
ALMA Memo No. 550 
 

05 June 2006 

 
Mode conversion and Resonant Absorption 

 in Bent Overmoded Waveguide 
 

A.-L. Fontana and B. Lazareff 
 

Institut de RadioAstronomie Millimétrique 
300 rue de la Piscine 

38406 St Martin d'Hères Cedex 
France 

 

 

Abstract 
Mode conversion losses are a concern when an oversize waveguide is used 
to minimize ohmic losses. We present computations of mode conversion in 
oversize rectangular waveguide bends. 

The numerical results are based on a published analytical formulation of the 
problem. They are presented in a dimensionless form applicable to a range 
of parameters believed to cover practical cases of interest for engineers that 
need to design a signal transport involving oversized waveguide and bends. 

A few cases have been cross validated using a 3D EM simulation software; 
the numerical and analytical results are in good agreement. 

Oversized waveguide bends are sometimes used to minize ohmic losses 
when a signal must be transported over a significant distance. The 
waveguide devices at both ends are usually in a smaller, single-mode 
waveguide size, and are connected to the overmode waveguide by suitable 
transitions. The combination forms a resonant cavity for higher order 
modes. We examine how the transmission of the fundamental mode is 
affected by resonances in the higher order modes. 
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1. Introduction 
For millimeter waves, oversized (overmoded) waveguides are sometimes used in order to 
minimize ohmic losses, when a signal must be transported over a significant distance such as 
local oscillator distribution, for instance in a cryogenic system. With a suitable tapered 
transition, the TE10 mode can be transmitted to the oversized waveguide with good efficiency; 
many higher order modes are decoupled by symmetry considerations alone. 

Depending on the physical layout and other design constraints, the signal transport may need 
to follow a curved path, requiring waveguide bends. 

Waveguide bends are known to induce coupling between modes. We could not find in the 
literature a comprehensive set of numerical results in a form suitable for practical 
applications. This motivated us to produce such a set of results, and to analyze practical 
consequences, including overmode trapping between waveguide transitions. 

2. Analytical formulation of mode conversion 

2.1 Statement of the problem 
Given a section of standard (b/a = ½) waveguide with uniform curvature in either the E- or the 
H-plane, excited with the fundamental TE10 mode, we aim to determine the amplitude 
coupled into the various overmodes as a function of the frequency υ and the radius of 
curvature R of the centerline. 

2.2 General form of the equations 
We used the results derived in Ref [1], where a waveguide bend is represented by n coupled 
transmission lines, n being the number of propagating modes. The normalized coupled mode 
voltages En obey a set of coupled ordinary differential equations (ODE) that involve the 
propagation constants knn (knn =  βn is the propagation constant of the mode n) and their 
coupling coefficients kmn (kmn  is the coupling coefficient between modes m and n). 

The equations below represent the case of a H-plane bend: 
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where z is the distance measured along the centerline of the bend (z = R.α), R is the radius of 
the centerline of the bend, and α is the angle of the bend. In the present work, we define the 
kmn coefficients as real, to avoid some ambiguity present in Ref [1]. Only propagating modes 
(at a given frequency) are considered. 

2.3 Dimensionless variables 
In order to present general results in a compact form, and to reduce the volume of calculations 
to the essential minimum, we have treated the problem in non-dimensional form. The 
parameters are therefore: 

• Φ = a/λ = (a/c) υ, the reduced frequency 
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•  ρ = R/a, the reduced radius of curvature 

• α, the angle of the bend 

The equations of the problem were also cast in non-dimensional form. 

2.4 Number of modes considered 
If only one extra mode has a significant coupling to the fundamental mode TE10, the problem 
is simplified, with power being transferred cyclically between the two coupled modes along 
the coupling region (Ref [2]). So, a possible solution is to adjust the bend dimensions in order 
to cancel the amplitude of the first spurious mode at the output of the bend (Ref [1]). 
However, such a cancellation can only be obtained for a discrete value of the frequency. For 
many practical applications, the waveguide is used over a significant frequency range, over 
which one attempts to minimize the power coupled to spurious modes. 

Besides, a treatment with just one overmode is strictly valid only up to the cutoff frequency of 
the next overmode. Having set a/λ=4 as the maximum value of the reduced frequency, six 
spurious mode could appear for a H-plane bend (TE20, TE30, TE40, TE50, TE60 and TE70), and 
six (degenerated) spurious modes could appear for an E-plane bend ([TE11, TM11], [TE12, 
TM12], [TE13, TM13]). Some exploratory finite difference time domain (FDTD) simulations 
showed that three overmodes at most were significant over the region of parameter space that 
we cover in the case of an H-plane bend. Accordingly, the coupled set of ODE’s (1) was 
solved for a maximum of four modes (the fundamental, and three spurious modes) for H-
plane bends, and seven spurious modes (the fundamental, and the three couples of 
degenerated spurious modes) for E-plane bends, the actual number of modes being dependent 
on the frequency. 

2.5 Equations for H-plane bends 
In the case of a H-plane bend, the coupling between TEm0 and TEn0 is zero if m-n is even. So, 
for a bend excited by his dominant mode TE10, only the TE20, TE40…modes are directly 
coupled. The odd-numbered TE30, TE50… modes are coupled through the even-numbered 
modes. 

The coupling coefficient between two TE modes (TEj and TEm) is given in Ref [3]: 
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With: 

nn 01 δξ +=   i.e.  20 =ξ  and 1=nξ  for 0≠n  
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When three spurious modes are considered, the expressions of the coupled amplitudes are too 
complicated to be written literally. For each of a set of values of the reduced frequency Φ = 
a/λ and the reduced radius ρ = R/a, spaced over a regular grid, the coefficients of the 
propagation equations (1) were evaluated numerically. A closed form solution of the constant 
coefficient linear ODE’s was then evaluated for discrete values of the bend angle α. 

2.6 Equations for E-plane bends 
In the case of an E-plane bend, the coupling between the TE10 mode and the TE1n and TM1n 
modes is zero when n is even. So, for E-plane bends excited by TE10 mode, the first spurious 
modes which appear in the same time is the couple of degenerated modes TE11 and TM11.  
The others couples of degenerated modes which could appear are (TE12, TM12), (TE13, 
TM13)… 

The coupling between the fundamental mode and the spurious modes for an E-plane bend can 
be represented by the scheme below: 

 
With: 

 

    
 

This case is a little bit more complicated than the case of H-plane bends, because both the 
coupling between two TE modes, the coupling between two TM modes and the coupling 
between TE and TM modes must be considered.  

The expressions of the coupling coefficients used to calculate mode conversion losses for an 
E-plane bend are:  

Coupling coefficient between two TE modes (TEj and TEm): 
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Coupling coefficient between two TM modes (TMj and TMm): 
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Coupling coefficient between a TE mode  (mode m) and a TM mode (mode j) : 

  
πλββ

ββ

ξ
2

44

1
)(

1
2

4
2222

2

22 ×
+×+

××
−

×
××

+
×=

jjmmmj

j

mj

mj

nm
jm

nlnlb
a

nn
nl

R
k   (6) 

With: 

nn 01 δξ +=   i.e.  20 =ξ  and 1=nξ  for 0≠n  

a : short dimension of the waveguide (unlike for the H-plane case) 

b: long dimension of the waveguide (b=2a) 
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The rest of the treatment is the same as for H-plane bends. 

3. Results for mode conversion 
The results presented here show the total power lost in the bend by mode conversion, 
considering all the calculated spurious modes, for different discrete values of bend’s angle, 
versus R/a and a/λ. 

For H-plane bends, we have represented different contour values of the total power lost in 
TE20, TE30 and TE40 modes (Figure 1) 

For E-plane bends, we have represented different contour values of the total power lost in 
TE11, TM11, TE12, TM12, TE13 and TM13 modes (Figure 2) 

 6



 
Figure 1: Results for H-plane bends, versus a/λ and R/a for discrete values of angles in 15 degrees 

increments. The contour values represent the fractional power lost in the 3 first spurious modes. The 
contour values are 0.01 (-20dB), 0.03 (-15dB), 0.1 (-10dB), 0.3 (-5dB), and 0.5 (-3dB). 

The horizontal line overlaid on the 45° box points to a "quiet zone"; see text for comments. 
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Figure 2: Results for E-plane bends, versus a/λ and R/a for discrete values of angles in 15 degrees 

increments. The contour values represent the fractional power lost in the 6 first spurious modes. The 
contour values are 0.01 (-20dB), 0.03 (-15dB), 0.1 (-10dB), 0.3 (-5dB), and 0.5 (-3dB). 

 

It is apparent that, as the bend angle increases, the diagram of converted power presents an 
increasingly complex alternance of regions of high and low coupling; this is due to the 
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difference in propagation constants of the fundamental mode and overmode, and to direct and 
reverse coupling.  

While, for large bend angles, the complexity of the diagram seems to exclude usable solutions 
for small bend radii and high frequencies, a closer examination shows that interesting "quiet 
zones" exist deep inside the diagram; for instance, see for an H plane 45° bend, a fairly 
compact bend with R/a=7 has low conversion between 5.2/ =λa  and . 4/ =λa

4. Comparison with FDTD simulations 
We have compared analytical results with the results obtained by FDTD electromagnetic 
simulations of 90 degrees angle bends.  

On the simulator (Microwave Studio, CST), we designed a 90 degrees H-plane bend, in 
waveguide standard WR10, with a reduced radius R/a = 5, excited by its fundamental mode 
TE10, and we have compared the FDTD simulation of the amplitude coupling of the first 
spurious mode TE20, with analytical calculations of amplitude coupling in both the case of 
two modes consideration and four mode consideration. 
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Figure 3: Comparison of FDTD simulation of TE20 amplitude coupling with analytical calculations for 

one and three spurious modes 

 

We also simulated a 90 degrees E-plane bend in waveguide standard WR10, with a reduced 
radius R/a=5, excited by its fundamental mode, and we have compared the FDTD simulation 
of the amplitude coupling of the first couple of degenerated spurious modes TE11, TM11 with 
analytical calculations considering three couples of degenerated spurious modes. 
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Figure 4: Comparison of FDTD simulation of TE11 and TM11 amplitudes coupling with analytical 

calculations for six spurious modes 

Comparing results obtained by the calculation of one and three spurious modes on Figure 3, 
we could see that the contributions of higher order spurious modes are not negligible above 
their cutoff frequencies. We also see that the consideration of three spurious modes in the H-
plane case (Figure 3), and three couples of degenerated spurious modes in the E-plane case 
(Figure 4), is sufficient to obtain a good agreement between analytical calculations and FDTD 
simulations, for a value of reduced frequency a/λ<4. 

5. Resonant Mode Trapping 
Oversized waveguide bends are sometimes used to minize ohmic losses when a signal must 
be transported over a significant distance. The waveguide devices at both ends are usually in a 
smaller, single-mode waveguide size, and are connected to the overmode waveguide by 
suitable transitions. Any overmode generated by bends in the oversize waveguide is trapped 
between the transitions. The main mode is therefore coupled to a resonant cavity. In the 
present section, we evaluate the resonant loss affecting the main transmission line.  

 
Figure 5: Four-port schematic of mode conversion in the bend. The index 1 belongs to the fundamental 

mode, and index 2 to the dominant trapped overmode. 

The bend in the oversize waveguide, and the associated couplings is represented as a four-port 
symmetric lossless passive device, as shown in Figure 5.As in Ref [5], we neglect reflection 
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coupling, and we assume that ohmic losses in the bend itself can be neglected (or treated 
separately from mode coupling). The amplitudes shown in Figure 5 are related by the 
following equations: 

  (7) 
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Where p is the amplitude of the mode coupling determined above (note: in Figures 1 and 2, 
the contours values are in power units), and: 

 21 pq −=  (8) 

These equations are supplemented by the following ones: 

  (9) 
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where is the complex propagation coefficient for one half round-trip of the over 
mode from the bend to the end of the oversize section and back to the bend.  

)exp( θρ= ir

We solved numerically the above system of 8 equations for various values of p, ρ , and . The 

result of primary interest in the solution is 

θ

1B′ . When varying θ  alone, resonant dips in 21B′  
are apparent, with minimum transmission for π=θ n , and maximum transmission for 

2)12( π+=θ n . We have computed the minimum ( 0=θ ) and maximum ( 2
π=θ ) transmission 

for an array of values of p and ρ , and the results are shown graphically on Figure 6 and 
Figure 7.  
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Figure 6. Minimum transmission contours (dB), versus the one-way (one half round trip) loss of the 
overmode, expressed in dB (20 log(ρ) and the coupling between the fundamental and the overmode, also 
expressed in dB (20 log(p)).  

 
Figure 7. Maximum transmission, same units as in Figure 6. The loss at maximum transmission is 
generally small enough that, for practical purposes, it is not necessary to distinguish between the 
minimum transmission and the amplitude of the resonant dip.  

An approximate equation for the depth of the resonant dip is given in Ref [5] as eqn.A52; a 
similar equation is given in Ref [6]. Both contain (different) typographical errors; a correct 
form is given in Ref [7]. In our notation, that equation reads: 
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Motivated by the doubt and uncertainity introduced by these differences, we compared the 
results of our numerical solution with those of the approximate equation. The results are 
shown on Figure 8, cast in a form similar to Figure 2 of Ref [7].  

 
Figure 8. Comparison of the results of Equation 10. Top: "exact" result from our numerical solution of 
the network equations; bottom: approximate equation. Three changes in the presentation of the data were 
made compared with Figure 6 and Figure 7: a) the overmode coupling is now the dependent variable; b) 
the second independent variable is the resonant dip instead of minimum transmission; c) loss is counted as 
positive dB, in keeping with the presentation of figure 2 of Ref [7]. Substantial differences between the 
"exact" solution and the approximate equation are apparent for overmode couplings stronger than 15dB, 
presumably because the approximate equation neglects second-order couplings. 

6. Conclusion 
Based on published analytical results, we have generated diagrams of the conversion from the 
fundamental mode to overmodes, in a dimensionless form applicable to a wide range of 
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practical configurations. Together with an analysis of the coupled resonance of the trapped 
overmode, these results allow the design engineer to select a configuration such that the 
resonant power loss of the fundamental mode stays below a prescribed limit. In some cases, in 
particular for 45° and 90° angles, it is possible in principle to design compact bends that have 
a fairly low conversion coupling over a substantial frequency range.  

It is a pleasure to acknowledge informative exchanges with G.Ediss, regarding, among other, 
the correct form of equation 10.  
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