

ALMA Band 1

Charles Cunningham and Stéphane Claude

Canadian LRP 2010

- The Atacama Large Millimetre Array is the top priority in LRP2000
- The Atacama Large Millimetre Array (ALMA) is the first of the great "World Observatories".

Canadian LRP 2011

 Canada should participate in a bid on the provision of ALMA Band one receivers to take advantage of Canadian skills and experience developed during the design and building of the Band 3 receivers.

University of Chile

ASIAA, Taiwan

RF design team at HIA:

Stéphane Claude, Charles Cunnigham, Philip Dindo, Doug Henke, Frank Jiang and Filippo Rossi (University of Victoria PhD student)

Millimetre Instrumentation Laboratory: component and cartridge testing

Mechanical design team: Dave Duncan and Ivan Wevers

Workshop: Gord Hnylycia and Jim Jennings

Band 1 Sub-systems and Challenges

- <u>Sub-systems:</u>
 - Optics: lens, horn + Orthomode Transducer (OMT)
 - Low Noise Amplifier (LNA)
 - Local Oscillator and down-converter

<u>Challenges:</u>

- Noise: 17 K Single Side Band (dominated by LNA and optics)
- RF Bandwidth 36% (31.3 to 45 GHz) widest of all ALMA bands

Herzberg Institute of Astrophysics

Systems Noise Budget

Components	Component Gain (dB)	Cumulative Gain (dB)	Component Noise (K)	Cumulative Noise (K)	
components		()	(11)	(14)	
Optics	-0.3	-0.3	8.0	8.0	
Feedhorn (15 K)	-0.1	-0.4	0.3	8.4	Optics
ОМТ	0.0	-0.4	0.1	8.5	
Isolator (WG)	-0.4	-0.8	1.4	10.1	
WG to coax adapter	-0.1	-0.9	0.3	10.6	Pre-LNA
LNA	45.0	44.1	15.0	29.2	LNA
Соах (4-300К)	-2.0	42.1	87.7	29.2	
Amplifier (Warm RF) G=35dB, NF = 4dB	35.0	77.1	446.0	29.2	
Atten Pad	-3.0	74.1	293.6	29.2	
Mixer (Spacek) -8 dB G, 6dB NF	-8.0	66.1	879.4	29.2	
Соах	-4.0	62.1	446.0	29.2	

Working Noise Budget = 29.2 K SSB

Specification from ALMA project book: 17 K over 31.3 GHz to 45 GHz for 80 % of the band and 26 K for any frequency.

D. Henke, S. Claude, F. Jiang, D. Dousset, and F. Rossi, "Component Development for ALMA Band 1 (31–45 GHz)," at *Proc. SPIE*, San Diego, CA, Jun. 30, 2010

Noise versus gain

NRC-CNRC

Herzberg Institute

Optics

Key Issues for Band 1 Optics

• Lens:

- Dissipative loss
- Scattering/Reflection
- Material control and manufacture
- System design verfication and modeling
 - Aperture efficiency
 - Cross-polarisation
 - Spill-over/Truncation
- Feedhorn
- Polarisation splitter (OMT)

NRC·CNRC

Herzberg Institute of Astrophysics

Modeling of Optics

With existing feedhorn, changed lens focal length and position to match a 12.3 dB edge taper on the secondary

RC.CRC Herzberg Institute of Astrophysics

LNA Prototype program

- Building on the Band 3 LNA expertise
- Prototype has 3 InP transistor stages from HRL
- Design is hybrid and includes discrete components and wire bonding for tuning gain, noise and input match
- InP technology based transistors have low power dissipation for cryogenic operation
- Layout is optimized for automated assembly for medium size production volume
- Band 1 LNA will have to be 5 stage to provide 40 dB of gain

Transistors

Au plated Cu chassis for good thermal dissipassion

Output

- Design is based on a turnstile with circular waveguide input matching feedhorn for optimum cross-polarisation
- Simple and accurate machining of the turnstile in one block using CNC in aluminum
- OMT is made of three blocks.

Herzberg Institute of Astrophysics

OMT Measurements

38

Frequency (GHz)

40

42

36

44

46

-25

-30

-35⊑______ 30

32

34

- Dual FET design
 - Inherent isolation between ports
 - Modest gain possible
- Modeling fitting indicates promising simulation
- Capable of cryogenic operation

freq, GHz

<u>NRC·CNRC</u>

Herzberg Institute of Astrophysics

Feedhorn fabrication

•Design study on machining the feedhorn.

•Difficulties: narrow opening angle, long feed and deep grooves at throat.

•Proposed fabrication at HIA:

Split horn in three with the first 10 grooves machined in one piece on a lathe.

Other solutions:

 machined in multiple pieces with washers for the first grooves (Cloema, Italy);

• Electroforming; cons: process reproducibility and cost

Herzberg Institute of Astrophysics

Feedhorn Fabrication

First section in the lathe

Herzberg Institute of Astrophysics

Test Cryostat at HIA

Completed initial noise measurements of simple system

Test configuration with Band 1 feedhorn

Herzberg Institute of Astrophysics

Conclusion and future work

- Optics design re-evaluated: complete end to end simulation underway.
- Test cryostat operational for evaluating individual components:
- OMT prototype completed, final design to be manufactured
- New LNA prototype currently under fabrication
- Mixer design completed and ready for prototyping
- Feedhorn fabrication underway