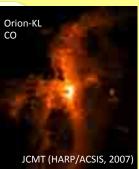
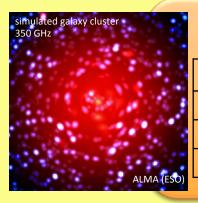
Did you know?

the Atacama Large Millimeter/submillimeter Array (ALMA) can...

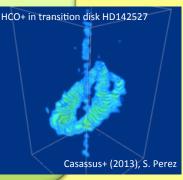

M83 CO(1-0) in Cycle 2 Intensity in Cycle 2 6 pc clouds of excited CO(J=3-2) gas across the central 400 pc of M83 < 2 hours</td> 30 pc clouds of dense HCN(J=1-0) gas in the central 1.5 kpc of M83 25 minutes Create an HCN(J=1-0) mosaic of the full M83 bar with 30 pc resolution 2.5 hours

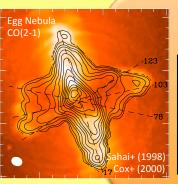

detect the ISM in high redshift galax	ies:	LESS 2 870 µm (ALMA)	
	in Cycle 2		
dust emission in a "normal" $10^{11}L_{\odot}$ galaxy between z=1 and z=6	5.6 hours		
major cooling [CII] line in a lensed Milky Way galaxy at z=4.2	30 minutes	1 South as	
dust emission in a $10^{12}L_{\odot}$ luminous infrared galaxy out to z=10	7 minutes	Hodge+ (2013)	

... reveal the characteristics of Solar System objects:

1'5.88 Comet Hale-Bopp, CO (2-1)		in Cycle 2
	obtain wind patterns in the atmosphere of Mars with 300 km resolution	30 minutes
	trace the atmospheric water content of Venus using HDO lines	10 minutes
	detect volatiles (HCN, CH_3OH , H_2CO , CS, and HNC) on active comets	50 minutes
D. Bockelée-Morvan	measure Kuiper Belt Object sizes from their thermal emission	1 hour

	survey Galactic clouds and star forming regions:	
		in Cycle 2
	measure the polarization of dust in 30 protostars in a single star forming region	2 hours
	detect thousands of lines over 60 GHz with < 1 km/s resolution toward Orion-KL	10 minutes
l		

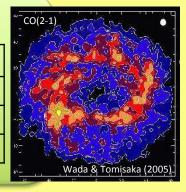



... trace the formation of galaxy clusters, cosmic structure:

	in Cycle 2
characterize merger shocks in cluster gas with the Sunyaev-Zel'dovich Effect	1.5 hours
measure the bulk cluster Sunyaev-Zel'dovich Effect in high-z clusters	3 hours
survey clustering in a sample of 23 Lyman- α Blobs (LABs) at z=3.1	< 1 hour

... reveal the nature of planetary disks around nearby stars:

	in Cycle 2
resolve the "snow line" in the disk around the T Tauri system HD 163296	15 minutes
measure dense gas flows across gaps in protoplanetary disks	15 minutes
detect a dust disk gap induced by a Jupiter mass planet at 120 pc	2 hours
image full debris disk (dense clumps in disk) of ϵ Eri with 1 AU resolution	17 (3) hours



... measure stellar activity from low to high mass stars:

	in Cycle 2
image molecular outflows from pre-planetary nebulae	5 minutes
investigate heating mechanisms of red giant stars	2 minutes
detect z=3 (z=10) GRB afterglow two days after the burst	11 minutes (2.6 hours)

... study black holes and their environments, near and far:

	in Cycle 2
measure black hole mass of NGC 4526 from molecular gas kinematics	1 hour
infer gas properties in the host galaxy of an obscured z=2.8 quasar	20 minutes
understand the energetics of flares from Sagittarius A*	2 minutes

Integration time estimates are on source integration times (no calibration) calculated with the ALMA exposure time calculator: <u>https://almascience.nrao.edu/proposing/sensitivity-calculator</u>

More information about the assumptions and setups for each project can be found here: <u>https://science.nrao.edu/facilities/alma/didyouknow</u>