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Abstract

The front-end optical design for band 9 (600 to 720GHz) of the Atacama Large Millimeter Array (ALMA) is now completed
and verified. A frequency independent design approach is used to couple radiation to the two orthogonal polarized mixed detectors
from the large 12m ALMA Cassegrain telescope. As it is a heterodyne receiver, two local oscillator beam paths are integrated
into the front-end optical system. Due to the large number of interferometer elements (64 antenna units) to be built, installed and
maintained in the remote site of the Atacama Desert, reliability of the optical system should be ensured. A modular and compact
optical design is also important. In addition a cheaper fabrication process is considered, at these more tolerant higher frequencies,
by milling the mirror surfaces near the surface roughness limit. In this paper we verify the optical design and estimate system
efficiency by means of experimental measurement and software simulation comparisons. Precision planar scans of near field beam
patterns (amplitude and phase) have been measured. Experimental beam measurements were taken at the output of the mirror
coupling system (telescope focal plane location) for both polarization paths and for both local oscillator beam guides. At the
same measurement locations, software simulations of a highly accurate geometrical model of the mirror coupling system were
predicted using the commercial package GRASP8 c©. These comparisons at some fundamental locations along the beam paths,
allow the assessment of the quasi-optical beam coupling system design. The local oscillator power budget analysis is carried out
from results obtained using GRASP8 c©. In the conclusion we summarize the current status and describe future analysis plans.

I. INTRODUCTION

The work presented in this paper is a continuation of the optical design and later verification of the optical coupling mirror
system for the ALMA band 9 system. This activity has started with the evaluation of a basic prototype of a two mirror coupling
system [1], resembling the real optical design. In this initial work most of the attention was aimed at the evaluation of the mirror
surface milling technique adopted. In fact, in order to minimize costs and improve system modularity, a a minimum surface
roughness accuracy of 7µm RMS was choose and obtained with conventional CNC machines. By means of experimental
measurements and later on also with software electromagnetic analysis [2], it was proven that these mechanical project choices
were satisfactory operation of band 9. In phase one of the analysis the conceptual design was verified completely. Tight
distance tolerances of 40µm were chosen to insure the optimum optical component alignment without the need for optical
alignment with a laser beam. In this paper we then analyze measured and simulated data of the final optical coupling system
to be mounted in to the band 9 cryostat, but at the room temperature. In section II we present a brief description of the
optical coupling system project. The interested reader could have more information on this topic by reading [3]. Sections III
and IV will describe respectively the measurement setup used to scan intensity and phase of the near field at the focal plane
(FP) location and the electromagnetic software model implemented in GRASP8 c©. Measured data at two different frequencies
(606 and 668GHz) are then compared and analyzed with related software predictions at the same frequencies and location in
section V. In this section a Gaussian Beam Mode Analysis (GBMA) is also carried out for the Co-Polar (Co-P) components.
Due to the excellent agreement between measured (experimental) and software (theoretical) data is it then possible to make
some system performance predictions using the simulation tool. An example is reported in section VI dealing with the Local
Oscillator (LO) power budget requirements. Further work and conclusions are considered in section VII. A complete set of
plots depicting all the measurements carried out during this campaign is reported in section VIII comparing them with the
simulation results.
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Fig. 1. Sketch of the optical coupling system for ALMA band 9.

II. OPTICAL COUPLING SYSTEM

The telescope has to be coupled to the mixer corrugated horn with an illumination edge taper of 12dB at the secondary
reflector. A series of two ellipsoidal mirrors were designed in order to refocus the horn field distribution twice and achieving
the desired edge taper. Since there are two orthogonal linear polarized signals detected from the sky, the coupling system is
in fact exactly duplicated for both of the two polarization channels. This is also the case of the LO signal injection system.
The procedure used to design all the optics for this coupling system is based on geometrical optics techniques. The choice of
the bending angles for the mirrors coupling the horn to the telescope is not only dictated by the requirements of compactness
inside the cryostat, but in a way that minimize the beam distortion at the output of the system [3].
In figure 1 we can see how the sky signal and LO signal are coupled to the mixer horn from the telescope FP and the LO feed
respectively for both polarizations. The chief ray path from M3 (common to both configurations) to the antenna subreflector
is following an off-axis trajectory since it has an inclination of 0.94◦ respect the telescope axis. This is due to the fact that
the band 9 cryostat window is located off-axis in FP to accommodate the other ALMA channels. The 1P polarization beam
path is a copy of the mirror system at the right side of the grid and rotated by 125◦ clockwise respect the incident point at
the grid. The grid than works in reflection for the 1P polarization (linearly polarized on the plane of the M3 M4 ellipsoidal
axis) and in transmission for the 0P polarization (orthogonally polarized respect 1P ). A beam splitter is located between M4
(M4′) and the mixer horn aperture with an inclination of 45◦ such as the linear polarized electric field is perpendicular to
the plane of incidence. Another series of ellipsoidal mirrors, M5 (M5′) and M6 (M6′), are used to quasi-optically couple
the LO signal source located at the 90K stage in the cryostat. The LO antenna is a diagonal horn. This kind of feed presents
a optimum Gaussian beam coupling of 84% that allows, with a proper beam guide, efficient power coupling with the mixer
horn.

III. MEASUREMENT SETUP

The measurement setup is a planar near-field antenna measurement based on radio heterodyne detection method using a
vector network analyzer. Phase and intensity measures are then possible within the accuracies described in table I. Scan and
optical mirror block alignment and parallelism are achieved by means of a theodolite in conjunction with well referenced
point locations on the mirror block. In this way is then possible to establish a planarity (parallelism) relation within the scan
stages and the mirror block. Autocollimation processes reflecting the theodolite laser beam, ensure parallelism. A set of cross-
references drawn with know position on the mirror block to respect the M3 chief ray incident point, help to locate the source
horn (held on the scan stages) in front of this incident point. By centering the scan to a set of 2 reference crosses aligned
along the X or Y axis on the mirror block and reading the scan position, it is possible to fix the mirror block rotation around
the Z axis, setting its Z tilt in order to correct rotation displacements. The precise alignment of the measurement system with
the accuracies described in table I is difficult and the detailed information on the procedures used are not given in this paper.

IV. SOFTWARE MODEL

Theoretical modelling and analysis were carried out by using different complementary techniques, from basic geometrical
optical ray tracing, GBMA and vector field analysis with the commercial package GRASP8 c©. Ray tracing performed by means



TABLE I
MEASUREMENT SETUP FEATURES.

Electrical properties
Gunn diode freq. [GHz] 100− 120
Multiplication chain, x2-x3 [GHz] 600− 720
Output power [µW ] 60
Dynamic range [dB] 50− 60
Detector Super Lattice Electronic Device
Amplitude stability [%/hr] ±2
Phase stability [◦/hr] ±20

Scanner ranges and resolution
X,Y,Z travel ranges [mm] 100
Step accuracy [µm] 5

Alignment accuracy
X and Y offset [mm] ±0.1
Z offset [mm] ±0.2
X and Y rotations [◦] < 0.05
Z rotation [◦] < 0.1

of ABCD law gives the essential information of a quasioptical system. From the optical design distances between objects in the
system and single optical elements characteristics, such as focal length of the mirrors, slant length Rh and aperture diameter
of the corrugated horn, it is possible to describe how the fundamental Gaussian beam behaves along the optical path. For
instance, radius w and radius of curvature R of the beam are traceable at each location between optical elements. The waist of
the beam is than determined at each refocusing location depending on the frequency f . This technique treats the optical system
as a paraxial system, without considering any diffraction effect due to truncations occurring at reflecting surfaces. Despite
this limitations this method is a highly effective first order design and analysis tool. A more sophisticated software model
can be implemented using GRASP8 c©. This is basically a software making use of Physical Optics (PO) approximations for
the electromagnetic field computation. This technique allows to have vector information of the electromagnetic field in any
location in the system under analysis. Its results are base on the full based Green’s Maxwell equation solution considering the
induced currents such as the electromagnetic field acts locally on the surface like a plane wave.The limits of applicability of
this assumptions require scatters being large and smooth having a surface radius of curvature in terms of wavelength bigger
than 6λ. This is our case since all the mirrors were designed taking into account a minimum clearance of at least 5w as stated
in section II. From experimental measurement comparisons and previous analysis using this software [4] it turned out that PO
gives accurate results for the system being analyzed. Using one of the features of GRASP8 c©, mirror rims can be modelled
on the basis of actual mirror production drawings. Therefore the evaluation of the electromagnetic field will produce high
fidelity beam pattern, describing mirror edge diffraction. Grids and apertures in GRASP8 c© can also be analyzed allowing the
evaluation of polarization and truncations effects respectively. Using GBMA a more detailed picture of the beam quality at the
FP location can be obtained.
Particular attention has been paid to the description of the input field at the mixer horn aperture location. It has been seen that
a simple Gaussian beam model of the horn electric field distribution with a proper waist, does not predict either the sidelobes
and the main-beam distortions along the optical path. A better way to improve the input field is to assume the field at the
corrugated horn aperture plane as a truncated Bessel function with a spherical phase front [7]. Despite this choice improved the
quality of the simulated beams, there is still no information on the Cross-Polar (Xs-P) component at the horn aperture, since
only the Co-Polar (Co-P) field is described by the truncated Bessel function. A further improved representation of the electric
field at the horn aperture was achieved by applying mode matching techniques developed initially in [5] and expanded in [6].
The horn is regarded as a large number of waveguide sections in succession, which match the profile of the horn. Waveguide
modes are tracked through the horn and power conserved. This technique has the advantage of describing Co-P and Xs-P at
the aperture plane of a corrugated horn from the detailed mechanical drawings. Thus, we obtained a complete field description
at each particular frequency of interest for the mixer horn. With this input field distribution the results from GRASP8 c© take
also into account how the Xs-P level evolve along the optical path. As an example of accuracy of this model, coupling the
Co-P component resulting from the procedure previously described, with a fundamental Gaussian at the horn aperture1 at the
frequency of 668GHz, a Gaussian power coupling coefficient of 97.72% was obtained. This value is very close to the model
of a truncated Bessel function (98%) given in [7].

1Virtual waist of 1.05mm inside the horn calculated at the frequency of 668GHz.



V. EXPERIMENTAL AND SOFTWARE DATA ANALYSIS

The aim of this section is to analyze beam electrical field distributions of the 0P and 1P beams at the FP from data obtained
by real measurement and also software electromagnetic simulations. The measurement plane, both in the experiment set-up
and in the software model, is a plane normal to the telescope axis with the center of the co-ordinate system located 145mm
in front of the chief ray intersection point on M3 (see figure 1). In this frame the beams are coming parallel to the Y − Z
plane and with a slope of 0.94◦. By having the same measurement plane definition and relying on the measurement alignment
accuracy, we can visually compare experimental and software set of data obtained at the scan location.

A. E-Plane and H-Plane Field cuts comparisons

The comparisons between software and measured electric field patterns are shown in section VIII. The set of data presented
here refers to both 0P (figures 2 and 3) and 1P (figures 4 and 5) polarization path at the two mentioned frequencies of 606
and 668GHz. These plots represent intensity and phase at the E- and H-plane. Figure 7 refers to a measurement involving
the beam passing through an aperture emulating the cryostat window and it will be explained in the end of this section. From
these intensity and phase comparisons there is in general a good software and experimental data agreement in both phase and
intensity distributions with high accuracy even at off-axis points from the main beam. This means that the measured beam is
not diffracted by mechanical struts surrounding it. The five times the beam radius clearance design rule is respected along the
whole optical path.

A particular measurement was carried out with the scanning source rotated at 45◦ to respect the two signal polarizations
coming out from M3. In figure 6(a) and 6(b) the X and Y scan cuts are plotted on top of each other for a measurement at the
frequency of 606GHz. These plots show the two beams coming at the FP at the same location, indicating that the alignment
of the two polarization signals is correct. At higher frequencies such behavior should be even better due to less diffraction
effects and less phase front radius of curvature mismatches with the reflecting surfaces.

B. Fundamental Gaussian beam mode analysis

A more qualitative analysis of the output beams could be made by means of GBMA. From the data distribution we can
see how much the real beam is close to a fundamental Gaussian (fitting procedure), but also how much of the power of the
real beam couples with the nominal fundamental Gaussian beam at the FP location. First we fit the field distribution with
a fundamental Gaussian beam of unknown parameters. We carry out an overlap integral at the desired plane and vary the
parameters of the Gaussian beam so as to maximize power coupling with the experimental or simulated field of interest. By
maximizing the power coupling the equivalent Gaussian that best matches the field is obtained.
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Equation (1) gives the amount of power coupled between the measured field Em and a fundamental Gaussian beam G. In
general a fundamental Gaussian beam is described by a waist w0 located in a certain point in the space. Additional displacement
offsets along the 3 axis (xOffset, yOffset, zOffset) and tilts in x and y (θx and θy), give further degrees of freedom in order
to define a beam in the space that best fit Em. Considering the Gaussian distribution with a spherical phase front
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where beam radius w, radius of curvature R and phase shift φ0 depend on z [7], it is possible to include displacement and
tilts of the plane wave phase front term (i.e. the beam direction) by using the following projections

x′ = xOffset + x cos θx (3)
y′ = yOffset + y cos θy (4)
z′ = zOffset + x sin θx + y sin θy (5)

Using this projection we can move the fundamental Gaussian and also varying the waist w0, to maximize power coupling (1).
If displacements, tilts and waist are left free to vary and we apply the maximization of K, we obtain a set of these parameters
describing which is the fundamental Gaussian beam that best fits Em. In table II and III the results of this procedure are



TABLE II
FUNDAMENTAL GBMA AT 606GHz

Experimental Softwaref = 606GHz
0P 1P 0P 1P

Expected

Gaussucity, [%] 98.15 98.31 98.19 97.99 ∼ 98
w0, [mm] 3.00 2.95 2.98 2.98 2.96
xOffset, [mm] 0.06 0.26 0.00 -0.10 0.00
yOffset, [mm] 2.58 2.85 2.45 2.45 2.47
θx, [◦] 0.06 -0.04 0.00 0.14 0.00
θy , [◦] 1.00 0.88 0.99 0.99 0.94

TABLE III
FUNDAMENTAL GBMA AT 668GHz

Experimental Softwaref = 668GHz
0P 1P 0P 1P

Expected

Gaussucity, [%] 98.56 98.66 98.16 97.97 ∼ 98
w0, [mm] 2.82 2.74 2.70 2.70 2.67
xOffset, [mm] 0.10 0.28 0.00 -0.09 0.00
yOffset, [mm] 2.58 2.86 2.44 2.44 2.46
θx, [◦] 0.06 0.02 0.00 0.13 0.00
θy , [◦] 1.02 0.94 0.98 0.98 0.94

shown for the two measured and simulated data set at 606 and 668GHz. If instead we consider what the ideal beam should
be at the FP location, we find the power coupling efficiency between Em and G. By setting the offsets in such a way they
describe the nominal fundamental Gaussian beam at the FP for a certain frequency, we obtain coupling efficiencies shown in
table IV. The values of waist at the FP come from the ABCD analysis at the chosen frequencies. However if we leave only
zOffset free to vary, we found a value of zOffset that tell us what is the defocusing along the telescope axis, of Em with
respect to the location of the nominal fundamental Gaussian at the FP waist position. In table V we list the defocousing of
the measured and simulated beams at the FP. Such levels of defocuosing are not be worrying since as pointed out in [3], by
means of repositioning the secondary mirror of the Cassegrain system, it is possible to bring the efficiency back to optimal
levels.

C. Cryostat window effects

One of the big concerns in coupling the feed beam with the telescope is in fact its passage through the cryostat window. This
window usually has to be as small as possible to avoid scattering of ambient temperature radiation into the receiver. As a first
attempt to investigate the effects of the cryostat window we carried out a measurement with a circular aperture at the cryostat
window location. The aperture diameter was 20mm and centered 150mm from M3 chief ray intersection point. In figure 7 is
shown the comparison between experimental measurement and software result for the 1P polarization, obtained introducing
such kind of aperture in the GRASP8 c© model. Despite the simplified experiment, it is clear that the window aperture in itself
does not introduce noticeable diffraction effects on the main beam.

TABLE IV
COUPLING WITH THE NOMINAL GAUSSIAN AT THE FP, [%]

nominal w0, Experimental Softwaref , [GHz]
[mm] 0P 1P 0P 1P

606 2.96 97.84 95.90 98.14 97.65
668 2.67 97.73 95.46 98.11 97.64

TABLE V
DEFOCUSING AT THE FP, [mm]

Experimental Softwaref , [GHz]
0P 1P 0P 1P

606 1.4 1.7 1.6 0.3
668 -1.4 -0.3 1.1 0.1



VI. LO POWER BUDGET

One of the features of GRASP8 c© is the ability to give the power spill-over efficiency at each of the scatters through the signal
path. The Co-P linear polarized electric field at the LO diagonal horn aperture plane using equation (7.52) of [7]. Propagating
this field from the diagonal horn aperture through M4, M5 and the Beam Splitter (BS) we obtain the total path spill-over
and the field distribution of the LO signal at the mixer horn aperture. The BS is a thin slab of Mylar (13µm,n = 1.73). The
power reflection coefficient was calculated at the frequencies of 600, 660, 720GHz (average of 6%), considering that the LO
signal is perpendicular to the plane of incidence. Thus after spill-over and reflection at the BS, the LO signal reaches the mixer
horn aperture with a certain aperture efficiency. Finally, with an average LO power at the diagonal horn aperture of 40µW ,
we show in table VI what is the level of LO power arriving at the mixer horn aperture. These power levels are sufficiently
high to pump the mixer, since its minimum power level requirement is about 0.5µW . Furthermore, slight misalignments of
the LO optics could be also tolerated. The data shown in table VI do not include coupling inside the mixer.

TABLE VI
TOTAL LO POWER REACHING THE MIXER HORN WITH 40µW INPUT POWER. [µW ]

f , [GHz] 0P 1P
600 1.84 1.84
660 2.21 2.21
720 2.61 2.61

VII. FURTHER WORK AND CONCLUSION

In this paper we analyzed the optical coupling system for the ALMA band 9 front-end. Experimental and simulated data
agree very well. The field distribution (both intensity and phase) have been calculated and compared for the two polarization
configurations. From visual comparison it is evident that the measured beams does not suffer from mechanical strut diffraction
effects, since the beam shapes resemble the simulated ones. A fundamental Gaussian beam mode analysis was carried out,
indicating that the beams are behaving as expected, maintaining a good level of power coupling efficiency with the nominal
fundamental Gaussian at the FP. A slight defocusing effect was illustrated, but within the range of tolerance which can be
corrected by movement of the secondary along the telescope axis. The LO beam guide was analyzed to deduce the level of
LO signal power effectively reaching the mixer horn aperture. The overall analysis shows that the optical coupling system is
working properly respecting the design specification in order to be coupled with the Cassegrain antenna. It was not shown
here, but it has been seen that both 0P and 1P signals are reaching the secondary with the required edge taper of 12dB, as
well as a cross-polar level at the FP less than 20dB. Further analysis of the beams with the receiver at cryogenic temperatures
(such as orthogonality of the two polarizations and coupling with the telescope, will be part of the next phase of work in
assessment of the ALMA band 9 optical front-end.



VIII. SOFTWARE AND EXPERIMENTAL COMPARISON PLOTS

A. 0P polarization
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Fig. 2. Experimental and software data comparison of the 0P polarization signal at 606GHz. Intensity and phase at E- and H- plane. Measured plane at
145mm from the chief ray incident point on M3.
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Fig. 3. Experimental and software data comparison of the 0P polarization signal at 668GHz. Intensity and phase at E- and H- plane. Measured plane at
145mm from the chief ray incident point on M3.



B. 1P polarization
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Fig. 4. Experimental and software data comparison of the 1P polarization signal at 606GHz. Intensity and phase at E- and H- plane. Measured plane at
145mm from the chief ray incident point on M3.
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Fig. 5. Experimental and software data comparison of the 1P polarization signal at 668GHz. Intensity and phase at E- and H- plane. Measured plane at
145mm from the chief ray incident point on M3.



C. 45◦ measurement comparison
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Fig. 6. Experimental 45◦ measurement comparison.

D. Cryostat aperture emulation
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(c) Intensity, H-Plane
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Fig. 7. Experimental and software data comparison of the 1P polarization signal at 606GHz after passing through the Cryostat window. Intensity and phase
at E- and H- plane. Measured plane at 155mm from the chief ray incident point on M3.
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