern the
observatory policy.

know submission rules
know review rules
know observing modes

know guaranteed data quality

2.10 Resource Management Package

Class Name

Description

Responsibilities

SubarrayAllocator

Allocates resources associated to sub-
arrays such as antennas and parts of the
correlator.

know antennas and their status
know correlator and its status
allocate subarray

resources such as antennas, correlator and

computer systems.

ArrayConf Isalogical set of antennas and associated [know antennas
resources. know correlator
Resource Is an abstract base classfor all ALMA know status

know allocation state

know resource name and type

2.11 Submission Package

programs.

Class Name Description Responsibilities
Authorization Performs all security checks concerning [generate security keys
the access to data related to observing |verify authority

\/ alidator

Checks the correctness of observing
proposals and programs.

verify observing proposal
verify observing program

Created: 08/02/01

Page 18 of 84

ALMA

Initial Software Analysis

2.12 Scheduling Package

Class Name Description Responsibilities

Dispatcher Forwards either single scheduling blocks [know operations mode
or, in dynamic mode, groups of dispatch scheduling block
scheduling blocks to be executed.

Schedul er Determines the optimal order of aset of [rank scheduling blocks

scheduling blocks that are ready to be

executed.

2.13 Script Execution Package

Class Name Description Responsibilities

Sequencer Interprets and executes observing scripts |execute observing script
to control antennas, receivers, correlator
and data processing.

Subarray Defines a set of ALMA antennas know allocated antennas
including al resources associated to them [know allocated part of
and required to perform a set of correl ator
observations. perform calibration

observation
execute scan command
CaPipeline Performs the processing of calibration [reduce calibration data

data and provides new calibration results
in near real-time.

Created: 08/02/01

Page 19 of 84

ALMA

Initial Software Analysis

2.14 Online Calibration Package

derive the calibrations.

Class Name Description Responsibilities
Cal Solver Coordinates the execution of all necessary[know calibration required
calibration observation. perform calibration
observations
Calibration Is an abstract base class for all know validity
calibrations of asubarray and provides |know validity period
generic methods to access the status of a [signal expiration
particular calibration. estimate time to perform
calibration
know when must be done
(might be deferrable)
acquire calibration data
ArrayCal Indicatesthat thisisacalibration that is |Asfor Calibration class
performed for the array as awhole (e.g.,
baseline, delay, pointing session & beam
shape)
ProjectCa Indicates that thisisacalibration that is |Asfor Calibration class
performed for asingle project or
Observing Unit (although it could be
shared among different ones)
CalStatusMonitor [Checks the calibration status of a estimate time for calibration
subarray.
CalPipeline Performs the data reduction required to [reduce calibration data

Configurator

Sets up receivers, correlator as requested

Set hardware configuration

AntennaConfig

Contains information characterizing an
antenna

Know antennalocation
Know antenna electronics
configuration

ReceiverConfig

Contains information characterizing a
receiver

Know receiver band
Know receiver tuning

Tune receiver
2.15 Data Processing Service Package
Class Name Description Responsibilities
ImagingPipeline |Generates all standard science data know data processing server
products. reduce data

QuickLookPipeline

Performs a fast data reduction of recent
observations and provides the resultsin

near real time.

know data processing server
reduce data

display results

Created: 08/02/01

Page 20 of 84

ALMA

Init

2.16 Supervised Image Pipeline Package

ial Software Analysis

Class Name Description Responsibilities
PipelineUl Is auser interface for off-line usage of theldisplay pipeline status and
Imaging Pipeline results

forward commands to the
PipelineT ool
PipelineT ool A ccepts high-level requests for off-line [know data reduction server
reduction of science data and forwards thereduce data set
explicit processing tasks to a server.

2.17 Science Archive System Package

Class Name Description Responsibilities
ArchiveUl Isauser interface for access to the display results and status
Science Archive forward requests to
ArchiveT ool
ArchiveTool Provides high level tools for doing know Science Archive server
research on the Science Archive. query archive
retrieve data
Class Name Description Responsibilities
InfoService Is an abstract classfor archives, [know the archives

catal ogs, repositories, data bases,

know repositories

€etc.

know catal ogs

2.18 Archive Package

explaining the characteristics and

Class Name Description Responsibilities
Archive Is an abstract base classfor all know available archive and
archives containing science relatedtheir status
data
CalArchive Contains all results produced by [know calibrator data
the Calibration Pipeline search for calibrator data
LogArchive Contains all logging information [know all logging data
of the ALMA array search for logging data
RawDataArchive Provides access to all raw science [know raw science data
data acquired by ALMA. search for raw science data
ScienceArchive Provides accessto all calibrated |know calibrated science data
science data acquired by ALMA [search for calibrated science
data
Manual Archive Contains all documentation know available manuals

search for manuals

potential usage of ALMA

Created: 08/02/01

Page 21 of 84

ALMA Initial Software Analysis

2.19 Catalog Package

suitable for pointing or phase
calibration of the array.

Class Name Description Responsibilities

Catal ogSet Is abase class for catalogs know catalog server
containing astronomical objects or [know available catalogs and
spectral lines their status

CalibratorCatalog Provides catalog of sources know calibrator data

search for calibrator data

LineCatalog Provides access to all physica
data of molecular and/or atomic
spectral lines relevant for
observations.

know line data
search for line data

SourceCatalog Provides access to a database of
astronomical objects

know source properties

search for source properties

2.20 Repository Package

Class Name Description

Responsibilities

RepositorySet Is an abstract base classfor
collections of objects from the
Observing Object hierarchy.

know repository server
know available repositories
and their status

ObservingProjectCatalog |Provides accessto al ALMA
Observing Projects

know Observing Project
search for Observing Project

ConfigurationRepository |Contains technical datarelated to
the antenna configuration,
correlator, receiver, pointing
models, and baseline solutions

know configurations

PersonRepository Contains all information about
persons such as Programme PIs
and Co-Is, reviewers.

know person information
search for person info

schedules for equipment or
operational staff.

SB-Repository Contains al valid SBs. know SB information
search for SB
ScheduleDB Contains all information related to [know schedules

search for schedules

parts and supplies

MaintenanceDB Contains al information on know maintenance actions
mai ntenance actions. search for maintenance actions
Bodega Maintains all information on spare know spare part and supply

critical limits
signal low supplies

search for parts

2.21 System Administration and Management Package

[Class Name Description

Responsibilities

Created: 08/02/01

Page 22 of 84

ALMA Initial Software Analysis
AdminUl Provides auser interface to thegeneral [forward requests to
administration tool. administration tool
display reports
AdminTool Controls al general administrational taskggenerate status and

for the ALMA facility such as generation
of reports, scheduling of maintenance,
and long term planning of array
configurations and staff availability.

performance report

define maintenance schedule
define array configuration
schedule

define staff schedule

2.22 Utility Package

Class Name Description Responsibilities
Person Contains all relevant information about a |know name
person. know contact information
Class Name Description Responsibilities
EnvironmentData [Provides accessto all environment data [know wind speed
relevant to the ALMA facility. know water vapor
know temperature

know phase stability

ObsCondition

Contains all parameters describing the
observing conditions and obtained
directly from observations of calibrator
SOUrCES.

know pointing
know focus
know phase calibration

know bandpass calibration

2.23 Internet Package

Class Name Description Responsibilities
\WebPage Contains general information on Web know author, name and
pages made available to users. version
know availability
know page content
post page
EmailService Provides access to e-mail through Internetfknow security level
with a specified level of security. send e-mail
verify receipt of e-mail
check incoming e-mail

2.24 Class lookup table

For convenience we list all analysis classes alphabetically. The class descriptions and class
packages can be found on the associated page numbers.

Created: 08/02/01

Page 23 of 84

ALMA

AdminTool, 23
AdminuUl, 23
AntennaConfig, 20
Archive, 21
ArchiveTool, 21
ArchiveUl, 21

ArchivingSpecification, 16

ArrayCal, 20
ArrayConf, 18
Authorization, 18

B

Basic Simulator, 14
Bodega, 22

BreakpointConditions, 16

C

CalArchive, 21
Cdlibration, 20
CalibratorCatalog, 22
CalPipeling, 19, 20
CdSolver, 20

Cd StatusMonitor, 20
CatalogSet, 22
Command, 17

ConfigurationRepository, 22

Configurator, 20
ControlBlock, 15
CorrelatorTool, 15

Dispatcher, 19

E

Email Service, 23
EnvironmentData, 23
ErrorMonitor, 18
Executive, 18
ExecWatchdog, 18

F
FieldSpecification, 14
FlowControl Script, 16

I

ImageScript, 17

Created: 08/02/01

Initial Software Analysis

ImagingPipeline, 20

InfoService, 21

L
LineCatalog, 22
LogArchive, 21

M

MaintenanceDB, 22
Manual Archive, 21
MasterUl, 18

N
NutatorSpecification, 14

O

ObsCondition, 23
ObservatoryPolicy, 18
Observing Project, 15
ObservingDescriptor, 17
ObservingM odeParameter, 14
ObservingModeTemplate, 14
ObservingProgram, 16
ObservingProjectCatalog, 22
ObservingProposal, 15
ObservingScript, 17
ObservingUnit, 15
ObservingUnitSequence, 16
ObsUnitControl, 15

OperatorUl, 15

P
PerformanceGoal, 16
Person, 23

PersonRepository, 22
PipelineCommand, 17
PipelineTooal, 21
PipelineUl, 21
ProgramTool, 15
ProjectCal, 20
ProjectControl, 15

Q
QuickLookPipeline, 20

R

RawDataArchive, 21
ReceiverConfig, 20

Page 24 of 84

ALMA Initial Software Analysis

RefereeTool, 15 SourceCatal og, 22
RefereeUl, 15 Spectral Specification, 14
RepositorySet, 22 Subarray, 19
Resource, 18 SubarrayAllocator, 18
S T
SB-Repository, 22 TemplateScript, 14
SBTemplate, 14
ScanCommand, 17 \
ScheduleDB, 22 Validator, 18
Scheduler, 19 '
SchedulingBlock, 16 W
ScienceArchive, 21
Sequencer, 19 WebPage, 23

Created: 08/02/01 Page 25 of 84

ALMA Initial Software Analysis

2.25 Package Diagrams

ObsProject
ObsTool + ObservingProject SciArchive ImagePipeline Referee ObsAdmin AlmaAdmin
+ObserverUl + ObservingProposal +ArchiveUl + PipelineUl + RefereeUl + ProgramTool + AdminTool
+ ObservingTool |~ ~ + ObservingUnit + ArchiveTool + PipelineTod + OperatorU| + AdminUl
+ ObservingUnitSet _
T -
—— /ANGN A
/ NN N - B
/ : N -
, Obsslm\ulamr N - \
(+ Simulator N N ObsProgram 25 A‘
\ “\ (NN + ObservingProgram .
\\ T \ S + BreakpointCondition Pipeline
*‘ " \\ \ N + ArchivingSpecification [<- - - — — _ | +ImagingPipeline
Ho NN AN + QuickLookPipeline
_InfoSemnvice \ N N
“+InfoService \ \ N ; - —
! I ' N N -7 \ AlmaExec
\ il \ \ N _ - -
) TT \ \ PN -7 \\ + Executive
) " \\ N 41_1\// v | + MasterUl
“ \‘ \ \ ! h/\d l;:»/k \ + ErrorMonitor
- \ Bl - \
t : Zi ormanceGoal OB ervinaScrot serv atory Polic:
(from InfoService) P /chedulin S +ObservingScript \ ry Yy
+ LogArchive B /\\’ /10 S 9 € + ImageScript ‘\
+ Archive & \ // N \ \ “
+ CalArchive W \ SN 7 \ K
N
+RawDataArchive < P /’ / ObsTemp X SiteCondition \ Y
+ ScienceArchive R N p + SBTemplate NINIS +EnvData \
| / ~a 3 ~ iti Y
“ | , |* \/+\ObseN|ngModeTempIate// AR + ObsCondition |- ~ Scheduler
Vo / \/// +NutatorSpecification NN \ ~ =+ +Dispatcher
RV // , ,\\ + ObservingModeParametér N S \\ _ _ |+ Scheduler
e N o
2N + TemplateScript \// N N -7 B
= < -
‘patalog /’ \\ + FieldSpecification, =1 _ o DN \1/ s .7,
(from'InfoService) / & SpectralSpemflcallQr\/ N S S . IR o
+ SolirceCatalog ! N - T Ty RN PN L 14
+ CalibratorCatalog e 47 \\ / \\\;,\/ S ,
+ Catalogs // e | . // IPEaN S AlmaSy stem
+ LiheCatalog ;! N T B N = ~|/ + Subarray
! / // ! 1 _-7 7 7N 7~ =7 +Sequencer
“ /’ / \ -7 AN + CalPipeline
I / Command - P
n ! — CalibrationPkg ,
\% s N S+C0L\'}n6m§nd d + CalSolver .
! P'ﬁ?ﬂ cmman d + CalStatusMonitor
Repository y 2 P EEIIEY + Calibration, Correlator
T fram Infrcaraice) 4 Observ ationDescriptor 7 e
(from Info.Sen.nce) ! -7 \ 27 + CorrelatorTool
+ Repositories /’ 22 \
+ SB-Repository | \ L7
+ ConfigurationRepository \\ L7
+ MaintenanceDB \ L
+ ScheduIeDE/J \ /
+ Bodega | \\ L
+ PersonRepository \ , 7’
f \ ,
/ \ 7
[A
! s\
! 4 \
/ L7 \
' , \
v 4 X
General ResourceMng Submission Internet
+ Person +Subarray Allocator + Authorization + WebPage
+ Array Conf + Validator + EmailService
+Resource

Figure 2-1: ALMA L ogical Packages (ConnectionsIllustrative Only)

2.26 Class Diagrams/Hierarchies

Most of the analysis classes presented are those that were necessary in order to express the
Use Casesin terms of sequence diagrams. The methods for each class were similarly derived
out of the need to serve other classesin order to complete the Sequence Diagrams. The class
diagrams show each class, its methods and what other classes use these methods. They are
more abstract than the sequence diagrams since they do not show when or how often each
class makes use of a particular method in another class, but only that a connection is made.

Created: 08/02/01 Page 26 of 84

ALMA Initial Software Analysis

It is clear that many classes have common functionalities, and these are best expressed by
inheritance hierarchies, in which several classesinherit attributes and methods from a
common parent. The class diagram for Calibrations is probably the best examplein this
document: Baseline, Gain, Beam shape and Bandpass calibrations are all variations on the
theme of agenera calibration class. It isto be expected that this commonality will lead to
considerable savings in code devel opment, since much of the software devel oped should be
reusable in children of the same parent class.

Created: 08/02/01 Page 27 of 84

ALMA Initial Software Analysis

O

Manuals
(from Archive)

MyetManuals()

CorrelatorTool
(from Corelator)

BtictermineCorrela... [~ ~

ObseningTool
(from ObsTool)

[reateObseningTool()
[®inputProposalDetails()
[MinputSimulatorSetup()
.eturnSimuIationRes ults()
[MalidateProposal()
™5 ubmitObseningProposal()
[selectObseningMode()
[®inputObseningModeDetails ()
equestToValidateSubProgram()
[®inputSBDependencies()
5 plitOPiNtoSBs()
[™inputBreakpointConditions ()
-nputArchivingSpeciﬁcation()
[™modify SchedulingBlock()

O

Validator
(from Submission)

[MalidateObseningProposal()
[MalidateObseningProgram()
[™heckObseningToolVersion()

ObsenvingProjec tCatalog
(from Repository)

ubmitObseningProgram .
EequestManuals% gram() -)utObsemngP_roposal()
[eturnvalidationResult() E:ﬁggzﬁ:ggﬁzgto
[MequestToCreateObseningProposal() o
. > L___ [®yetProgramStatistics()
@ =10t|fyAcceptedDen|ed() © =~ > EyetPrograminfo)
‘- nputScientificJustification .
Simulator B -nputScienceGoaIs 0 I.ObseningProgram(
rom ObsSimulato putsc . ™ toreObseningProgram()
¢ " [MtietermineObseningMode() [BhetObseningProposal()
] -:ietermineArrayConﬁguration() BddReviewPack
®unSimulator() : eviewPackage()
[MetermineCorrelatorSetup() PRetReviewPackage()
[™checkHardwareLimits() [®hddRating)
‘alculateObservingTime() B ubscribe()
.
[®talculateDataRateAndVolume())
e " |B®aveobseningProposalLocally() I pateObseningProgram)
L [®inodify SuggestedSetup() N
Q .equestToCreateOb‘ﬁervingProgram() AN
. [Bodifyscripts) | N
LineCatalog ®inputMappingDetails() N
fomicaaloo) / | ®inputCalibrationSpecifications) R
// equestToSplitOPintoSBs() N
[®betLineFrequenc..| ;" |[putPlinfo() : N
L/ [MequestToValidateObseningProgram() N
/ [™modify CalibrationSpecification() AN
! [®requestToCreateObseningProject() N
% .equestObservingPr‘bject()
[BrequestTovalidateOpseningProposal() Q

SB-Repository
(from Repostory)

T
SourceCatalog 1.n
(from Catalog) !

ObservingWydeTemplate

[®yetReadySBs()
(from ObsTemp)

[®yetsB()

®yetSourceCoorc...

®yetobseningModeTempla...

[

SBTemplate
(from ObsTemp)

TemplateScript

(from ObsTemp) Q

ObseningScript
(from SB Script)

ObseningModePar
ameter

/ (from ObsTemp)
1 ?
1

FieldSpecification

(from ObsTemp) Q

SpectralSpecification
(from ObsTemp)

0.1 @)

NutatorSpecification
(from ObsTemp)

Figure 2-2: Observing Tool Class Diagram

The class diagram that shows the ObservingTool and the objects it references gives an early indication
of the many methods, associated classes/objects, and InfoServices objects that will be needed to make
thistool work. All these objects, in some form, will need to be exported to the Proposer at hisher
home institution, or at least be reliably and efficiently accessible via a network connection to the

Created: 08/02/01 Page 28 of 84

ALMA

Initial Software Analysis

ALMA Science Operations Center or to one of the Regional Centers. The diagram also shows how
ObservingM odeTempl ates, the bases for the generated SB scripts, are themselves built up out of
lower level templates, which in turn are generated from a generic TemplateScript that takes uses an

ObservingM odeParameters object to "fill in the blanks". The ObservingM odeParameters object itself

is built from a FieldSpecification, an (optional) Nutator Specification, and a Spectral Specification.

Q

ObseningProposal
(from ObsProject)

®createObseningProposal()
®getObseningProposal()
®updateObseningProposal()

/1

O

ScientificJustification
(from ObsProject)

_— T

+Colnvestigator

T 0..*

+Principlelnvestigator =

O

Person
(from General)

1

T Q

PerformanceGoals
(from ObsProject)

O

ArchivingSpecification
(from ObsProgram)

Figure 2-3: Observing Proposal Class Diagram

ESName
ESinstitution
E8contactinfo

The class diagram for the ObservingProposal displays its various supporting entity classes:
scientific justification, performance goals, archiving specification, and so on.

Created: 08/02/01

Page 29 of 84

ALMA Initial Software Analysis

ProjectControl ObservingProject

\/

v \l/
CemifelEee: ObservingProposal

\

\

\

|
ObsUnitControl | _ ObservingUnit |

: : 1.*
+MainProgram
\ 1
ImageScript 1

Scheduling Block ObservingProgram

\
\‘Ml

ObservingUnitSequence

B

Flow ControlScript

1
ObservingScript

Figure 2-4: Observing Project Class Diagram

When an Observing Proposal is approved, its associated Observing Project must befilled in
with the appropriate Phase |1 information. The class diagram for the Observing Project shows
the way in which this information can be hierarchically organized into Observing Units, each
of which contains an Observing Unit Sequence. An Observing Unit Sequence may
recursively contain one or more Observing Units, but eventually this hierarchy must
terminate in Scheduling Blocks, which are by definition non-recursive. An approved and
ready-to-schedule Observing Project must contain at least one Scheduling Block.

Each Observing Unit Sequence has its own Flow Control Script, which establishes the order
(if any) in which the component Observing Units are to be executed. The Observing Unit's
Control Block includes status information (e.g., how much observing time has been allocated
to and used by this Observing Unit) and may include Breakpoint Conditions (indicating
whether execution of this Observing Unit must be delayed pending a decision by the
Project’s Pl). Associating such conditions with each level in the hierarchy allowsthe Pl to
temporarily halt a project at, for example, the start of an ACA or single-dish observation
(each of which would naturally be characterized by a single Observing Unit), or at the more
finely-grained level of a Scheduling Block.

The presence of a Control Block at al levels of the hierarchy also permits prioritization
(presumably by the ALMA Time Allocation Committee, but if desired, also by the Pl and by
the ALMA Operations Staff) at any level of detail desired. If ALMA Operations Policy

Created: 08/02/01 Page 30 of 84

ALMA Initial Software Analysis

forbids articulated prioritization by Pls, reviewers or ALMA staff, then this capability will
either not be implemented or can easily be disabled; the point to note is that the infrastructure
to support it will exist.

Because the abstract nature of the above diagram can be somewhat hard to follow, we present
an object diagram to illustrate how a particular kind of project might be handled. We
hypothesize a mosaic of agalaxy that combines OTF, ACA and single-dish observations. The
project hierarchy for this particular case might be as shown schematically in the following
figure.

1 1

: ® Joe's Project : ObservingProject & *
: ControlBlock *

Scientific Priority ! Joe's Proposal : ObservingProposal

Time Allocated

1

Galaxy Mosaic : ObservingProgram

*
*
CombinedProcessinglnstructions : ImageScript |Galax Mosaic : Observin UnitSetl‘“ Ordering&Dependencies : FlowControlScript,
*k
¢ . ¢
* *

OTF Mosaic : ObservingPrO%ram ACA Observations : ObservingPrograml Single Dish Observations : ObservingPro raml
OTF Imaging Instructions : ImageScript |1D_“EF SB:SB | IACA Processing : ImageScript| | ACA SB : SB

1

OTF Control Block : ControlBlock

Scientific Priority
Time Allocated

Figure 2-5: Object Diagram for Galaxy M osaicing Proj ect

Note that control blocks appear at the highest (project) level and also at the lower levels
(shown here only for the OTF portion of the project). ImageScripts are shown attached to the
OTF and ACA portions of the project, as well asto the higher-level “Galaxy Mosaic”
Observing Program. A Flow Control Script takes care of any orderings and/or dependencies
among the OTF, ACA and Single Dish Observing Programs. In order not to clutter the
diagram with unnecessary details, we have left off various instances of the Image Scripts,
Flow Control Scripts (which could, for example, be attached to a set of SBs) and Control
Blocks.

Created: 08/02/01 Page 31 of 84

ALMA Initial Software Analysis

Scheduling Block = ObsUnitControl
(from SchedBlo... 1 (from ObsPraje...
] 0 /—T
CalibrationRequirements PerformanceGoal
(from SchedBlo... (from SchedBlo...

/ 1

ImageScript Q

(from SBScript) ObservingScript
(from SBScript)

Command
(fom Command
1..n :
Q ScanCommand
ipeli fom Coy
PipelineCommand (fom Command)
(fromCommand)
1.n
ObservationDescriptor
(from Command)

Figure 2-6: Scheduling Block Class Diagram

The Scheduling Block Class Diagram shows its component scripts (for observation and for
imaging), as well as control parameters such asinitial and final calibration requirements and
performance goals.

The remaining class diagrams mostly show objectsin a star configuration, with the principal
object at the center, and all the objects it references and/or manages arranged around it. Thus
the Sequencer, the Scheduler and the Imaging Pipeline are al control classes that make use
primarily of other entity objects (although the Sequencer and Scheduler, for example, do have
simple interactions with each other).

Created: 08/02/01 Page 32 of 84

ALMA Initial Software Analysis

Subarray
Scheduling Block fomiimasyach)
(from SchedBlock)

[#iperformBandpassCal()
[®updateSBStatus() [¥perform DelayCal(
®rray ConfOK () [®obseneCalCandidates()
s visivle() [#performPointingScan()
E®conditionsOK() EerformFocusSca_n() Q
[BgetimageScript() bservePhaseCalibrator() CalibrtorCatalo
[®observeCalCandidates() [®observeTarget() (from Catalog) ?
[#&createSchedulingBlock () .corrgctAntennaPtgo
updateschedulingBlock() Egggﬂ:’é%HWo [®getCalibratorCandidates()
®getinitialCalRequirements() [®addMostRecentFlux()
#yetDesired HW Config() S A 1n
[®getobseningS cript LN ’f -
[#yetFina CalRequirements() s f 7

Sequencer
(from AlmaSystem)
[Bexecute()
[®adjustCycleTime()
O [#newCorrectionsReady() ()
o __ - ®notifyDataArchived() -~ CalArchive
ImagingPipeline 2 [#notifyNewReducedData() -l (from Archive)
(from Pipeline) 1 [#notifyNewObsConditions()

[FreturnPhaseRMS() [®getPhaseRMS()
processData())) [MEingestPtgCorrections()
EX?;%ELZA&'QE:CF;%O K) =[g;etPthorrectionso

otifyDataArchive , ! utPhaseRMS()
. , \
[®¥makeFinalimage() K ' [®getFocusCorrections()
K \ [#getCalibData()
7/ ! \\
é \v :
RawDataArchive o @
(from Archive) CalP |pe||ne
(from AlmaSystem)
[#newTargetScan()
BsaveData() [FhewPhaseCalData()
[BgetData() [®calcPhaseRMS()
BnewCalData() [ScalcPtgCorrections()
[®getArchiveStatistics() [¥newPointingData()
[®getRawData() [®newFocusData()
BnewPointingScan() [McalcFocusCorrections()
[®compareCorrectedUncorrected()
[#&educePointingScan()

Figure 2-7: Sequencer Class Diagram

Created: 08/02/01 Page 33 of 84

ALMA Initial Software Analysis
CalSolver
CalStatusMonitor .dolto
' [®updateCalibrationState()
[getTimeToCalibrate() [®updatePointingFocus ()
N - n Calibration n
[#EgetLastDone()
[#EgetLifetime()
Hisvalid()
ArrayCals //D ®getCurrAccuracy() < - | ProjectCals
[#acquireCalData()
FluxCal
Mupdate() ®updateCalibration() ~
[#getTimeToDo()
#EdeferrableUntil() 7
SidebandGainCal
TempScaIegZ/al -
DelayCal BaselineCal - 7 I)
// R 7 GainCal
T ; N s e _ -
\\ // \ . K » - _
\ / \\(’ A e - -7
"PtgSessionCal BeamghapeCal | " PolarizationCal - P
7/ Z v > = - -
\ , 7 L7 L7 //\\/// /,’/
N S A N T Bandpass Cal
\ aa 4 - - - -

ReceiverConfig

[#®getBand()
[une()

PointingFocusCal

[#retumPtgCorrections()

AntennaConfig

[#getLocation()

Figure 2-8: Calibration Class Diagram

Created: 08/02/01

Page 34 of 84

ALMA Initial Software Analysis

Calibration objects have the responsibility to know their states and the dependencies of those
states (on elapsed time and on the relevant hardware configuration), to be able to direct the
hardware to perform the observations necessary to provide data for an update of the
calibration, and to be able to initiate and control the near-real-time reduction of this data as
necessary. When requested, each object will also be able to return the time required to
perform such an update (useful for scheduling purposes). These capabilities are intended to
be common to (almost) all calibration objects, whose classes are therefore shown as an
inheritance hierarchy. Where appropriate, mechanisms will be provided for notification by
the calibration objects when they become invalid; direct programmatic interrogation will
always be possible. An additional control class, CalSolver, is provided to bring a set of
resources (antennas, receivers, correlator) to adesired calibration state (or to do nothing if
that state has already been reached).

ObsenvingProjectCatalog
(from Repository)

MhutObseningPropos al()

®check ForConflicts ()

®getObseningProject()

Mg etProgram Statis tics () .

®getPrograminfo () Dispatcher

ﬁ)utObservingProgram() (from Scheduler)

®storeObseningProgram()

MyetObseningPropos al() o

™o ddReviewPackage() K

MgetReviewPackage() ,

1.+ [®addRating() . L
s ubscribe () S ,
®update ObservingProgram () S 4
ObservingProgram AN
(from ObsProgram) N
Scheduler
®u pd ate Pro gram Status () (from Scheduler)
®getProgramStatus
13 etArchgiving Spec()() HranksBs()
%to BeArchived () Sstart()
®g etimage Script()] :sub§cr|be()
®createObs erving Program () - 'OSA“VQ() N
®u pdate ObsevingProgram () 7 rderSBs() AN R
- s // >
e / .
.7 / 1
1.n 7 - // 2
7 /
b - / L.
Scheduling Block - - // 'C)bsgogdl(tj!qn
(from SchedBlock) P /1 n ,1 (from SiteCondition)
/- o u -
Becomere 0 O i
rrayConfOK()

WisVisible () SB-Repository
®conditionsOK() (from Repository)
Myetimage Script() 1.n
®obsene CalCandidates () MyetReadySBs()
®createSchedulingBlock() MyetSB()
®updateSche dulingBlock()
®yetinitialCalRequirements ()
®yetDe siredHWC onfig()
WyetObse vingScript()
®yetrinalCalRequirements()

Figure 2-9: Scheduler Class Diagram

Created: 08/02/01 Page 35 of 84

ALMA Initial Software Analysis

Q ObseningProgram @

RawDataArchive (from ObsP rogram)

(from Archive)

[®updateProgramStatus()
[®getProgramStatus()

[@hewTargetScan()
[®saeData()

[®getData()
[®newcCalData()

[®getArchivingSpec()

[oBeArchived()
[WgetimageScript()
.:reateObservingProgramo
-deateObservingProgramo

[getArchiveStatistics()
[getRawData()
[newPointingScan()

O

ImagingPipeline
(from Pipeline)

[PorocessData()
[MexecutelmageScript()
[Bnotify DataArchived()

[makeFinallmage()

* | O
—1 CalArchive
Q (from Archive)
ScienceArchive
(from Archive) [¥getPhaseRMS()
[®ingestPtgCorrections()
BsaveData() [®yetPtgCorrections()

[®getimageData() ®putPhaseRMS() _

[®yetFocusCorrections()

[®yetcalibData()

Figure 2-10: Pipeline Class Diagram

Created: 08/02/01 Page 36 of 84

ALMA

InfoService
(from IrfoSenvice)
Archive > Btart)
(from Archive) [ubscribe()
[WisAlive()
refreshContent()
ploadNewData()
Manuals
(from Archive)
C— O
Catalogs
ScienceArchive (franCatdog)
RawDataArchive [y eData)
(tram Archive) [®etimageData()
MnewTarget Scan()
[Msav eData()
[®getData()
[®hewcaData()
[WgetarchiveStatistic s()
[MgetRawData)
[®hewPontingScan()
LogArchive
(from Archive)
MetLogRecords()
CalArchive
(from Archive)
% etPhaseRMS()
[WingestPtgCorrections() LineCatalog
Mg etPt gCorrections () (from Catdlog)
uPhaseRMS()
etFocusCorrections P P
etCalibDat () 0 gatLneF reqemcies))

Created: 08/02/01

Initial Software Analysis

Repositories
(from Repository)

SB-Repository
(ranRasibry

[etReady SBs()
Myeass)

SourceCatalog
(from Catalog)

[MgetSourceCoordinates()

CalibratorCatalog
(from Catalog)

MigetCalbratorCandidates()
[#®add MostRec entFlux()

ConfigurationRepository
(from Repository)
ntennaConfiguration
Eonela{orconf ig
ointingModel
EBaselineSolutions

Figure 2-11: InfoServices Class Diagram

ObservingProjectCatalog
(from Repository)

utObservingProposal()
[heckForConﬂlcls()

jetObservingProject()
[MetProgram Statistics ()
[®etPrograminfo()
[MbutobservingProgram ()
‘loreobserv ingProgram()
[MgetObservingProposal()
[®addRev iewPackage()
[MetReviewPackage()

ddRating()
ubscribe()
pdateObservingProgram()

Page 37 of 84

ALMA Initial Software Analysis

3 Use Case Realizations

3.1 Initial Sequence Diagrams & Description

Each of the following sequence diagrams is derived (not necessarily line-by-line) from the
corresponding Use Case. Each follows a timeline that proceeds from top to bottom. Each
class used for analysisis one of three kinds and has a corresponding icon below which is
displayed its name. (Informal definitions of the classes used can be found in the preceding
section, along with class diagrams, where the relationships among the classes warrant

display.)

Entity class. responsible primarily for accepting, storing and x
retrieving persistent data. Archives are typical examples. Iconisa
circleresting on a horizontal line. - CalArchive

-

Control class: responsible for control, coordination and/or
processing. The Dispatcher and the Observing Tool are
examples. Icon isacircle with an arrow pointing
counterclockwise

Boundary class: represents an interface, either to a human or to
another hardware or software system (or subsystem, depending
on the context). Icon isavertical line connected to acircle by a
horizontal one.

O O

: OperatorUl

Messages are shown as directed horizontal lines between objects; we say that the originating
object isinvoking a method in the receiving object.

It isimportant to understand that a sequence diagram represents a single scenario, that is,
only one of many possible paths through a Use Case. Some conditional branching may be
shown on a sequence diagram, but thisis the exception rather than the rule. Ultimately, one
hopes to explore all the “interesting” scenarios for each Use Case.

3.1.1 Create & Submit Observing Proposal

The proposer creates, validates and submits a Phase | Proposal to the ALMA Observatory for
review, using an observatory-supplied Observing Tool. (Note that creation of an Observing
Proposal implies the creation—Dby the system—of an enclosing Observing Project; see the
previous chapter for details of thisrelationship.) He/she can either create a new or retrieve
and edit alocally existing Phase | Proposal and normally works off-line. Network accessis
required for consulting the on-line ALMA Observer manuals, catalogues, etc., and to verify
that the version of the Observing Tool in useis current.

Created: 08/02/01 Page 38 of 84

ALMA

O O

_ Observerul

|
I
1

_ ObservingTool

createObservingTool

f8: requestManuals()

5: putPlinfo()

O

rvingTool : Manuals

\b

OO0 O 0 O O O

: LineCatalog

o bservmgPrP jectCatalog |
|

|
2: checkObservingTpolVersion()

Initial Software Analysis

: Source Catalog : CorrelatorTool

: Simulator

: Validator

4: getManuals()

6: inputScientificJustification()

" inputScienceGoals() Q
|

1]

|
|
|
8: requeﬁ(ToCrealeObservmgP[oposa\()

: ObservingProject

0

: ObservingProposal

J

9 createObservingProject() Q

U |

10: createObservingPropodal()

|
|
|

11: getlineFrequencies(LineNames)
[l

-——— -

| L

12: ge(SourceCoormnA‘(es(SourceNames)

O

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
L\‘
|
|

g
gl
)

|
|
|
|
|
| |
13: deterthiheObservingMode() ‘
|
[p=m— |
|
| |
14: determijArray C onfiguration() ‘ |
|
|
| |
15: ue‘kermme(:orrelamvsaupq) |
| | | gl
| | |
16: imits() ‘ | |
I | | |
17: calcyateObservingTime() | ! !
= I ! !
18:) | : :
=] |
| |
. |
- | |
- !
_ - | | |
. 0O | |
10: modty) | ‘ ‘
|
| | |
20: updateObservingProposal() | |
1 | |
| | |
21 posal() I ! !
| 22: validateObservihgProposal() !
23 saygObservingProposal o aly () T ; ;
|
| | |
24: 5ibmitol gPropgsial() | ! !
| |
|
25: putObservingProposal() | | |
| |
| I 26: validateObservingProposal()
| i
| 27: offegkForConflicts() |
|
! <—1 | 28: getProgctiD()
|
I ! U
|
29: notify AcceptedDenied() ! |
\
| |
30:|displ)
| |
| |
31 inputSimulatorSetug() | v |
| 32: runs-m‘Plamr(swmma(orsempb
t
| |
|
|
|
|
|
I

Figure 3-1: Create & Submit Observing Proposal

1. The Proposer starts the Observing Tool (OT).

2. The OT asksthe Validator (which islocated within the ALMA system) to check if
thisisthe most recent OT version.

Created: 08/02/01 Page 39 of 84

ALMA Initial Software Analysis

3. The Proposer asks for the ALMA Manualsto learn about the instrument. This step
could happen at any time.

4. The OT fetchesthe Manuals.

5. The Proposer inputs his’her name, institution, address, etc., along with similar
information concerning Co-Investigators, if any. We assume for ssimplicity that the
Proposal is being prepared either by the Pl or his/her proxy.

6. The Proposer enters the Scientific Justification for the Observing Proposal (OProp).
7. The Proposer enters the Scientific Goals of the OProp. The Science Goals comprise:

» source ID or coordinates.

» desired angular resolution and largest structure.

» sourceflux and SN or rms.

» lineidentification or frequencies.

» desired velocity resolution and width.

* desired dynamic range.

» archiving specification.

8. The Proposer requests the OProp to be created and the cal culations necessary for
Phase | to be done.

9. TheOT creates anew Observing Project, the top level container holding the
Observing Proposal and later the hierarchy of Observing Programs (see Create &
Submit Observing Program and SBs).

10. The OT creates the OProp.

11. The OT gets line frequencies from the Line Catal og.

12. The OT gets source coordinates and properties from the Source Catal og.

13. The OT determines the Observing Mode necessary to perform the proposed project
based on the largest structure.

14. The OT determines the necessary Array Configuration based on the angular
resolution.

15. The OT determines the Correlator Setup based on the line frequencies and the desired
velocity resolution.

16. The OT checks whether the proposed setup is within the hardware limits.

17. The OT calculates the necessary observing time under average observing conditions.
18. The OT calculates the expected Data Rate and Data V olume.

19. The (expert) Proposer optionally modifies the suggested setup.

20. The OT updates the OProp.

21. The Proposer optionally asks to validate the OProp.

22. The OT asksthe Validator to validate the OProp.

23. The Proposer optionally saves the OProp locally.

Created: 08/02/01 Page 40 of 84

ALMA Initial Software Analysis

24. The Proposer submits the finished OProp.
25. The OT sends the OProp to the Observing Project Catal og.
26. The Observing Project Catalog asks the Validator to validate the OProp.

27. The Observing Project Catalog checks for conflicts with other Observing
Proposal s/Observing Programs

28. The Observing Project Catalog gets a unigue ID for the OProp from Authorization

29. The Observing Project Catalog notifies the OT whether the OProp has been accepted
or denied.

30. The OT informs the Proposer about the submission result. In case of acceptance it
returns the ProjectI D as unique identifier.

31. At any time the Proposer optionally runs the Simulator to find out if a given project is
feasible with ALMA.

32. The OT asks the Simulator to simulate the given setup.

3.1.2 Create & Submit Observing Program & SBs

Starting from an approved Observing Proposal, the proposer/observer uses the Observing
Tool to deliver the complete technical specifications for the Observing Programme to the
Phase 1| Scheduling Block Repository. The Observing Programme adds one or more
subprograms and Scheduling Blocks and rel ations/dependenci es among them to the approved
Proposal

Created: 08/02/01 Page 41 of 84

ALMA Initial Software Analysis

O O 0O 0 0 O 000 0aQ0

Observerul o = ObservingProgram O Flow Contrd Script: OP Break Point Scheduling Block SB Control Block :S8 Observing Script Vaidatar
- | ObservingP talog O ElowControlScript Condtions. QbsUnitConrol — ObservipaSeipt

1: createObservingTool() |

f | ! !
| | | | | |
\ | 2: checkObservingToolVersion() | | ! !
| | | | T | |
3: riyuestO| e EClID) | | | | | | |
] detovsenvingProject(Project|o) | | | | ! !
j j |5 veryProectiD) | | |
| | | | | | L
| | | | | | |
. & getObservinghodeTemplate() \ | | | | |
| 1 | | | | |
7: display Preliminary Setup(| | | | | | |
| | | | | | |
7 | | | | | | |
8: inpuCalbration Specifications() | | | | | | |
9: inputMappingDetails() ! ! ! ! ! ! !
| | | | | | |
| | | | | | |
10: rgquestToCreateObserving) | | | | | | |
11: cfeateObservingProgram() | | ! ! !
| | g | | | |
| | | | | | |
12)
I I I 13; validateObsenvingProgran() | ! ! !
T T T T T) | |
| | | | | | |
bl: requestToSplitOPintoSBs | | | | | | |
| | | 15: getObserv atory Poligy () | ! !
I I I I | gl |
| | | | | | |
16: 4gicoPintosBs() | | | | | | |
S | | | | | | |
	17: createSchgdulingBlock() L				
			createControlBlock()		
			U		
			19: createObservingScript()		
20: inputSBDependencies(
21: createFlowCoftrolScript()					
[[[gl					
%:) [[
! 23: crehteBreakPointConditions() ! ! ! !					
: : : 1 [[!					
		! ! !			
24{ hodify)				! ! !	
	25: updateSBControlBlock()				
			g		
Expert Mode 1Y | ! ! ! ! ! !
__|actions | | | | | ! !
s B
= -7 ! ! 27 uwaiesch‘edu\m Block() ‘ ! ! |
- | I i I | | |
- | | | U | | |
~
28: modity Scripts() | | | ! ! !
| | | | | |
1 1 1 I | |
| | | g I I
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
se
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
30: submitObservingProgram| | | | | | | |
| | | | | | |
| | | | | | |
1: putObservingProgram() | | | | | |
| | 32: validateObservinpProgram() ! [[
1 1 1 1 | |
3: notfy AcceptedDenied(‘ ‘ | | T ! !
| | | | | |
4: oty SubmissionResuit() I I ‘ ! ! !
| | | | | | |
| | | | | | |
| | | | | | |

Figure 3-2: Create & Submit Observing Program & SBs

The Observer starts the Observing Tool (OT).

The OT asksthe Validator (whichislocated within the ALMA system) to check if
thisisthe most recent OT version.

3. The Observer requests his’her Observing Project using the previously assigned
ProjectID.

The OT asks the Observing Project Catalog to fetch the given Observing Project
The Observing Project Catalog asks Authorization to verify the ProjectID.

OT fetches the Observing Mode Templates according to the Observing Modes listed
in the Observing Proposal.

Created: 08/02/01 Page 42 of 84

ALMA Initial Software Analysis

7. The OT displays the preliminary setup.

8. The Observer enters the desired calibration specifications.

9. The Observer enters the desired mapping details.

10. The Observer asksthe OT to create the Observing Program (OP).

11. The OT creates the OP.

12. The Observer optionally asksthe OT to validate the OP.

13. The OT asksthe Validator to validate the OP.

14. The Observer requests the OP to be split into Scheduling Blocks (SBs).

15. The OT fetches the Observatory Policy to determine policies such as maximum time
per SB.

16. The OT splits the OP into SBs according to the Observatory Policy.

17. The OT creates the SBs.

18. The SB creates the necessary SB Control Block.

19. The SB creates the necessary SB Observing Script.

20. The Observer optionally enters SB dependencies.

21. The OT creates a Flow Control Script which encodes the SB dependencies.

22. The Observer optionally enters Breakpoint Conditions to be able to check preliminary
observing results.

23. The OT creates the Breakpoint Conditions.

24. The Observer optionally modifies the Calibration Specifications.

25. The OT updates the Calibration Specifications.

26. The (expert) Observer optionally modifies the SB(s).

27. The OT updates the SB(s).

28. The (expert) Observer optionally modifies the SB Observing and/or Image Script(s).
29. The OT updates the SB Observing and/or Image Script(s).

Note: Steps 8 to 29 can be repeated and/or nested to generate more than one or a
hierarchy of Observing Programs.

30. The Observer submits the finished OP.
31. The OT sends the OP to the Observing Project Catalog.

Created: 08/02/01 Page 43 of 84

ALMA Initial Software Analysis

32. The Observing Project Catalog asks the Validator to validate the OP.

33. The Observing Project Catalog notifies the OT whether the OP has been accepted or
denied.

34. The OT informs the Observer about the submission result.

3.1.2.1 Main Findings:

1. TheValidator and the Simulator need to be exportable in order to be able to use the
Observing Tool locally. The Observing Tool and the Validator need to be
synchronized with the internal ALMA version.

2. ldentified the need for an authorization / security mechanism to allow accessto
proposal s/programs only for the PI/Col’s, the reviewers and the ALMA staff.

3. Need details on how to determine the ideal Observing Mode, the necessary Array
Configuration, the Observing Time and the Data Rate and V olume from given
Science Goals for further analysis.

4. The requirements say that the general user does not have to modify anything in the
setup that was suggested when the proposal was created. All modification steps are
thus optional or for expert observers.

3.1.3 Dispatch SBs

The Dispatcher is responsible for marshalling commands and scripts for execution. It can
receive these commands and scriptsin any of four modes. dynamically scheduled, interactive,
manual and technical. The first two of these modes require the passing of complete
Scheduling Blocks; only the dynamic and interactive modes are displayed here. The SB's
script itself is executed by the Sequencer, which might be a ssmple script interpreter, or might
be required to know something about an SB’s structure as well (in particular, its
configuration and calibration requirements, to the extent that these are not embedded in a
script); execution of the instrument-specific commands is performed by the Subarray object,
described in the "Observe Single Field" Sequence Diagram.

Created: 08/02/01 Page 44 of 84

ALMA

Initial Software Analysis

O O O O O O O O O

_t OperatorUl : Dispatcher : Sequencer : Scheduler : Scheduling Block : ObseningProgram _: ArrayCals : ImagingPipeline: SubarrayAllocator
‘ 1: setMode() l D

[dynamic] 11}: |displayRankedSBs() U

Created:

2: getArrayConfig(|)

[dynamic] 3: rankSBs(Subarray)

[dynamic] 4: displayRankedSBs(U

5 dispatchNewSBy(

6: update()

7: execute(SBId, Script, ArchivingSpec)

8: updateSBStatus

9: updateProgramStatus()
dynam@]rank SBs(Subarray) U

=

2: dispatchNewSB(

[end of session] 13: makeFinallmage(,)

14: execute(SBId, Script, ArchivingSpec)

[]

15:|updateSBStatus()

16: updateProgramStatus()

!

Figure 3-3: Dispatch SBs

The operator instructs the Dispatcher to use either dynamic or interactive scheduling:
setMode().

Dispatcher asks the SubarrayAllocator for the antennas and correlator resources that it
may use: getArrayConfig().

If dynamic modeisin use, the Dispatcher asks the Scheduler for an ordered list of
Scheduling Blocks that can run with currently allocated antennas and correl ator
resources. rankSBs(Subarray)

If dynamic modeisin use, the Dispatcher requests the Operator Ul to display the
ranked SBs to the operator: displayRankedSBs().

Operator may request the Dispatcher to choose a different SB for execution; areason
for the change is given at the same time: dispatchNewSB(Reason). In interactive
mode, this step is mandatory

Dispatcher asks the ArrayCals to update any array calibrations that have become
invalid and that cannot or should not be deferred: update().

Dispatcher asks the Sequencer to execute the highest-ranked (dynamic mode) or
manually selected (interactive mode) SB: executeSB(). Although the Dispatcher waits
for the Sequencer to return (along with a status) after executing the SB, it may timeout
and request abnormal SB termination if the SB’stime limit is exceeded: During the

08/02/01 Page 45 of 84

ALMA Initial Software Analysis

wait period, Dispatcher may request execution of 1 or more SBsthat can use any
antennas not required by the currently executing highest-ranked SB, i.e., it may loop
on steps 2-8.

8. Upon completion (or abnormal termination) of the SB, the Sequencer updates the
SB’s status: updateSBStatus().

9. Sequencer updates the status of the ObservingProgram corresponding to the just-
terminated SB: updateProgramStatus().

10. In dynamic mode, Dispatcher requests another ordered list of SBs from the Scheduler:
rankSBs().

11. See Step #3
12. See Step #4}

13. If the new SB is from a different Programme (or Subprogramme) than the previously
executed one, then the session is ending, and the Dispatcher instructs the
ImagingPipeline to create a definitive image with all data taken so far:
makeFinal Image().

14. execute(SBId,SB Script,ArchivingSpec).
15. See Step #g)
16. See Step #9}

3.1.4 Schedule SB

Important to note in the following Sequence Diagram is that the Scheduler relies on other
objectsto let it know which SBs are actually ready to run; having assembled the
necessary information, the Scheduler uses the TBD algorithm referred to in requirements
4.0-R3 to prioritize these SBs.

O O O QO 0 OO0

_ Dispatcher - Scheduler Schedulmq Block _ SB-Repository ~ _: ObsCondition - CalStatusMonitolnhseningProgram

1: rank SBs(Subarray) :
\2. getObsConditions |
|

|
3: getReadySBs(LST, ObsConditions, ArrayConfig) /u
| |
: ﬂthProgramStatus() :

5: g3tInitiaICaIRequiremepts()
I

6: getTimeToCalibrate()

~

: prderSBs()

p—

Figure 3-4: Schedule SB

Created: 08/02/01 Page 46 of 84

ALMA Initial Software Analysis

1. Digpatcher tells Scheduler to return an ordered list of Scheduling Blocks:
rankSBs(ArrayConfig).

2. Scheduler requests observing conditions from ObsCondition: getObsConditions().

3. Scheduler requests from SB Repository all SBsthat can run with the current array
configuration and observing conditions, are visible in the current LST range, and are
not currently being edited or waiting on breakpoints and that do not have
dependencies on other SBsthat have not yet been run:
getReadySBs(L ST,ObsConditions,ArrayConfig).

4. Scheduler queries the ObservingProgram of each remaining SB to determineits
status: getProgramStatus().

5. Scheduler gets each SB’s startup calibration requirements:
getlnitial Cal Requirements().

6. For each SB, Scheduler asks the Cal StatusMonitor to determine the time necessary to
bring SB to itsrequired calibration state: getTimeToCalibrate().

7. Scheduler uses all itsinformation concerning program status, scientific priority, time
to execute (including time to calibrate) and conditions to rank the SBs: orderSBs().

3.1.5 Execute SB

The Dispatcher passes the highest-priority (or manually-selected) Scheduling Block to the
Sequencer for execution. The Sequencer acquires configuration, calibration and observing
instructions from the Scheduling Block and carries them out with the help of objects that
know how to configure, calibrate and observe viathe hardware and processing engines (not
shown here). The calibration objects can (optionally) skip arequested calibration update if
the desired calibration state has already been reached.

Created: 08/02/01 Page 47 of 84

ALMA Initial Software Analysis

O O O O O O

: Dispatcher : Sequencer : Subarray : Scheduling Block : CalSolver _: PointingFocusCal
1: execute(SBId, Script, ArchivingSpec) |
2: getDesiredHW Config()

B: conﬁgureHW()i /D

4: getlnitialCa Qequirements()
|
| 1

5: :updateCalibrationStateO
|

|
6: getObsew' ngScript() /D
1 11
|
7:: updatePointingFocus()
! 8: isValid()

|
Do obsenations, [not Valid]9: updateCalibration(}
calculations, etc. as ﬁ
dictated by SB's observing

script.

L] 10: getFinaICaIFequirements()
L] ! /U
|
L 11:‘ updateCalibrationState()

i | L

Figure 3-5: Execute SB

1. Dispatcher instructs the Sequencer to execute a Scheduling Block

2. Seguencer gets the SB’s hardware configuration requirements (correlator setup,
receiver tuning, etc.)

3. Sequencer instructs the Configurator to configure the hardware.
4. Sequencer getsthe SB’sinitial calibration requirements.

5. Sequencer instructs the Cal Solver to perform any necessary calibrations to bring the
calibration state to that required by the SB.

6. Sequencer getsthe SB’s observing script and executes its commands.

7. Periodicaly, the Sequencer (as instructed by the script) will instruct the Cal Solver to
update the Pointing and Focus calibrations. (It is also possible to use an asynchronous
notification mechanism, in which the PointingFocusCalibration object itself could
notify the Sequencer when its validity expires).

8. CaSolver asks the PointingFocusCalibration object whether it is still valid.

9. If thecalibrationisno longer valid (either because a determined time has el apsed

Created: 08/02/01 Page 48 of 84

ALMA Initial Software Analysis

since the last calibration update or because the antenna has slewed beyond a certain
amount) Cal Solver requests the PointingFocusCalibration object to update itself.
(These two steps could be combined so that the PointingFocusCalibration object
updates itself if necessary. The choice made her |eaves more explicit control in the

hands of the Cal Solver.) See Section ?&—'ﬁl Pbeervepel-n&ngeal-l-brat-renl, for details.

10. Once the observing script has finished, the Sequencer gets the SB’sfinal calibration
requirements.

11. Sequencer requests the Cal Solver to ensure that the final calibration state has been
reached or, if desired, that particular calibrations are redone.

Created: 08/02/01 Page 49 of 84

ALMA Initial Software Analysis

3.1.6 Observe Single Field

This Sequence Diagram shows the execution of the script of an SB designed to execute a
(part of @) Single Field interferometric observation. A basic mechanism used here is that
of notifying objects when new data (either raw or processed) is available, but requiring
those objects to request the data when they are ready for it.

O O 0O O O O O O

_: Dispatcher _: Sequencer : Scheduling Block : Configurator _ CalSolver - Scan : Quick ookPipeline : GainCal

1: exec‘me(SBld, Script, ArchivingSpec) :
2:getDesiredHWConfig() !
|
|
|

3: configureHW()

4: defInitialCalRequirements() /u
|

|
5: updateCalibrationState()
|

|
6: observe() phase calibra;U
1

-7 i : 7: updateCalibration() >D
- T

el ! 7_‘
-7 8: obsérve() target ‘
- ‘ |
- - | !
-7 9:newDataAvailable() 1_‘ !
~ ! ‘
. 10: obs%erveo [:
|
|
|
1

target-cal T /U
loop 11: updateCalibration() phase calibrator
<
N
N

<
13: gdjustCycleTime()

|
:I 14: getFinalCalRequirements()
|

15: updateCalibratio nState()
\
16: up dateSBStatus(), m

U |

Figure 3-6: Observe Single Field

1. Sequencer receives instruction from Dispatcher to execute a Scheduling Block:
execute(SBId,Preambl eScript,ArchivingSpec).

2. Sequencer gets the SB’ s hardware configuration requirements (correl ator setup,
receiver tuning, etc.)

3. Seguencer instructs the Configurator to configure the hardware.
4. Sequencer getsthe SB’sinitial calibration requirements.

5. Sequencer instructs the Cal Solver to perform any necessary calibrations to bring the
calibration state to that required by the SB. If thisisthefirst SB in a session, these
will include gain, bandpass, focus and pointing calibrations. If suitable calibration

Created: 08/02/01 Page 50 of 84

ALMA Initial Software Analysis

sources have not been defined, Cal Solver will coordinate the actions necessary to find
them.

6. Sequencer instructs the Observation object to observe the phase calibration source:
observe().

7. Seguencer instructs the GainCal object to process (asynchronously) the calibration
datajust acquired: updateCalibration()

8. Sequencer instructs the Observation object to observe the target source: observe().

9. Sequencer notifies the QuickLookPipeline that there is new target data to process; the
pipeline will proceed asynchronously: newDataAvailable().

10. Sequencer instructs the Observation object to observe the phase calibration source:
observe().

11. Sequencer instructs the GainCal object to process (asynchronously) the calibration
datajust acquired: updateCalibration()

12. CaPipeline asynchronously returns a new value of the phase rms when it has
accumul ated and processed enough phase calibrator data: returnPhaseRM S().
(CalPipeline adds this new result to the Observing Conditions; this interaction is not
shown here.)

13. If thermsistoo high, the Sequencer adjusts the calibrator cycle time to compensate:
adjustCycleTime().

Sequencer loops through StepsItho until the desired performance goal is reached
or the SB’ stime (minus some tolerance for final calibrations) is exhausted.

14. Sequencer gets SB’sfinal calibration requirements.

15. Sequencer instructs Cal Solver to update all calibration states (performing whatever
calibrations are necessary) accordingly.

16. Dispatcher updates the status of the just-completed SB: updataSB Status(newStatus).

3.1.6.1 Questions & Issues

1. How should the asynchronous delivery of the CalPipeline’ s results be handled for the
various types of calibration? Is there some point at which lack of calibration results
becomes fatal to execution of the SB?

2. So many SBsfrom the same program or sub-program might be executed contiguously
that some parts of the calibration lose enough accuracy to become invalid. Asa
framework for a mechanism to handle this, the Cal StatusMonitor (see class diagrams)
has been defined; this object can be asked whether the current calibration statusis
satisfactory for any specified SB, aswell as how long it should take to bring any
needed calibrations up-to-date. Each calibration object would include a“maximum
time interval between runs’ to make sure that it gets executed as often as necessary;
for calibrations for which this concept makes no sense, e.g., gain and temperature
scale calibrations, this capability would be suppressed, and the calibrations would be
performed under direct programmatic control.

Created: 08/02/01 Page 51 of 84

ALMA Initial Software Analysis

3.1.7 ObservePointingCalibration

Pointing and Focus calibrations require concurrent observing and processing activities. A
PointingFocusCal object has the responsibility for managing these activities and ensuring that
a satisfactory result is reached unless a preset time expires or amanual interrupt occurs.

O O O O O O

: CalSolver _: PointingFocusCal : Subarray . CalPipeline . RawDataArchive . CalArchive

2: rformPointingScain()

3: newPointingScan()

g

4: reducePoijntingScan()

5: calcPtgCorrections(ScanData, PhaseCorrected)

—

L 6: calcPtgCorrections(ScanData,PhaseUnCorrected)

2-3 proceed <

in parallel 7: compareCorrectedUncorrected()
w/steps 4-10 :8T‘ingestPthorrections()

9: returnPtgCorrections()

Repeat 2-10 until

<< .
10:|correctAntennaPitg() desired accuracy
reached

|
|
|
1
|
| OR timeout
|
|
|
|
|
|
I

OR manually stopped

Figure 3-7: Observe Pointing Calibration
1. CaSolver instructs PointingFocusCal to update its state.

2. PointingFocusCal instructs the Subarray (in this case, al the antennas at its disposal)
to perform a pointing scan: performPointingScan().

3. When scan is completed, Subarray stores scan datain RawDataArchive:
newPointingScan().

4. PointingFocusCal tells CalPipeline to reduce the pointing scan: reducePointingScan().
These steps are repeated while the Cal Pipeline performs steps 4-8 below.

5. CaPipeline calculates the pointing offset corrections using phase-corrected data.
6. CalPipeline calculates the pointing offset corrections using phase-uncorrected data.

Cal Pipeline compares the errors on the offset corrections calculated in StepsE and El,
choosing the set with the smaller errors. compareCorrectedUncorrected(). (S. Scott: “errors
estimated by taking a series of offset estimates and computing their scatter. These estimates
may have aweight, for example, from the fitting process, or by measuring the scatter of the
visibilities on shorter timescales.”)

7. CaPipeline stores the new pointing offset corrections and errorsin the CalArchive:
ingestPtgCorrections().

Created: 08/02/01 Page 52 of 84

ALMA Initial Software Analysis

8. CaPipdline returnsthe new corrections to PointingFocusCal

9. If necessary, results so far are used to correct the pointing of one or more antennas:
correctAntennaPtg(Antenna #)

10. Steps 2-10 are repeated until the desired pointing accuracy is reached, the preset time
limit has been reached, or the calibration is terminated manually.

3.1.8 ProcessData

This Sequence Diagram displays the interactions necessary to process raw datainto calibrated
images and to archive the results. Sequence diagrams for Quicklook and standard Image
reduction are virtually identical. The major difference isthe particular Image Script that is
executed (deconvolution isincluded only for the standard reduction). Thus the Process Data
diagram covers both cases.

OO0 O O O O O

_: OperatorUl : Sequencer : ObseningProgram : RawDataArchive _: ScienceArchive : ImagingPipeline : CalArchive

| |
[automatic] : 1: processData(ImageSqript, RaWDataSpec): :

U | | U

|
l l
[manual] 2: proce}ssData(lmageScript, RaMDataSpec)

|

|

|

|

| |
| |
| |
| |
|

|

3 getData(R:awDataSpec) :

]
|
|
|
| | |
| \U\ | 4: getCalibData(RedDataSpec)
| | | >
| | |
| | | 5: executelmageScript(ImageScript, DataSet)
| | | g |
| | . |
I 6: toBeArchived(Data) 1
L L L

u | |

| |
| | ==true] 7: saveData(ReducedData
8: notifyNewReducedData(ReducedData) [save r‘ el ()

| |

10: notifyNewRed:ucedData(ReducedData) :

|
|
|
|
|
|
|
|
[| | 01 notify DataArc hived |
|
|
|
|
|
|
|
|

Figure 3-8: Process Science Data

1. Inautomatic mode, the Sequencer has been notified that new data are available and
decides (perhaps at the end of a session) that the ImagingPipeline should process
them. Thisis done asynchronously to enable the observatory to proceed with
observing while the data are being reduced.

2. In manua mode, the User has been notified that new data are available and may
decide that the ImagingPipeline should process them. Thisis done asynchronously to
enable the User to perform other tasks while the data are being reduced.

3. TheImagingPipeline retrieves the data to be reduced from the RawDataArchive by
'getData. This migrates the data to a place convenient for the ImagingPipeline.

4. The Image Production Script specifies what types of calibration data are required to

Created: 08/02/01 Page 53 of 84

ALMA Initial Software Analysis

reduce the raw data in hand. These calibration data are obtained from the Calibration
Archive using the method 'getCalibData(RedDataSet)'".

5. Oncethe IPScript and the data are available, the script is executed by
‘executel mageScript(ImageScript, DataSet)'.

6. The Pipeline checks with the Observing Program if the reduced data actually should
be stored using 'toBeArchived(Data)'.

7. In casethey should be stored in the Science Archive, they are saved by the method
'saveData(ReducedData)'.

8. When the Reduced Data have been saved in the Science Archive, the Imaging
Pipeline notifies Sequencer of its availability.

9. The Science Archive notifies the Pipeline that the data have been saved successfully
so that temporary copies can be removed.

10. Also the User is notified when afinal, deconvolved image is available.

Created: 08/02/01 Page 54 of 84

ALMA

Initial Software Analysis

3.2 Proposal/Project Preparation Activity Lifecycle

Phasel - Proposal Preparation

Phase |

Proposal Preparation

EDIT
PI‘O})OS&l

Editing
Proposal

Valid?
User

Yes

Submit
Proposal

No

Local
User
Activity

] ——

ALMA

SUBMITTED
Praoposal

Valid?
ALMA

Yes

Approve

No

Review Proposal Reject
OPC

Activity

APPROVED
Proposal

Created: 08/02/01

|
To Phase Il -
Project
Preparation

@END

Phase Il - Proj ect Preparation

(

Phase Il
Project Preparation

|

EDIT

Valid?
User

Yes

(Submit Project >

No

Project
Editing
Project

SUBMITTED

Project

Valid?

Yes

C

Review Project

ALMA Staff Optional?

\Approve

No

ALMA

}ieject

\

APPROVED

Project

Enable Obsening
Units

Figure 3-9: Proposal/Project Preparation Activity Diagram

Page 55 of 84

ALMA Initial Software Analysis

3.2.1 Phase | Proposal Preparation State Diagram
Description

In Phase | Proposal Preparation the Observer creates a Proposal and submitsit to the
Observatory. The Proposal is reviewed and either accepted or rejected.

States
1. EDIT Proposal

The Observer enters al mandatory Phase | information. Optionally, Phase |1 information can
be provided.

The editing process ends with the submission of alocally validated proposal to the
Observatory.

The OT provides anumber of additional servicesto help the Observer with the creating of the
Observing Proposal, e.g., array configuration, correlator setup, observing time required,
anticipated data rates and data volumes.

2. SUBMITTED Proposal

The submitted proposal is validated by the Observatory and is reviewed by the Observing
Programme Committee (OPC) on its scientific and technical merits

The Observer isinformed in case:
» theproposal is accepted,
» theproposa isrejected;
» thevalidation failed (proposa needsto be corrected and re-submitted).
3. APPROVED Proposal
The proposal is granted observing time and the Observer is required to submit Scheduling
Blocks.
3.2.2 Phase Il Project Preparation
Description

In Phase Il Proposal Preparation the Observer creates one or more Observing Units (detailed
down to the Scheduling Blocks [SB] level) for the Observing Project and submits these to the
Observatory. The Observing Units are stored in the Observing Project Catalog, and the
validated SBs (which are the only form of the Observing Units that can be scheduled) are also
stored in (or pointed to be) the Observatory SB repository.

States
1. EDIT Program

The Observer enters al mandatory Phase Il information and creates Observing Units, down

Created: 08/02/01 Page 56 of 84

ALMA Initial Software Analysis

to the level of Scheduling Blocks (Observing Scripts and initial and final calibration
requirements). An Observing Unit may be either 1) an Observing Program (which itself
includes an Observing Unit Set), including specifications for the order (if any) in which the
Set isto be observed, and how the data from the Set is to be reduced, or 2) a Scheduling
Block. Templates are provided al standard observing modes.

The Observing Unit creation process ends with the submission of alocally validated project
to the Observatory.

Again, the OT provides a number of additional servicesto help the Observer with the creating
of Observing Units, e.qg., array configuration, correlator setup, observing time required,
anticipated data rates and data volumes.

2. SUBMITTED Program

The submitted Observing Units are validated by the Observatory and optionally reviewed by
the ALMA Operations Staff.

The Observer isinformed in case:

» theProject is accepted and stored;

» theProject is not accepted and needs further work.
3. APPROVED Program

The approved SBs are accessible from the SB repository, and waiting for scheduling and
execution.

3.3 Additional Sequence Diagrams

During the process of creating the Sequence Diagrams, it became clear that an overall
Executive process was needed to manage the various services (Dispatcher, Scheduler,
Sequencer, Subarray Allocator, Pipeline, Error Monitor) that are needed to operate the
observatory, so an additional Use Case, "Operate ALMA System," and the corresponding
sequence diagram were generated. We then identified additional (mainly administrative)
software services that need to be present to operate the ALMA system. Use Cases and
Sequence Diagrams for "Manage ALMA Facility" and "Administer Observing Programs’
were developed. The additional Use Cases are given in the Appendix, while their realization
through sequence diagrams are presented in this section.

3.3.1 Sequence Diagram: Operate ALMA System

Thisisthe top-level executive program in the ALMA Observing System [AQS]. It initializes,
operates and supervises the interfaces, services, observations and hardware.

Created: 08/02/01 Page 57 of 84

ALMA Initial Software Analysis

@@@QOGQO

_ MasterUl : Executive _ ErorMonitor Local : InfoSenice _: SubarrayAllocator _: Dispatcher Remote : InfoSenice _: ExecWatchdog
1: start() | | 2: reset()

|
:
|
3: start() :

4: start()

5: start()

|
1
| |
| 6: start()
|
7: subscnbe() :
|
8 subscribe() |
gl
9: subscribe()
|

U

|
I 10: subscribe()

11: |sAI|\,e()

1
|
|
|
|
12: res tart() :
|
|
|
|

!—\4444444444\

‘ 13: isAlive()

14: isAlive()

T

15: isAlive()

)
D
!

16: refreshContent()

17: uploadNewData(

0

19: errbr(Oﬁginati ngSubs;/stem) 18: error() : 1_,_‘
| |

|
20: shutdown() |

|

L
|
|
|
|

Figure 3-10: Operate ALMA System
The operator at the MasterUI instructs the Executive to begin operations:. start().
Executive resets the ExecWatchdog.
Executive starts the Error Monitor.
Executive starts the local set of InfoServices.
Executive starts the SubarrayAllocator.
Executive starts the Dispatcher.
Executive subscribes to the notifications of the ErrorMonitor.

ErrorMonitor subscribes to the error notifications of the loca InfoServices.

© © N oo g &~ W N P

ErrorMonitor subscribes to the error notifications of the SubarrayAllocator.

Created: 08/02/01 Page 58 of 84

ALMA Initial Software Analysis

10. ErrorMonitor subscribes to the error notifications of the Dispatcher.

11. Executive periodically polls the ErrorMonitor to check that it is still operating:
isAlive().

12. If the value returned by isAlive() isfalse, the ErrorMonitor has died, and the
Executive attemptsto restart it: restart().

13. Executive periodically pollsthe local InfoServicesto check that it is still operating:
isAlive().

14. Executive periodically polls the SubarrayAllocator to check that it is still operating:
isAlive().

15. Executive periodically polls the Dispatcher to check that it is still operating: isAlive().

16. When the Dispatcher finds the supply of SB's insufficient, it asks the local
InfoServices to download more: refreshContenty().

17. Loca InfoServices instructs aremote version of InfoServices to upload new SB's:
uploadNewData().

18. In case of an error encountered by the Dispatcher, it notifies the ErrorMonitor (viathe
subscription mechanism): error().

19. ErrorMonitor distributes the error notifications to Executive (again viathe
subscription mechanism): error().

20. After fifty or sixty years of successful operation the operator shuts down the
Executive and brings the ALMA project to a conclusion: shutdown().

Created: 08/02/01 Page 59 of 84

ALMA Initial Software Analysis
3.3.2 Sequence Diagram: Manage ALMA Facility

O O O O O O 0 O O

_ OperatorUl : AdminTool _ LogArchive : RawDataArchive: SubarrayAllocator: MaintenanceDB _: ScheduleDB : Bodega
Obser\nngPrg jectCatalog

\1: requestReport() !
Léi |
2 getLogRecords() :
|
|
|

3: getProgramStatistics()

i

4: getArchiveStatistics()
|
|
|
|
|
|
|
|
|

5: g Report()

—

6: displayReport(

N
7 reql:JestMauntenanceAct|0n()

o

8: requestE:qu ipment()

g
1
T

1 gl
19: updateStatus() 1
| 1]
: 10: updateSchedule() :
T T
| |
| 11: getParts() |
Il Il
| |
| | /U
[| |
12 makeSiteSchedule() | |
13: getPrograminfo() | |
U 14: getStatus() :
T T
: 15: getPersonnelSchedule() : TJ
: 16: updateSchedule() :
| |
| |
| |
| |

Figure 3-11: Manage ALMA Facility

1. The User requests a report containing information on the genera performance of ALMA
such as efficiency, number of SB's and Programs executed, reliability, etc. This may be
done for a given period and for a specific set of subsystems.

2. All log records relating to the period and equipment in question are retrieved. They are
then scanned for relevant information.

Statistics on al active Programs are obtained.
General information on data volume and access ratesis retrieved from the Archive.
The information is collected into areport.

Thisreport is displayed.

A L S <

Such areport may suggest that certain maintenance actions be performed. The User
judges if this should be done and submits a request.

8. The equipment to be placed under maintenance is requested to be reserved so that
mai ntenance can start.

9. When the equipment is allocated to maintenance this and related information are recorded

Created: 08/02/01 Page 60 of 84

ALMA Initial Software Analysis

in the Maintenance Database.
10. Changes in schedules due to the maintenance are made in the Schedule Database.

11. Spare parts are obtained from the Warehouse, which also is responsible for replenishing
supplies.

12. The User requests a general long-term schedul e to be made for the site. This may include
array configurations, availability of staff etc.

13. The specifications of the Observing Programs to be scheduled are obtained.
14. The maintenance status of equipment is retrieved.

15. Genera information of availability of staff is obtained to ensure that personnel can
perform the schedule.

16. The schedule is updated.

3.3.3 Sequence Diagram: Administer Observing Program

O O O O 00 0 00

_: OperatorUl _ ProgramTool : EmailSenice _: ObservingProgram : SB-Repository _: RawDataArchive : ScienceArchive LogArchive

ObservmgPrg ectCatalog

1: start() |
2: subscribe()

|

3: requestReport() B :
—_—> |
|

4: getPrograminfo()

|
18: upg‘iateProgramStatus()

‘ U

\ \
| |
| |
| |
| |
| |
| |
| |
| |

5: getSB() : :

T | |

6: generateReport() : D : :

= ! ! !

7: displayReport() : : :
8: newEvent() | | |

9: displayEvent() | |
| |

10: requestDataPackage(| |

> | | |
11: getPrograminfo() | | |
| |
| |
! 12: getSB() ! !
I | |
| U | |
| 13: getRawData() | |
L |
| /U |
: 14: getimageData() : :
| | u
| 15: getLogRecords() |
|
| ! ! >D
16} writeMedia() : : :
p=—) ! : :
17: |nf0rrﬁ‘PI() | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 3-12: Administer Observing Program
1. The User starts the Program Administration Tool.

2. The Program Tool subscribes to the Observing Program Catalog in order to be informed a

Created: 08/02/01 Page 61 of 84

ALMA Initial Software Analysis

Program changes its state e.g. reaches a breakpoint or become compl ete.
3. The User requests agenera report of the current state of all active Observing Programs.
4. The Tool the status of each active Program.

5. From the Program information associated SB's are identified and they are obtained from
the Repository.

6. With thisinformation the Tool generates a complete report as specified by the User.
7. Thereport is displayed to the User.

8. A Observing Program has changed its state to one which require the PI to be informed
and obtain data. Asthe Tool has subscribed to such event, it isinformed.

9. The Tool communicates the event to the Operator.

10. If the Operator acknowledges a data package is generated and the Pl informed.
11. The full information for the Program is retrieved from the Catal og.

12. All relevant SB's are obtained.

13. From Program and SB information, all associated data produced for the Program are
identified. The raw data are retrieved from the Archive.

14. All processed image data are then retrieved.
15. All important log messages related to the Program are obtained from the Log Archive.

16. Theinformation (e.g., data, logs) is collected into a standard data package format. This
package is then transferred to mediathat the Pl can access. This could be medialike
DVDs, which can be shipped to the Pl but may also be an ftp server that /he has access
to.

17. The Pl isinformed (e.g., by e-mail) that the Program state has changed and related data
are available. The system verifies (e.g., by requiring a return receipt for the e-mail) that
the notification has been received.

18. The Program status is updated to record that the Pl has obtained access to the data.

4 Error Conditions & Handling Matrix

Error conditions of al typeswill of course be afact of lifefor ALMA. In the accompanying
matrix, we have begun to make an incomplete matrix of examples of the different kinds of
things that can go wrong, who should be notified, what effect these faults are likely to have
on ALMA asawhole, on the faulty subsystem, and on the further performing of Observing
Programs. Guesses at the time necessary to get the system up and running again, as well as
that necessary to provide a definitive fix for the fault are given. For example, a system may
crash or hang because of amemory leak due to faulty software. While rebooting the affected
computer may alow the system to continue to run for a certain period of time, finding the
source of the memory leak and fixing it will take much longer.

Created: 08/02/01 Page 62 of 84

ALMA Initial Software Analysis

Subsystems wishing to be informed of errorsin another subsystem can subscribe to the other
subsystem'’s error publishing mechanism. Only some errors can be signaled by the error
handling system, however. Crashes or hangs of major subsystems will only be recognized if
those subsystems are polled regularly, and such a procedure is foreseen in the "Operate
ALMA" Use Case and Sequence Diagram presented later in this document.

Created: 08/02/01 Page 63 of 84

Notify

ALMA

Error Type

Severity
Op?
P1?

Staff astronomer?

Disable ALMA?

Disable subsystem?

SPR?

Log?”

Reboot?

Initial S

s

Hold OB/SB

bof tw

s

Go to next pg®

Blank?
Flag?

e A

me ops

nalysis

Time to resu
Time to fix

Subsystems to notify

Fre

Hardware

Anternadam

Receiver

<<

~5mn
~5mn

Correlator

<|<=<
222

Z/</<

ZZ 2

<<=

Computer

Archive Computer

~5mn

Pipeline Conputer

Scheduling Conputer

Commfacilities

<[<[<]=<
zlzlz|z

%ZZ-< ZZ 2 <

21222

<[=<[<]=<

§-<-<-< 222 Z

2222

2222

Active Components

~10min

Passive Conponents

Software

Qashor hang

SBtimes out

SBfails

88

Painting failure

Focus failure

Tsys out of bounds

Raw Data Archive

<|<<[<[<[<]=<
zlzlzlzl<|<[z

<|Z|lZz|Zz|Z2|Z2|Z

<[zZzl<[<[<[z][<

<[<[<[<]<[<][=<

%ZZZZZ-<

~5mn

Cal Pipeline

Anomelous data

<
z

2

Onetime (e.g, crash
or mermory leak)

mins

Designimplementn

QL Pipdire

<<=

<<=

mns

Bad imeges

Systemtdetected

QCdetedted

Proposal Preparation

OT Gengral

Installation fails

1-3d

Deata can't be saved

Data can't be retrieved locally

Deta corrupted

Wong version

OT Subsysterms

Editor crash/hang

Validator crashvhang

Validator wrong res

<|<[=<

Data can't be sent

Correlator tool

Simulator

ALVA Proposal Ingest

Vel systemdoan

mns

PI/PII data can't be stored

<lhr

Receipt noify fails

<lhr

Validator crashvhang

1-2hrs

Valid. Report not sent

<[<=<

1-2hrs

Phase /Il Repository

Ful

mns

Cresated: 08/02/01

Page 64 of 84

ALMA Initial Software Analysis

5 Security considerations

In order to protect ALMA Operations from outside interference, whether well intentioned or
malicious, we envision a set of basic access restrictions on interactions with the outside
world. In particular, an Operations process must initiate any transfersinto or out of databases
that are in use by Operations. For example, when the Scheduler or Exec notices that its
supply of SB'sislow, it can request an update from, say, the ALMA Science Operations
Center (exact name and location TBD, but we imagine it as being, say, in Santiago).
Similarly, ALMA datais staged to mirror archives outside the charmed circle of Operations
before it can be freely accessed; this policy applies to the use of proprietary aswell as public
domain data. Even the Pl is not to access the online ALMA archive, which will presumably
be located at the OSF.

In many cases information such as observing proposals, SB’s and project status will be
exchanged between the ALMA observatory and external institutes and scientists viathe
Internet. To ensure that this information arrives without being corrupted or compromised,
these exchanges must be protected and verifiable through the use of digital signatures and
checksums; some may need to be encrypted. Since e-mail delivery is not 100% reliable, it
must be possible to verify receipt when e-mail is used for information critical to either the
Observatory or to the PI.

Created: 08/02/01 Page 65 of 84

ALMA Initial Software Analysis

6 Architecture

Most of the mgjor subsystems that emerge from the analysis are clients of some subsystems
and serversfor others. Sequencer objects, for example, could serve not only the Dispatcher,
but also any simple engineering interface that can pass ASCI|I text (scripts or script
commands). We can foresee that, particularly asthe entire ALMA observatory is being
implemented, each of these subsystemsislikely to be implemented and tested, if not actually
used, in amore-or-less standalone mode before the entire system isintegrated. We have tried
to minimize interference by one subsystem with the work of another: we have not yet seen
the need to introduce interrupt mechanisms for the high-level software. One subsystem may
subscribe to the service offered by another system, but these are usually subscriptionsto a
notification service; more substantial tasks, such as large data transfers, are always initiated
by the subsystem needing the service.

We have tentatively defined where (e.g., on what piece of computer hardware) each piece of
the system will be located. The definition of minimal interfaces allows us to distribute the
pieces across different platforms, and to use a communications scheme such as that provided
by CORBA implementations. (This choice has already been made for the ALMA Common
Software and the software for the ALMA Test Interferometer.)

6.1 Overall system flow

The following activity (“swimlane”) diagram gives a schematic view of the general order of
eventsinthelife of an ALMA program, as well as the parts of the system responsible.

Created: 08/02/01 Page 66 of 84

ALMA

Creale & Sbmit Observing
Proposal

“Accept Proposals

OProp being
created

Create & Submit OP and
/ sas

GProp |
‘submitted
Refereeing Send to Referee’
OProp baing Oprop being
T)

OP/SBs
being created

—

/" Wite Paper "\

Monitor subsytems.
(

Schedde SB

S SBs being
ranked

i

-
&

Update.

g

i
e

Initial Software Analysis

Defiver O Daia.

—

(OP Daa |
Delvered

......

6.2 Major services

Figure6-1: ALMA Swimlane Diagram

The principal servicesthat have emerged from this analysis are:

» Executive: the basic supervisor process

Delver archved
data
—>

» Dispatcher & Scheduler: the process responsible for determining which Observing
Programme to perform next

» Sequencer: ascript language processor

e Subarray: our abstraction for the ALMA hardware

e Subarray Allocator: ageneral ALMA resource allocator

* Pipédine: responsible for real-time (Calibration), not-so-real-time (Quicklook), and
Science Data (production of final images and datacubes) Reduction

e Error Monitor: receiver and notifier for fault conditions

Cresated: 08/02/01

Page 67 of 84

............

ALMA Initial Software Analysis

6.3 Deployment

We have made afirst cut at allocating ALMA software to individual processors or nodes, and
have defined ten general types of nodes or processors to understand deployment and
communication issues. They are:

N1) Proposer: Used by the Proposer to prepare observing proposals for ALMA. It will often
be external to the secure ALMA network (e.g., because it is on the Proposer’ s laptop) and
exist in severa instances.

N2) Referee: Used by referees during their evaluation of proposals. It may be external to the
secure ALMA network and exist in several instances.

N3) ALMA Master Control: Controlsthe ALMA facility and can therefore only exist in one
instance. Itisnaturaly inthe secure ALMA network and accessed by the ALMA operator.

N4) ALMA Administration: Used by ALMA staff for administration of the general ALMA
facility. The node can exist in several instances, but al must be on the secure ALMA
network.

N5) Program Administration: Used by staff for performing tasks related to the
administration of observing programs.

N6) Data Processing: Performs general pipeline processing of data. It can both be internal or
external to ALMA.

N7) Archive: Thistype of node provides access to the InfoServices. It may exist in severa
instances but normally on the secure ALMA network.

N8) Observer: Used by observers (A3) to detail observation (i.e. to specify Scheduling
Blocks) which then can be executed immediately after. Thisnodeison the secure ALMA
network and normally only in one instance.

N9) Scientific User: Used by scientific users to perform their work when interacting with
ALMA data. Itisnormally external to ALMA and can exist in multiple instances.

N10) ALMA System: Thisis ageneric node of the ALMA real-time system, e.g., antenna,
correlator, real-time computer.

Created: 08/02/01 Page 68 of 84

ALMA Initial Software Analysis

Proposer

AlmaAdmin

OP Submiss...

ProgAdmin

Possibly external
(remote obsening)

ing manual

Referee

Observer

SB Queue Fill

manual

Remote
Archive Sun
£=J

Archive Interactive / Manual Sessi...

preemptive preemptive

Data Processing Data Processing

Remote DataPipeline

DataPipeline

preemptive

preemptive

Archival Research

preemptive

AlmaUser

Antenna Correlator

<- External i

Figure 6-2: ALMA Deployment Nodes

7 What now ?

The work of analysis, the "refining and structuring” of the requirements, is far from compl ete.
Obviously missing are diagrams and class definitions for archival research and the details of
pipeline processing. The requirements themselves are continuing to evolve, and a mixture of
further analysis, preliminary design, and prototyping of the major subsystems will be needed
to determine how difficult it will be to realize them.

Created: 08/02/01 Page 69 of 84

ALMA Initial Software Analysis

8 Operational Issues

The ALMA software development group will try to design a system that, by virtue of the
flexibility of its basic structure, should be able to accommodate significant variationsin the
still yet-to-be-defined operational model for ALMA. Nevertheless, there are certain issues
whose resolution in one way or another can have important impacts on the complexity of the
resulting system, and therefore also on its cost.

a) Depending on the flexibility to be accorded to the Time Allocation Committee, the
software may need to support the assignment of differing priorities and time allocations to
pieces (Observing Units) of an Observing Project. This document has already defined the
necessary conceptual infrastructure, but whether such differential assignment will actually be
doneisapolicy issue.

b) Use Cases are needed for subarray examples, in particular for case of splitting array into
two or more subarrays and the synchronization requirements for reuniting them.

¢) There will be an effect on the design of the Dispatcher and Scheduler if “filler"
programmes are to be scheduled when some antennas are not needed by the primary
programme.

d) If the simulator is needed early to allow automatic vetting of non-standard scripts (which
by hypothesis would be more frequent in the early years of ALMA operations), thiswill
affect the order of software development.

€) A mechanism that authorizes proposers to submit non-standard scriptsis probably needed.

f) The SSR believes that evaluation of atest source (e.g., acalibrator) will provide sufficient
data quality evaluation for standard modes. We haven't seen this done in software before, and
the effort needed is hard to predict.

) If the scientific staff will have to adjust the array configuration schedule to reflect the
needs of accepted programs, some support software will be needed.

h) Should stringent control of Phase I/11 consistency be needed, supporting software of
undefined complexity (undefined partly because explicit requirements are missing and we
don’t know the scope of the work) will be needed.

Created: 08/02/01 Page 70 of 84

ALMA Initial Software Analysis

9 Appendix: Revised Use Cases

9.1 Operate ALMA System

Thisisthe top-level executive programin the ALMA Observing System [AOS . It
initializes, operates and supervises the interfaces, services, observations and
hardware.

Role(s)/Actor (S):
Primary: System Operators
Secondary: Observers, Staff Astronomers, Maintenance

Priority: Thetop priority processinthe ALMA system.

Performance: Must be immediate and maximum. In addition, no outside programs or
reguests should be able to prevent or degrade the control system from operating the
instrument.

Freguency: Continuous operation - Constantly used, available, and checked.

Preconditions: Initial hardwar e and softwareinstalled

1. Theentire ALMA system is powered up
2. All mgjor software and hardware devices are operational .
Basic Course: Startup and Normal oper ations

1. Ontheman ALMA control computer, the AOS executive program is started
as aprocess, either automatically or manually. A progress and status display is
maintained during this process for the operator and system monitor logs.

2. The executive program then starts:
1. System Initializer and L oader Processes:
1. Communications
2. Hardware Initialization
2. Information Services
1. Equipment and Service Monitors and Logs
2. Configuration Control
3. Archives:
1. Cataogs
2. Cdlibrators

3. Science and Image Data - Public

Created: 08/02/01 Page 71 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

4. User Data
1. Status
2. Proposals
3. Programs
4. SBs
5. Science and Image Data - Private or Proprietary
3. Processing Services
1. Cdlibrator Pipeline
2. Quick Look Pipeline
3. Imaging Pipeline
4. Operator Interfaces
1. System and Equipment Status Displays
2. Environmenta Status Displays
3. Schedule Status Displays
4. Observation Status Displays
5. Observation System Services.
1. Dispatcher
2. Subarray Allocator
1. Antenna Manager
2. Correlator Manager

3. From the services and displays, the operator may start and stop any services,
observations or the entire ALMA system.

4. The system isthen operating in its standard mode - dynamically scheduled
mode - automatic workload processing with dynamic scheduling.

5. The operator may also start other processes manually to perform system
operation and maintenance, including calibrations, antenna rel ocation or
backup operations. Or the operator may alter the mode of operation of the
instrument as follows.

6. Alternate Course: One or more of the observing subsystemsis operated in
interactive mode. This mode provides for a guest or staff astronomer to
directly control an observation through a GUI.

The scheduler allows the operation of an observation activity from a user

Created: 08/02/01 Page 72 of 84

ALMA Initial Software Analysis

terminal.

Script and other parametersin use may be altered by the observer at the
terminal.

Postcondition: The system may be returned to any other mode.

7. Alternate Course: One or more of the observing subsystemsis operated in
manual mode. This mode provides for direct control of the instrument through
its command language.

Dynamic Observation Scheduling is suspended.
All activity isinitiated manually.
Postcondition: The system may be returned to any other mode.

8. Alternate Course: One or more of the observing subsystemsis operated in
technical mode. This mode is provided for engineers for debugging and
mai ntenance pur poses.

Dynamic Observation Scheduling is suspended.

All user observation activity is suppressed.

All activity isinitiated manually.

Postcondition: The system may be returned to any other mode.

Subflow: System Shutdown

1. The Scheduler can suspend operations under command or clock control,
preventing any new observations from starting. Any existing observations may
be allowed to run to completion or be manually preempted.

2. The Executive can terminate the ALMA processes enumerated above.
3. The system platform may then be halted and powered off.

Alternate Course: System Error Processing

1. Error Detection - At any time, the system may detect errors and require a
response from the exec. Errors are detected by two methods:. 1) Errors are
detected by direct response from the command and control system to
commands issued by the exec or related processes. 2) They are also detected
by other monitoring processes which evaluate data being published by the
equipment monitor stream. These error sources are two independent processes.
Errors are classified according to severity and urgency. Some errors may be so
catastrophic that these detection processes do not work. An example isthe
failure of the exec itself, the command and control system, or the monitor
system. The instrument is unusable if this happens.

2. Minor System Problems - The exec is expected to diagnose, respond and
recover automatically to these errorsif observing parameters can be met. -
These are errors which do not prohibit continued operations. They may range
from atemporary loss of pointing or communications to the permanent loss of
one or more antennas or image processing. They may also include software
errors that can be temporarily fixed by restarts.

3. Major System Problems - The exec is expected to diagnose these errors and

Created: 08/02/01 Page 73 of 84

ALMA Initial Software Analysis

await manual intervention. - These are severe errors that prohibit continued
operations. They include failure of the control, communications, correlator and
archiving system. This also includes software errors which are unfixable, even
temporarily, by arestart. Obviously one of these major errorsis the failure of
the exec itself so asimple restart cannot compensate, even temporarily.

4. Recovery - Recovery from errors may range from:

1. unnecessary because later processing compensates as in correlator
output flagging, pointing flagging, etc.;
[- exec remains on line. - Observation continues - No action by exec is
necessary.|

2. restarting of afailed component, possibly giving atemporary fix;
[- exec remains on line. - Observation may be interrupted and resumed.
- Some items such as a crashed program can be restarted by the exec,
automatically or manually.]

3. replacement of afailed component;
[- exec may go offline. System , or part thereof, goes offline. - Time
and a maintenance period is required.]

4. fixing adesign flaw in hardware or software.
[no fix by the exec or operator is possible. Engineering development
must handle this case, perhaps requiring scheduling observations
around the problem until it isfixed. The exec isonly useful to
mani pul ate the instrument to perform manual intervention for
component replacement or possible temporary manual actions to work
around afailure]

If the exec itself fails, recovery ranges from arestart of the top level processes
wherein they recapture their orphan processes, or otherwise the entire system
may require arestart.

Exception Cour se:

1. Instrument operation requires the exec for observations. Some maintenance
activities may be performed in manual processes without the entire instrument
operating.

Postconditions:

1. There are no postconditions. The system does not operate without the exec.

I ssuesto be Deter mined or Resolved:

1. Differences between Interactive and M anual modes.

9.2 Manage ALMA Facility

The goal of this Use Caseisto illustrate a set of general management tasks for the
ALMA facility. They include the generation of reports on the status and performance
of the facility, initiation of maintenance actions, verification of local supplies, and
management of visitors and staff (e.g., creation of schedules, reservations).

Created: 08/02/01 Page 74 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

Role(s)/Actor (S):

Primary: System administrator, System Operator
Secondary: InfoServices

Priority: major

Perfor mance: minutes

Frequency : several times per week

Pr econditions:

1.Information Services are available.
Basic Cour se:

1. Actor specifiesthe period and ALMA systems for which areport should be
generated.

Logsfor this period are retrieved.
Log records are scanned and relevant information extracted.

A report is generated.

a c W D

Potential maintenance tasks are initiated which include:
* reserving the equipment for maintenance
» scheduling personnel and time for maintenance
6. Verify if suppliesarein stock and, if not, initiate orders of new supplies.

7. Establish agenera plan for availability of antennas and their configurations
considering information from Observing Program Catal og and maintenance
schedule.

8. Generate schedule for interactive observation

9. Generate schedule for staff considering the schedule for interactive observations,
calibration plan and preventive maintenance.

10. Allocate infrastructure resources to accommodate staff and visitors.

Postconditions:

1. Requested reports on the general ALMA status and performance are generated.
2. Required maintenance actions are taken.

3. Supplies are checked.

4. Plan for antenna and configurations is generated.

5

. Staff and visitor schedules and associated arrangement are made.

Created: 08/02/01 Page 75 of 84

ALMA Initial Software Analysis

9.3 Administer Observing Programs

The purpose of this Use Caseisto perform a set of tasks required to administer the
execution of Observing Programs. Thisincludes emission of e-mail to PI's at specific
Program events (e.g., reaching a Breakpoint), migration of user data, creation of final
user data packages, and generation of reports on the status of Observing Programs.

Role(s)/Actor (S) :

Primary: System Operator, Staff Astronomer
Secondary: E-mailService, InfoServices
Priority : Mgor

Performance : minutes

Freqguency : severa times per day

Pr econditions:

1. Observing Program Catalog is available.

2. SB Repository isavailable.

3. Raw Data and Science Archives are available.
Basic Course:

1. The user starts the tool which checksif e-mail service and communication are
available and subscribes to Observing Program change event.

2. Statusinformation for all active Programsis obtained from the Observing
Program Catal og.

A status report for all active Programsis generated
The actor may explicitly initiate migration of data and e-mail messagesto PI.

When Program change events are received the Program information is retrieved.

o o &~ w

If abreakpoint is reached or similar event which requires that the Pl isinformed
(e.g. Program complete), the following tasks are executed:

» dataand logs associated with the Program are identified
» relevant data are migrated to a server to which the Pl has access.

* anemail issent to the Pl to inform her/him of the event and the availability of
the data. Receipt of this e-mail by the PI is verified by the system.

7. Status of Program is updated.

Postconditions:

1. Plisinformed by e-mail of changes in the Observing Program status.

Created: 08/02/01 Page 76 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm

ALMA Initial Software Analysis

2. Relevant user data are made available to Pl

3. Requested reports on the status of Observing Programs are generated.

| ssues to be Deter mined or Resolved:

1. Policy: at which Program status changes should a Pl be informed?
2. Policy: when can a Pl request data?

9.4 Dispatch Scheduling Block

The goal of this use case isto obtain aranked list of Scheduling Blocks (SBs) from
the Dynamic Scheduler or from an interactive observer (viathe Observing Tool) and
pass this to the Sequencer. When a group of SBs from the same Observing
Programme is executed contiguously, an observing session is said to have been
executed. The system may initiate some data processing activities at the end of a
session.

Bolgs)/Actorgsn

Primary: Operator, Scheduler, Sequencer
Secondary:

Critical
Seconds to hours
Several times per minute/hour/day; One at atime per Sub-Array

PPr econditions|

1. Need to have Scheduling Block(s) availablein the Phase 11 SB
Repository

Basic Course

1. System requests a priority-ordered list of SBsfrom the Dynamic
Scheduler in either "atomic" or "snapshot™ dynamic scheduling mode.

(see UC_|Schedul eSB

Alternate course: System requests an SB from the Observing Tool in
Interactive mode.

2. The system displays thislist to the Operator, who can choose to
overrideit, moving adifferent SB to the top of the list and furnishing a
reason for this decision to the log.

3. The system passes the SB at the top of thelist to the Sequencer for
execution

4. Upon return from the Sequencer, the system updates persistent SB / OP
(Observing Program) parameters that have changed and saves SB / OP

Created: 08/02/01 Page 77 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Priority.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Performance.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/BasicCourse.htm

ALMA Initial Software Analysis

status

5. The system repeats Steps#1 and 2. If the newly selected SB requires
that the previous session be ended (becauseiit is from a different
Observing Programme, for example), the system initiates the
appropriate session-processing activities on the Science Data Pipeline.

6. The system loops on Steps #3, #4 and #5 as long as the Scheduler or
the Observer can furnish an executable SB.

Exception Cour sej

No more SBs are available to be scheduled.
1. Stop SB execution

2. Notify operator / observer; request repopul ation of SB-Repository

Postcondition: System waiting for input of SB or observing commands

Postconditions:)|

1. SB's have been successfully dispatched

I ssues to be Deter mined or Resolved|

« Which calibrations can be shared across SBs from different programs?

« What happens in snapshot mode when conditions change rapidly?
Notes:

+ Must have access to persistent program parameters.

Owner: Joseph Schwarz
Last updated by $Author: jschwarz $ on $Date: 2001/06/21 11:19 $

Created: 08/02/01 Page 78 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/TBD.htm

ALMA Initial Software Analysis

9.5 ScheduleSB (Revised)

Retrieve SBsfrom Phase || SB Repository, assign priorities to Observing Programme
SBs and return prioritized list of SBsto the Dispatcher.

The Phase |1 Repository for a given Programme contains SBs as well astheir
associated configuration and calibration requirements. The Scheduler will take
account of the time required to bring the array to the necessary calibration state when
assigning arank to each SB.

In "local scheduling mode", the Scheduler will consider each SB independently. In
"global scheduling mode™, on the other hand, the Scheduler will attempt to ook
ahead, building a queue of SBs -- possibly from different Programmes -- that can
share asignificant (in terms of observing time needed) amount of calibration
operations. The main goal here is to accommodate "snapshot” programmes, short
observing programmes that would be inefficient to schedul e independently because of
their relatively high calibration time-to-target time ratios.

The Programme may contain relational links between SBs, in the sense that agiven
SB may only be scheduled if specified other SBs have been previously executed, and
if some condition on their results (as indicated by the Observing Programme's status)
isfulfilled.

The programme may contain Breakpoints, i.e. conditions in the Observing
Programme's status that will inhibit further execution of SBsin that Programme,
pending release of the Breakpoint by the Observer.

Role(s)/Actor (s)|
Primary: Dispatcher
Secondary: Phase Il Repository, Array Observing System

major

order of seconds
order of minutes
Preconditions|

1. The Repository of active Programmes from Phase I

Basic Course

1. The system determines the current array configuration, in particular,
that part that is available for use

2. The system determines the current observing conditions
3. Thesystem acquires all Phase Il SBsthat can be run with the current:
1. Array configuration

2. Observing conditions

Created: 08/02/01 Page 79 of 84

http://groupware.eso.org:8000/bscw/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/Help/Priority.htm
http://groupware.eso.org:8000/bscw/Help/Performance.htm
http://groupware.eso.org:8000/bscw/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/Help/BasicCourse.htm

ALMA Initial Software Analysis

3. LST range
and that:

4. fulfill any conditions imposed by their Programme (rel ational
links between SBs).

5. arenot on hold because of a breakpoint.

4. The system determines the starting calibration requirements of each
ready-to-run SB and the time necessary to fulfill them.

5. System calculates SB priorities based on rules involving:
1. Initial scientific priority rating.
2. Environmental parameters (weather, LST, UT, ...)

3. System parameters (is the Programme started, isit currently in
execution, ...)

4. Pipeineresults (current phase rmsif available from calibrators,
possibly science results,...)

5. Timeto execute SB and all necessary calibrations.
6. System returns priority-ordered list of SBs.

7. Whenever an SB makesit into the list of (TBD) ten top ranked ones or
the list of SBslikely to be executed within the next 24 (TBD) hours, an
e-mail is sent to the PI.

Alternate Course] " Global scheduling mode"

1. The system matches SBs that can share time-consuming calibration
operations and constructs separate queues for groups of these.

2. The system returns these queues

Postconditions:)|

1. SBsare passed to the Dispatcher.

I ssues to be Deter mined or Resolved|

1. Theactual set of rulesto calculate priorities.

2. How to resolve the conflict between the "local” way of ranking SBs
(considering each one individually) and the "global" scheduling mode
(where the assumption is made that the observing conditions will
remain constant enough to allow more than one SB to be executed
using a common set of calibrations).

3. When calibrations are shared among programmes, their

Created: 08/02/01 Page 80 of 84

http://groupware.eso.org:8000/bscw/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/Help/TBD.htm

ALMA Initial Software Analysis

time cost should not be entirely attributed to the first SB, but

shared with the SBsin the repository that would benefit from them (in

fact only those that may be executed during the validity period of

that calibration). That might be difficult to compute. A policy
decision to charge time for shared calibrations to the observatory rather
than to individual observers might be worthwhile for the ssmplification
it would bring, and for the incentive it might give observersto propose
"snapshot” observations.

Notes:

Owner: Robert Lucas
Last nodified by $Author: jschwarz $ on $Date: 2001/06/28 10:57 $

Created: 08/02/01 Page 81 of 84

ALMA Initial Software Analysis

9.6 Execute Scheduling Block (Revised)

The goal of this use case isto execute Scheduling Blocks (SBs) that have been
scheduled by the Dynamic Scheduler. SBs are the building blocks of Observing
Programs (OPs). They include descriptions of configurations and the initial and final
calibrations needed for an Observing Session (an uninterrupted sequence of SBs
sharing the same calibration requirements). SBs are the smallest units to which the
Dynamic Scheduler assigns priorities. The Dispatcher sends the SB with the highest
priority (previously assigned by the Scheduler) to the Sequencer for execution on a
Sub-Array. Alternatively, in Interactive Mode, SBs are sent directly from the
Observing Tool to the Sequencer. Each SB includes all the project-level calibrations
necessary for its output to be processed autonomously. Calibrations that have been
performed prior to this SB but that are still valid for this SB's desired hardware
configuration/setup are used and not repeated unnecessarily.

Role(s)/Actor ()

Primary: Dispatcher, Sub-Array (all hardware available to this SB)
Secondary:

Critical
Seconds to hours
Several times per minute/hour/day; One at atime per Subarray

Preconditions|

1. Need to have Scheduling Block(s) from the Dispatcher

1. Dispatcher sends SB (see UC_[DispatchSB)

2. Performinitial setup and calibration operations. If existing calibrations
are still valid for this setup, do not repeat them.

1. Perform necessary system initializations and/or calibrations,

e.g., abandpass calibration (see UC |

Observe Interferometric AstroBandpassCal)

2. Warn the Pl that the observations are started if a previous
warning has not been sent within the last 96 (TBD) hours for
the same programme.

3. Execute standard Scans by interpreting the corresponding Observing
Scripts with the given user parameters (Observation Descriptors) and
controlling the antennas, the receiver and the correlator accordingly

Alternate course 1. For non-standard scan modes interpret the user

Created: 08/02/01 Page 82 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/UseCaseName.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/RoleActor.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Priority.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Performance.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Frequency.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Preconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/BasicCourse.htm

ALMA Initial Software Analysis

supplied Observing Script

Alternate course 2: Alternatively, in manual mode, the user typesin
commands to be executed directly viaa Command Line Interface
(CLD).

Exception course: An existing calibration becomes invalid, either
because its validity has expired, or because a change of hardware
configuration has made it inapplicable. In either case, perform the
necessary calibration and proceed.

Exception course: The execution of an observation fails

4. Archive datawith time and project tags continuoudly, i.e., while an

observation is being executed (see UC_[ArchiveData)

5. For standard observing modes send standard Reduction Script to
Calibration Pipeline (see UC_|ProcessCalibrations)

6. Perform final calibrations necessary to complete SB; if this SB turns
out not to be the last one in a session, these calibrations will still be
valid and will not be repeated when the next SB begins execution.

7. Return statusto caller (usualy the Dispatcher).

Excggtion Coursej

The execution of an observation fails

1. Stop SB execution

2. Notify operator / observer; save status of OP

Postcondition: Execution of SB halted; operator / observer notified;
status saved

Postconditions:)|

1. SB has been successfully executed

I ssues to be Deter mined or Resolved|

« Which calibrations can be shared across SBs from different programs?

+ The Observing Tool must know about the possible default scan modes and the
necessary Observing Descriptors.

Notes:
» Must have access to persistent program parameters.

+ Interactive observing will be setup via SBs that will be directly transmitted to
the Sequencer.

Owner: Dirk Muders
Last updated by $Author: jschwarz $ on $Date: 2001/06/28 11:19 $

Created: 08/02/01 Page 83 of 84

http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/ExceptionCourse.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/Postconditions.htm
http://groupware.eso.org:8000/bscw/bscw.cgi/d78953/Help/TBD.htm

ALMA Initial Software Analysis

Created: 08/02/01 Page 84 of 84

	Analysis: Purpose & Content
	Purpose
	Analysis: Method & History
	ALMA Use Case Roadmap
	Actors

	Observe With ALMA Use Case

	Analysis Classes and Packages
	Observing Tool Package
	Observing Program Specification Package
	Simulator Package
	Correlator Package

	Observing Program Administration Package
	Observing Program Refereeing Package
	Observing Project Package
	Program Package
	Scheduling Block Package
	SB Script Package
	Command Package
	ALMA Executive Package
	Resource Management Package
	Submission Package
	Scheduling Package
	Script Execution Package
	Online Calibration Package
	Data Processing Service Package
	Supervised Image Pipeline Package
	Science Archive System Package
	Archive Package
	Catalog Package
	Repository Package
	System Administration and Management Package
	Utility Package
	Internet Package
	Class lookup table
	Package Diagrams
	Class Diagrams/Hierarchies

	Use Case Realizations
	Initial Sequence Diagrams & Description
	Create & Submit Observing Proposal
	Create & Submit Observing Program & SBs
	Main Findings:

	Dispatch SBs
	Schedule SB
	Execute SB
	Observe Single Field
	Questions & Issues

	ObservePointingCalibration
	ProcessData

	Proposal/Project Preparation Activity Lifecycle
	Phase I Proposal Preparation State Diagram
	Phase II Project Preparation

	Additional Sequence Diagrams
	Sequence Diagram: Operate ALMA System
	Sequence Diagram: Manage ALMA Facility
	Sequence Diagram: Administer Observing Program

	Error Conditions & Handling Matrix
	Security considerations
	Architecture
	Overall system flow
	Major services
	Deployment

	What now ?
	Operational Issues
	Appendix: Revised Use Cases
	Use Case:€ Operate ALMA System
	Use Case: Manage ALMA Facility
	Use Case: Administer Observing Programs
	Use Case:€ Dispatch Scheduling Block
	Use Case: ScheduleSB (Revised)
	Use Case:€ Execute Scheduling Block (Revised)

