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ABSTRACT
This memo investigates the properties of atmospheric turbulence above the ALMA site us-
ing measurements from the Water Vapour Radiometers (WVRs), in particular testing the
Kolmogorov turbulence model and searching for evidence of an outer length scale.

We fit model power-spectral density (PSD) curves to the measured power spectra for a
number of observations and extract the slope, the amplitude and (when convincingly found)
the break frequency for a sloping component and also the amplitude (or limit) on a white noise
(thermal) component. We find that the majority of the power-spectra are consistent with a
thick-screen Kolmogorov turbulence model, but find a transition from thick- to thin-screen
behaviour in four of 18 observations. When we scale the frequency of these transitions to
spatial scales using the measured (ground-level) wind speed, we find that these transitions
occur at lengths in the range 40-400 m.

The WVRs are used to predict and correct for the line-of-sight path fluctuations caused
by water vapour for each of the 54 12 m ALMA antennas. When noise is present, applying
the WVR correction on baselines where the path fluctuations are dominated by this noise
will increase the phase fluctuations rather than reducing them. We use the recovered PSD of
fluctuations to estimate the lower limits on time scales and baselines on which application of
the WVR data might be expected to help.

By combining several adjacent observations, we have assembled WVR path estimates
over 3 hours. We find no evidence of an outer scale in the turbulence (which would present
itself in a turnover in the PSD at long timescales or spatial frequencies), which suggests that in
this case the outer scale was longer than approximately 16 km.

1 INTRODUCTION

One of the key challenges for astronomical observations with large
interferometers operating at mm and sub-mm wavelengths are the
fluctuations in the effective path to each of the antennas which are
caused by the fluctuating quantity of water vapour in the troposphere
along their line sight (see, e.g., Evans et al. 2003, for summary of
conditions at the ALMA site). The cause of the longer effective path
(or, more precisely, of the delay) is the high refractive index of water
vapour but the driver of the fluctuations is the natural turbulence in
atmosphere. Understanding the spatial and temporal structure of the
path fluctuations and the turbulence that drives them is useful for
improving our techniques for correcting these path fluctuations and
for quantifying the residual effect on the science data.

Most of the previous work, in the context of astronomy, on
understanding this structure of the atmosphere has been done by
measuring the resulting phase fluctuations in an astronomical in-
terferometer. For example, Lay (1997) used data from the 12-GHz
phase monitoring interferometer at the Owens Valley Radio Obser-
vatory to generate temporal phase power spectra and compare these
predictions of models of a turbulent atmosphere. Lay (1997) found
results consistent with Kolmogorov (1941) theory but did not fit

the slope of the power spectra. Carilli & Holdaway (1999) used the
Very Large Array (VLA) interferometer in New Mexico to study the
phase Root-Mean-Square (RMS) variation as a function of baseline
length. They found that the root phase structure function exhibited
the behaviour expected from Kolmogorov (1941) thick (relative to
shortest baseline) screen turbulence models, and used these results
to make predictions of required phase calibration cycle times for
observations above about 20 GHz.

In this memo, we use data from ALMA 183 GHz Water Vapour
Radiometers (WVRs) to study the structure of the atmospheric water
vapour turbulence. The WVRs are installed on each of the 12 m-
diameter antennas in ALMA and are normally used to predict and
correct the path fluctuations due to the water vapour. Here, we use
the path fluctuation prediction from WVR observations to study the
properties of the atmosphere and do not consider the measurements
from the astronomical interferometer. An important advantage of
using the WVR path fluctuation estimates rather then the phase of
astronomical signal is that the WVR path fluctuation estimates are
not differenced between a pair of antennas (i.e., on a baseline) but
rather are estimates of the total path fluctuation seen by each antenna
individually.

We characterise the structure of the atmospheric turbulence
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by estimating the power spectra of the path fluctuations. Our obser-
vations intrinsically measure the temporal fluctuations in path and
therefore we generally estimate the temporal power spectra. If the
Taylor (1938) hypothesis of ‘frozen-screen’ turbulence is applica-
ble, the power spectrum of temporal variations can be converted to
spatial spectra and correlation functions using an estimate of the
wind speed (illustrated schematically in Figure 1). We intend to
investigate the validity of this hypothesis in future work but in this
memo we assume that it is valid.

The Kolmogorov (1941) theory predicts (see e.g., Tatarskii
1971) that power spectrum of a turbulent field is a power-law with
an intrinsic index of −5/3 ∼ −1.67. However, because the mea-
sured path fluctuations are in fact the integral along the line of sight
through a turbulent layer of finite thickness (see Figure 1 again) a
steeping by -1 in the index of the power law is expected at time-
(or equivalently length-) scales which are shorter than the thickness
of the layer. In summary the theory predicts a spectrum with bro-
ken power-law shape, with −8/3∼−2.67 slope in the thick-screen
(short timescale) regime and−5/3∼−1.67 in the thin-screen (long
timescale) regime. As indicated in Figure 1, the transition between
thick- and thin-screen regimes occurs at a timescale of t = D/w,
where D is the thickness of the turbulent layer and w is the effective
wind speed. The predicted spectrum for phase fluctuations is in gen-
eral different as these are due to the difference of paths fluctuations
on the baseline used in the measurement. However, in the case when
baseline is longer than the ‘outer’ scale of the turbulence, that is the
atmospheres above the two antennas are uncorrelated, the expected
shape of the spectrum again has slopes -5/3 and -8/3. Therefore,
the model shown in Figure 5 of Lay (1997) is applicable for long
baselines as well as for the un-differenced measurements presented
here.

The plan of this memo is as follows. In Section 2 we describe
our observations, the algorithms used to fit models to the observed
spectra the results of this fitting. In Section 3 we interpret these
fitting results in the context of models of turbulence, and in Section 4
we summarise our findings.

2 MEASURING POWER SPECTRA OF ATMOSPHERIC
PATH FLUCTUATIONS

This study is based on data from the ALMA WVRs. The WVRs
are recording measurement of sky brightness along the bore-sight
of 12 m diameter the antennas1 during all ALMA observations. In
this study, we re-use data from some observations of quasars that
were originally intended for tests the efficacy of phase correction
based on WVR data. These observations are suitable because they
are reasonably long (∼ 20 minutes or more) and the antennas are
continuously tracking a single object, so that there are no compli-
cations associated with changing line of sight between science and
calibration sources that are typical of most science observing.

During these observations the WVR sky brightness measure-
ments from each of the antennas are internally integrated to 1.152
seconds and sampled and recorded at this same interval. These mea-
surement of sky brightness are then converted to estimates of path
fluctuations by the wvrgcal: the primary purpose of this program
is correction of phase errors due to the path fluctuations using its
CASA calibration table output, but it also outputs the computed

1 The beams of astronomical receivers are arranged around the WVR beam
so that the offsets are between 3 and 10 arcminutes – the effect of this offset
has been discussed by Nikolic et al. (2007)

path fluctuations that can be used for the present analysis (these
are output to a HDF5-format file if these libraries are detected at
compile time). The internals of the wvrgcal program are discussed
by Nikolic (2011), but the relevant workings can be summarised as
follows. First, a physical model for emission from water vapour in
the atmosphere is fit to the absolute sky brightness recorded at one
instant in time. This model is then used to predict the coefficient
which relates the sky brightness fluctuation to the fluctuation in
effective path for each channel of the radiometers. Finally, the sky
fluctuations are multiplied by these coefficients and the four WVR
channels are combined together to give estimates of path fluctuations
to each antenna.

Because the antennas were tracking a celestial source and
we wish to make comparisons between different observations, we
rescale the estimated paths by sin(θ), where θ is the antenna eleva-
tion, to get an estimate of the path length fluctuations toward zenith
(i.e. we make a simple airmass correction). In practice the effect
of changing airmass and its subsequent correction are relatively
small: for example, during a 20 minute observation starting with
the source at an elevation of 50 degrees, the end elevation will be at
least 45 degrees which corresponds to a change in airmass of 8%.
The effect of the elevation changes on the resulting spectra (or in-
correct corrections to these) would be to increase the power on long
time-scales, steepening the slope. For longer runs, any errors will
become more significant and therefore the proposed static WVR,
which will continuously take readings in the zenith direction would
be useful for further studies of atmospheric turbulence on longer
timescales than examined here.

We reviewed the available single quasar observations and iden-
tified 18 that are useful (i.e., are of suitable length, there was a
minimum number of antennas available and there were no hardware
or software problems) for the present study. The majority of these
are ∼ 20 minutes long and were made during a two-week period
in April 2011, but we also consider six longer observation of ∼ 1
hour each, 4 from December 2010 and 2 from June 2011. These ob-
servations include between 4 and 12 antennas with working WVRs
(median 8). We show the temporal power spectra for all these obser-
vations in Figures 9 to 11. The power spectra are computed from the
full length of each run, but considering only about 20 minutes at a
time (so that the short and long data sets are processed consistently).

We calculate the power spectral density using Welch’s
average periodogram by using the python(2.5) function psd

in matplotlib.mlab (see http://matplotlib.sourceforge.

net/api/mlab_api.html#matplotlib.mlab.psd). We use
the same parameters for all runs.(specifically: NNFT = 512,

scale by freq = True, noverlap = 0, detrend = none, and
window = mlab.window.hanning) The resulting frequency
resolution in the PSDs is 0.0017 Hz. In Section 3, we also briefly
examine power spectra at slightly higher frequency resolution
available from longer runs.

Within each of our observations, data are recorded in 10-minute
long ‘scans’ separated by gaps that are about 30 seconds long. We
take this into account in computation of the spectra by padding
replacing missing data during gaps by path fluctuations estimated
by linear interpolation between the values at the start and end of the
gap. This will cause some ripple in the power spectra, but much less
than if zero-padding was used. The ripple is more pronounced in the
spectra computed from shorter 20-minute observations than from
the longer 1-hour observations, see for example Figure 10(b).

The estimated path fluctuations and their power spectra gener-
ally show similar features:
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Figure 1. A sketch showing a phase screen blowing past an antenna: if there is no time evolution of the screen itself then we can imagine that the portion of this
screen seen by the antenna changes as it moves. After time t = D/W the sampled portions of the screen are further apart than the total thickness of the screen
and we move from the thick-screen (three dimensional) turbulence model into the thin-screen (two dimensional) mode.

(i) At the highest frequencies (i.e., shortest time separations) the
spectra become flat, i.e., independent of frequency, suggesting that
the path fluctuation is dominated by uncorrelated noise component

(ii) At intermediate frequencies the spectrum appears to follow a
simple power law

(iii) In some cases, a break at low frequencies can be seen where
the slope of the spectrum flattens, i.e., the slope is shallower at the
lower frequency side compared to the high frequency side

(iv) In many observations it is clear that one antenna sees quite
different fluctuations compared to those seen by the other antennas:
in December 2010 this is antenna DV09 and in April 2011 this is
antenna DV01 (see, e.g., Figure 2). Figure 8 shows the geometry the
antennas in April 2011, showing that one of the antennas was on a
long baseline where the atmosphere can be expected to be different.

These features are broadly consistent with fluctuations from a tur-
bulent random field as described in the Introduction, together with
additional short term uncorrelated noise as expected from the inter-
nal intrinsic noise in the WVR mixers and amplifiers.

2.1 Fitting accuracy

We interpret the measured spectra by fitting models separately to
each observation. The fitting provides estimates of the model param-
eter, that is, the slope of the PSD, the amplitude of the white noise
component and the presence of any break in the power law consis-
tent with a thick-thin screen transition (we search for a frequency
where the slope flattens by 1.0, but do not force the value of the slope
to be -2.67 in the thick-screen regime). We check the accuracy with
which the estimates can be made from observations by analysing
simulated path fluctuations with known spectral properties.

The simulated data are generated to consist of a pure power
law component (with a specified slope, which we refer to as the
‘coloured’ component) and a uncorrelated Gaussian (white) noise
component. The total power in each of these two components can
be controlled to represent the range of observed conditions at the
site.

We have generated several hundred such time series and used
our fitting algorithms to estimate the slopes. We scale the ‘coloured’
component so that its PSD has a fixed target value at 1Hz and add
white noise components with amplitudes corresponding to 0, 5 and

20 microns of path fluctuation. Because the coloured components
are normalised to have the same power on timescales of 1 second,
the total RMS values over 20 minutes vary as a function of slope.
With a slope of -2.0, the coloured components have an amplitude
corresponding to an RMS value of around 160 microns, which
is within (but towards the low end of) the range seen in the data
observed at the ALMA site. Typical values for the ‘white noise’
component seen in real data are between 5 and 15 microns, so the
accuracies and any biases that we recover from these simulated data
sets should reflect the real situation well.

In Table 1 we show mean estimated slope values for three
sets of simulations with different input slope values and with three
different white noise levels. In each case 100 time series data were
simulated. The results show that the typical accuracy with which
we estimate the slope of the spectra from a single observation is
about 0.15. The accuracy decreases if more white noise is added
to the simulations, as expected since the range of frequencies over
which the coloured component dominates the PSD is reduced. The
results, however, also appear to show that the estimated slopes are
slightly, but systematically, biased steeper as more noise is added.
These biases are well within one standard deviation of individual
observation in all cases2. Therefore the presence of a white noise
component in the real observations should not significantly bias
estimated spectral slopes, but we should not attempt to interpret
these slopes to an accuracy better than about 0.15.

2.2 Observations

We compute power spectra for each antenna and observation and
then calculate the geometric (i.e. log-space) mean of the spectra
across antennas to obtain best estimates of the spectra (shown in
Figures 9 to 11) during each observation. As mentioned in relation
to the simulated data, because we use finite segments of data, we are
susceptible to statistical variance. To take this into account we make
an initial fit to the antenna-averaged PSD from each observation

2 We believe we have traced this apparent bias to the way the data are
simulated rather than the fitting. We have not taken the step of re-simulating
the data as the effect is smaller than the statistical uncertainty.
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Figure 2. A typical example of (mean-subtracted) path fluctuations estimated from WVR data from one 20-minute observation (A002 X1cf8d4 X11), during
which antenna DV01 was ∼ 600 m from the main cluster of antennas.

Table 1. Estimated spectral slopes for different combinations of input slopes
and Gaussian noise amplitudes in simulated data.

PSD slope Amplitude of Mean Standard
used to white noise recovered deviation

generate date component, microns psd slope

-1.5 0 -1.50 0.15
-1.5 5 -1.52 0.17
-1.5 20 -1.59 0.26
-2 0 -2.02 0.15
-2 5 -2.02 0.12
-2 20 -2.02 0.17
-3 0 -3.02 0.11
-3 5 -3.06 0.12
-3 20 -3.08 0.13

and then use the resulting best-fitting model to generate a set of 100
simulated observation with similar properties. We then compute the
power spectra of the simulated observations and use the variance
in these to estimate the statistical variance in the real data. The
variances estimated in this way are usually somewhat larger than the
variance estimated simply by comparing the PSD from the different
antennas. We then use the real data and the uncertainty estimates
from the simulations to fit final models to the observations.

The fitting of models is based on the bnmin1 Bayesian infer-
ence library (see Nikolic 2009). We fit two alternative models:

(i) ‘Single Power Law’ (SPL), where the model takes three pa-
rameters: the slope and the amplitude of the power law component
and the amplitude of the white noise component.

(ii) ‘Broken Power Law’ (BPL), which is like the above model,
but the slope changes by +1 at a break frequency which is a free
parameter. Therefore, the BPL model fits spectra where the low
frequency slope is shallower (by 1.0) than the intermediate frequency
slope. As with the SPL model, we also estimate the amplitude of
the white noise component. The BPL model therefore searches for
Kolmogorov thick to thin screen transitions

We use the Bayesian ‘evidence’ (see for example Jaynes 2003; Sivia
& Skilling 2006) to decide if the more complex BPL model explains
the observations significantly better then the SPL model. We base the

Figure 3. Histogram of recovered slopes (With the ...X191 data set slope
set to -2.61 rather than -3.61). Mean -2.50. Standard Deviation 0.18.

Table 2. Parameters and search ranges used for the SPL and BPL models.

Parameter name Search range used for model fits

Power Law Comp. Slope -4.0 to -1.0
Power Law Comp. Amplitude 0.1 to 1000 microns
Power Law Comp. Break Freq. 10−3 to 10−0.5 (not used in SPL fit)
White noise Amplitude 0.1 to 1000 microns

threshold for selecting a more complex model on the Jeffreys’ Scale
(Jeffreys 1961), and only choose the BPL model if the ratio of the
Bayesian evidences is higher than 148 (i.e. logε > 5), corresponding
to a ‘decisive’ favouring of the BPL model over the SPL model.

The ranges of model parameters considered in the fitting proce-
dure (i.e., the ‘prior’ ranges) are summarised Table 2. The estimates
of model parameters resulting from the fitting are shown in Table 5.
The results show a remarkably similar slope value for almost all
fits: the range is −2.81 to −2.18, the mean is -2.50 and standard
deviation is 0.18 (see Figure 3).
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Data run Thick-thin break distance scale (m)

A002 X1ce560 Xc6 41 +/- 8
A002 X1d1cbf X3b 100 +/- 40
A002 X20c6c7 X4b 390 +/- 160
A002 X20c6c7 X71 225 +/- 37

Table 3. Thick- to thin- screen Kolmogorov scales for the 4 runs where such
a break was found.

3 CHARACTERISTIC TIMESCALES AND
IMPLICATIONS FOR WVR PHASE CORRECTION

We find evidence for a break in the slope of the power spectrum
in five of the 18 data sets analysed. In for four of these five obser-
vations in which the BPL model is preferred, the slope at higher
frequencies is −2.71±0.08 (changing by constraint to -1.71 at the
lower frequencies), which is in excellent agreement with the predic-
tions of the Kolmogorov theory of turbulence and a thick-screen to
thin-screen transition (this predicts -2.67 at higher frequencies).

If we assume that the wind speed aloft is the same as the wind
speed at 8m height (this is likely to be an underestimate, see e.g.
Holdaway (1995)), we can recast our temporal scales as spatial
scales. The equivalent spatial scales for the inferred thick-screen
to thin-screen transition is shown in Table 3: in the model these
approximately correspond to the thickness of the water vapour layer.
We note that the last two observations (...X4b and ...X71) were made
consecutively and that their break scales are mutually consistent.
Observation A002 X1ce560 Xc6 was made during very high levels
of PWV (7mm) when the weather was ‘cloudy’.

For all our other observations we do not see a break from thick
to thin screen behaviour. This suggests that the turbulent screen is
thicker than 100 m or so (see Figure 6). We note that Holdaway
(1995) show indirect evidence to suggest that the turbulent layer is
thicker than 300 m or so.

The remaining observation for which the BPL model was
preferred appears to be anomalous. For this observation,
A002 X1849a5 X191, the slope of the spectrum at high frequen-
cies is -3.61 (changing by constraint to -2.61 at lower frequencies).
The estimated break timescale is 11 s, which is a similar timescale
to the breaks in two of the other four observations for which the
BPL model was preferred. However, the wind speed during the
run A002 X1849a5 X191 was very low, and the 11 s timescale
corresponds to a spatial scale of 20±4m. Because the WVR mea-
surement are made with a beam with finite width as it passes through
the water vapour layer, we do expect to see the amplitude of the
sloping component in the PSD drop rapidly when spatial scales
comparable to or smaller than the beam size are sampled. The WVR
beam is between about 15-20m across, depending on height (see
Nikolic et al. 2007). The fact that the observation with the lowest
wind speed, which therefore samples the highest spatial frequencies
of all observations, is the only one where this break is detected hints
that this beam-averaging might be responsible.

We have also examined the observed power spectra for evi-
dence of turn-over (or flattening to zero slope) of the spectrum at
long timescales. According to the theory of turbulence, there must
be such an ‘outer’ scale of turbulence on which the energy is in-
jected. On scales longer than this, the fluctuations become entirely
uncorrelated. We see no evidence for such turn over in the 20-minute
observations that we analysed. The lowest frequency we measure for
these observations is approximately 10 minutes, therefore we only

constrain the outer scale of turbulence to be greater than∼ 300s×w
where w is the effective wind speed.

Besides the 20 minute observations, we also have a few longer
observations, several of which were made consecutively. We com-
bine these into one 2-hour and one 3-hour data set. We show the
estimates of path fluctuations and the resulting spectra of the com-
bined data in Figure 4. The plots corresponding to the two data sets
show substantially different behaviour: the path estimates plotted
in Figure 4(a) clearly shows variation on long time scales. Some of
the overall trend in the path could be due to errors in the airmass
correction (elevation at the end of observation was only 45 degrees),
but in any case the differences in the PSD with or without the air-
mass correction are well inside the error bars even at the lowest
frequencies. The spectrum does not show convincing evidence of
a flattening on the longest time scales shown here which are about
1 hour. The wind speed (measured on the ground, not in the water
vapour layer) was around 4.5ms−1, so one hour corresponds to a
spatial scale of ∼ 16km.

The second long observation (∼ 2 hours in total, Figure 4b)
shows much higher power on timescales up to 30 seconds, and a
nicely defined break where the slope transitions from ∼ −2.6 to
∼ −1.6 — see the fitting plots for the individual 1-hour runs in
Figure 11. Again here there is no obvious turn-over in the spectrum,
out to frequencies of 10−3 Hz or 17-minute times scales. The ground-
level wind speed was high, at 10.5ms−1, so 17 minutes corresponds
to 10.5km of transverse movement.

A thorough analysis of the outer scale of the turbulence clearly
requires longer runs during which the WVRs are pointed at a fixed
direction. The proposed ALMA fixed monitoring WVR will be very
useful for constraining the outer scale of turbulence, which will be-
come increasingly relevant as ALMA begins to use longer baselines.
The results of this preliminary analysis suggest that the outer scale
of the turbulence is as at least as long as the longest baselines that are
anticipated to be used by ALMA. This suggests that the magnitude
of phase fluctuations will increase beyond what is measured on the
baselines used so far. Consequently, effective correction of these
phase fluctuations will become more important, and this in turn will
depend increasingly on accurately predicted coefficients that convert
sky brightness fluctuations in path fluctuations.

3.1 Spatial power spectra

The observations we analyse here were made under different preva-
lent wind speeds which makes it difficult to fairly compare the
temporal power spectra between the observations. We can make a
better comparison by converting these spectra into spatial power
spectra and overlying the results of all observations, as shown in
Figure 5. In this calculation we used the average ground-level wind
speed for each observation and shifted all data by log10(w) in the
left and up direction. (The units are m−1 rather than radians/m -
conversion to true ‘k’ values just leads to another shift in x and y,
but by the same amount for all runs.) The spread of power at a par-
ticular frequency seen in Figure 5 corresponds to almost 4 orders of
magnitude in power, equivalent to a factor of 100 in the fluctuations.
We investigate the relation ship between the total Precipitable Water
Vapour (PWV) and amplitude of fluctuations at a fixed frequency
by plotting in Figure 6 the power at frequency of 1/40m−1 versus
elevation correction precipitable water vapour at the middle of the
observation. It can be seen there is a general correlation between the
two quantities, which is as expected if we assume that the fractional
changes in water vapour concentration caused by the turbulence are
about the same in all observations.
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(a) (b)

Figure 4. (a): Path and PSD from approximately 3 hours of WVR data taken on 2010-12-20, between 01:00 and 04:00 local time. The total PWV was 3.0 +/-
0.2 mm. (b): Path and PSD from approximately 2 hours of WVR data taken on 2011-06-05 between 04:15 - 06:30 local time. The PWV was 2.6-2.7 mm.

We can also compare the power of path fluctuations we measure
with previous measurements with the 300 m baseline site-testing
interferometer described by Radford et al. (1996). The results of the
measurement by the interferometer are summarised by Evans et al.
(2003). We take the values for rms delay fluctuations (in microns)
on a 300m baseline at 10, 25, 50 and 75 percentiles from table 1 of
Evans et al. (2003) and plot the square of these values as the black
diamonds on the spatial PSD in Figure 5. The spatial PSDs shown
are generally a little higher than the measured phase fluctuations:
for comparison, observation A002 X1cd467 X45 has a PWV close
to the median value of 1.3, but its PSD would not pass through the
50th percentile diamond (second from top) in the plot if extrapolated
linearly. However, underestimation of the wind speed in the turbulent
layer by a factor of 2 would shift the PSD values to the left by 0.3
dec (increasing all the spatial scales) and up by 0.3 dec, making
it broadly consistent, and any break in the PSD to the thin-screen
regime would help. Scatter in the amplitude of the PSD for fixed
PWV (in Figure 6 means that although ...X45 sees median PWV
levels, it may not see median path rms values.

3.2 Estimation of ‘Thermal’ Noise

Some of the apparent short-time scale fluctuations of path estimated
from WVR data may due to the intrinsic, uncorrelated, noise in
the WVR mixers and amplifiers (‘thermal’ noise). If the real path

Figure 6. Spatial PSD value at a spatial frequency of 10−1.6 plotted against
the elevation-corrected PWV value for the mid point of the run.

fluctuation between two antennas is smaller then the combination of
the noise path fluctuations in the two WVRs, then applying phase
correction based on the differenced WVR signals would be counter
productive and make the resulting phase fluctuations on this base-
line worse. The wvrgcal program predicts the magnitude of path
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Figure 5. Spatial PSDs for all runs. Note that the 5 BPL runs are plotted last. ...X191 is the run with the lowest wind speed (and the anomalous BPL fit). The
black diamonds show the RMS values of 49, 89, 187 and 394 microns measured using the 300m baseline with the NRAO site-testing phase monitor described
by Radford et al. (1996).

Figure 7. Estimates of thermal noise versus PWV, showing (red diamonds)
noise predictions made by wvrgcal and (blue circles): (i) The white noise
component measured from the model fits (where a good fit was made) – these
points have two-sided error bars; and, (ii) Upper limit on noise calculated
from the lowest value of the PSD (points with negative error bar only).

fluctuation due to thermal noise and in Figure 7 we compare these
predictions with estimates of the white noise component extracted
from the fitting observed power spectra. We plot the estimated white
noise component versus the (non-elevation corrected) PWV. Higher

values of PWV correspond to greater noise (approximately scaling
as white noise amp ∝ PWV0.8). The plot shows that, in general, the
wvrgcal predictions are in line with the recovered parameters.

Estimates of the effect of noise on the path fluctuations and of
the amplitude and slope of the power-law component can be used
to compute the timescale on which the thermal noise dominates
over the real path fluctuations. Using the wind speed, this can be
converted to a minimum baseline length on which WVR phase
estimates should be applied without smoothing. Below we use the
estimates for the noise path from fluctuation from wvrgcal as they
are available for all of the observations. The results are shown in
Column J of Table 5: the minimum baseline length to apply WVR
phase correction can be as long as 40 m (in low winds and with
low PWV), down to as low as 4m (in poor weather, with 7mm
PWV). These estimates in terms of length-scales can be converted
back into a suggested smoothing timescale by dividing column J of
Table 5 by the wind speed in column F; these timescales range from
1 to 14 seconds. We plan to implement and test the effects of such
smoothing in wvrgcal in continuing work.

4 SUMMARY AND FURTHER WORK

We have analysed estimates of path fluctuations from WVR mea-
surements in 18 observations made between December 2010 and
June 2011. These observations cover a wide range of observing
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Figure 8. Sample antenna positions from run A002 X1cd62f X253, from
Apr 2011. Positions are in m offset from the median value. The x axis is
eastwards, y is north.

conditions, with the zenith PWV varying between 0.7 and 6.6 mm.
We note the following conclusions:

(i) The estimated slopes of the spectra of path fluctuations have
a mean slope of -2.5 and a standard deviation of 0.18.

(ii) By fitting models to simulated data, we have shown that the
typical error on the derived PSD slopes is 0.15, in close agreement
with the observationally estimated standard deviation.

(iii) The Kolmogorov thick-screen model of turbulence predicts
a slope of −2.67. The slopes we estimate are consistent with this
model

(iv) In four of the 18 observations we detect a break in the slope
from −2.71±0.08 at higher frequencies, in a way consistent with
transition from Kolmgorov thick screen to Kolmogorov thin-screen
turbulence. The thickness of these screens (corresponding to the
spatial scale of the change in slope) is in the range 40 to ∼ 400m.

(v) We see no evidence for an outer scale to the turbulence in the
data, which constrains any outer scale to be greater than ∼ 16 km.
This suggests that application of WVR data is likely to increasingly
important (and challenging) as ALMA starts using longer baselines.

(vi) One of the observations shows some evidence of an inner
scale, which is likely caused by the averaging effects of the WVR
beam.

(vii) The amplitude of the spatial power spectrum at fixed fre-
quency (which is dominated by the sloping component) is as ex-
pected correlated with total water vapour.

Further work in this area should include an investigation into
the effects of smoothing and the baseline dependent effectiveness
of WVR application. A radiometer continuously observing zenith
would be very helpful in providing consistent monitoring of the
atmospheric conditions, for the search for an outer scale and to seek
further evidence of the effect of beam-averaging on the WVR data.
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(c) A002 X181196 X869. Unbroken sloping component. Slope of -2.5.
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(d) A002 X1849a5 X191. Broken sloping component. Slope of -3.6 for the
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(e) A002 X1cd467 X45. Unbroken sloping component. Slope of -2.6.
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(f) A002 X1cd62f X4f. Unbroken sloping component. Slope of -2.4.

Figure 9. PSDs and fits for the first 6 runs presented in this paper.
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(b) A002 X1ce2d9 X1e. Unbroken sloping component. Slope of -2.3.
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(c) A002 X1ce560 Xc6. Broken sloping component. Slope of -2.7.
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(d) A002 X1cf8d4 X11. Unbroken sloping component. Slope of -2.7.
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(e) A002 X1cf9f0 X13d. Unbroken sloping component. Slope of -2.6.
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(f) A002 X1d1cbf X3b. Broken sloping component. Slope of -2.8.

Figure 10. PSDs and fits for the 7th to 12th runs presented in this paper.
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(a) A002 X1d214c X143. Unbroken sloping component. Slope of -2.5.
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(b) A002 X1d214c X2f3. Unbroken sloping component. Slope of -2.2.
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(c) A002 X1d4d38 Xb. Unbroken sloping component. Slope of -2.3.
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(d) A002 X1d4eb3 X16. Unbroken sloping component. Slope of -2.2.
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(e) A002 X20c6c7 X4b. Broken sloping component. Slope of -2.6.
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(f) A002 X20c6c7 X71. Broken sloping component. Slope of -2.8.

Figure 11. PSDs and fits for the final 6 runs presented in this paper.
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