North American
\ ALMA Science
NORTH AMERICAN ARC

\ Center
ALMA Regional Center \

Automated Clean-boxing Algorithms for CASA
NAASC Memo #106

Amy Kimball
Date: May 20, 2011

ABSTRACT

This memo describes placing of clean regions in a CASA image using algorithms and
heuristics developed as part of earlier work at NRAO. This information may be useful
in developing the imaging stage of the ALMA pipeline. There are now two such
algorithms in CASA: one in the “Autoclean” task and one in the “Boxit” task. The
Autoclean task is a wrapper for CASA's “Clean” task: it iteratively finds clean regions
and calls Clean to produce a final image. Autoclean includes heuristics to determine
when/where to place new clean regions, and also when to stop cleaning. This memo
describes the Autoclean heuristics, compares and contrasts the algorithms used in
Autoclean and in Boxit, and provides the basic algorithm (as code) used by Autoclean.

1 Autoclean heuristics

This section describes the heuristics used by Autoclean to determine where to place
clean regions, what shape to use, how many to place, and when to stop cleaning. It
follows the code basically chronologically.

INPUT PARAMETERS:

Parameters measured from current residual image: rms, max_res (maximum
residual). User can choose to use absolute value of max_res if desired. Input values
for determining clean regions: P (peak), I (island), G (gain), N (number of clean
boxes), S (stretch pixels), L (large).

Examples of input values:

P = 6 (factor of rms to determine clean region location)

[= 4 (factor of rms to determine clean region size)

G = 0.2 (factor of maximum residual to determine clean region location)
S = 2 (# of pixels for stretching clean region)

L =100 (# of pixels in size to determine "large" island of pixels)

The algorithm moves through one plane of image (frequency, polarization) at a time,
and thus does boxing in 2-D image planes.

CLEAN REGION LOCATION:

The locations of clean boxes are determined primarily by parameters P and G. A
pixel must be brighter than P*rms and G*max in order to get a clean box.

CLEAN REGION SIZE: The size of clean box is determined primarily by I: all
surrounding, contiguous pixels which are brighter than [*rms are included in the
clean box. User has the option to include diagonal pixels when determining
contiguity.

CLEAN REGION LOCATION AGAIN:

A clean box must be larger than 1-pixel wide in each direction, unless it is
"significantly bright" (for example, 2.5 * the current rms). Otherwise, that pixel (or
1-pixel wide strip of pixels) is ignored.

NUMBER OF CLEAN REGIONS:

Limit the number of clean boxes to N. However, if there are only n islands with a
pixel brighter than P*rms or G*max_res (where n<N), only n clean boxes will be
created.

[AUTOMATED CLEAN-BOXING ALGORITHMS FOR CASA] H

CLEAN REGION SHAPE: Normal clean region can be rectangular or circular. (All that
was available in CASA tools at the time the algorithm was originally written). User
can choose to always use boxes, always use circles, or to allow code to choose. If
code chooses, shape is determined by x-size and y-size of island. If x-size and y-size
are within two pixels of each other, then clean region will be a circle. User can also
choose that clean "islands" larger than L pixels will have a clean region that outlines
the island shape, rather than a box or circle.

CLEAN REGION SIZE AGAIN:

User has option, once "box" or "circle" region is determined, to "stretch"” the clean
box by S number of pixels in each direction, beyond the size determined by I*rms
threshold.

NOTE ON NUMBER OF NEW CLEAN REGIONS:

New clean boxes may not be necessary if the previous round of cleaning did not go
deep enough. Therefore, when using the boxing algorithm, include previous clean
boxes in the search, and in the calculation of N. For example, if one previous clean
box still has a sufficiently (> P*rms or G*max_res) pixel, then only N-1 new clean
boxes will be created that iteration.

WHEN TO STOP CLEANING:

If no pixels are brighter than P*rms, then no new clean boxes will be made.
However, it is possible that max_res is still brighter than the user's clean threshold.
My code treats this situation assuming that the chosen clean threshold was
unnecessarily low, and stops cleaning.

Normal stopping: if clean threshold is reached, or a maximum number of total
iterations is reached. Also stops cleaning if maximum residual has changed by less
than some pre-determined fraction. (This, combined with not clean-boxing isolated
bright pixels, needs some additional checking.) Also stops cleaning if maximum
residual *increases* by a certain number of times (say, 3 or 4) that is input by the
user. Also stops cleaning if maximum residual is less than X*rms where X is input by
the user. In an automatic version, X should depend on the number of pixels in the
image. For example, in a Gaussian distribution, 0.003168% above 4-sigma. So in a
1000x1000 image, you would expect 23 pixels above 3-sigma and 0—1 above 4-
sigma. So 4 X rms would be an appropriate threshold for a 1000”2 image, but
maybe not for a much larger or much smaller image.

IDEAS FOR IMPROVEMENTS:

- Instead of a fixed integer, the parameter "I" (for determining "island" or "clean
box" size) could instead be a fixed fraction of the peak pixel in clean box.

- Fit an elliptical Gaussian to an island in order to determine orientation of an
elliptical or rectangular clean box.

- Change value of P to depend on location. For example, if a local peak pixel is the
same distance from a higher peak as the first sidelobe is from the beam center, then
require a stricter value of P to reduce the chance of cleaning sidelobes.

2 Autoclean and Boxit: a tale of two algorithms

Both algorithms find potential "islands" in an image above a given threshold. Amy
Kimball wrote the algorithm in Autoclean; Dave Mehringer wrote the algorithm in
Boxit.

Autoclean uses a numpy rec.array to keep track of the position, flux, and (current)
mask value of each pixel. It's a multi-dimensional array, where sub-arrays can be
indexed by *name*. The xyMask rec.array contains four NxM (image-sized) arrays,

named "x","y", "value", and "mask". This seemed a good way to be able to index the
position, flux density, and current mask for any particular pixel.

Autoclean produces an ascii file with a list of pixels in each island. The four columns
in the output file are island#, x-pixel position, y-pixel position, and flux of pixel. The
user can also input the name of an output mask image; Autoclean will create a mask
image of the individual pixels. It will overwrite any previous image with this file
name. The result is similar to simply doing an image threshold, except that the
Npeak parameter limits the total number of islands. Note that if Npeak is large
enough and island_threshold = peak_threshold, then the maskimage will be
equivalent to just doing an image threshold with ia.getregion(mask=<pixels above
threshold>).

The two pieces of code use similar algorithms to identify pixels above the threshold,
with two crucial differences:

Part A)

Boxit was written to literally "box" the islands, as in locate a rectangular region
around each island. Boxit therefore keeps track of the coordinates of the rectangle
corners, but not the individual pixels. On the other hand, Autoclean does not try to
force a particular region shape on the user. Instead, it keeps track of the individual
pixels in each island, and produces an ASCII file with the pixel identifications,
allowing the user to later place a clean region of any shape.

Part B)

Autoclean starts with the brightest local maximum in the image, and works its way
down from there. It allows the user to limit the total number of islands find using
the Npeak input parameter. Boxit, on the other hand, works with the given
threshold and finds *every* island above that threshold. Thus, Boxit doesn't care
about the order (brightest to faintest) when identifying islands.

How Boxit does Part A

Boxit uses a recursive subroutine (find_nearby_island_pixels) to search the
neighbors around each above-threshold pixel, in order to identify nearby above-
threshold pixels. Each time a new pixel is identified, the module is (recursively)

[AUTOMATED CLEAN-BOXING ALGORITHMS FOR CASA] H

called. When a new bright pixel is outside the current box corner coordinates, the
coordinates are stretched in order to increase the size of the box. I'm not sure
whether this type of module will still work if one wants to keep a list of individual
pixels, as Autoclean does.

How Autoclean does Part A

Autoclean iterates over a list of pixels of interest, starting with the brightest
(unmasked) pixel in the image. As it finds neighboring pixels that are above the
island_threshold, it adds them to the list. It continues iterating over the list of pixels
(even while it adds to that list; an interesting feature of Python allows this
technique).

How Boxit does Part B

Boxit uses numpy.unravel_index(mask.argmax()) to identify pixels that are above
the threshold. Becase argmax() is being used on the mask, which has only
True/False values, the "pos" (position index) variable indexes the first "True"
(above-threshold) pixel in the image, which is not (probably ever) the brightest
pixel in the image. Thus, Boxit does not start with the brightest source in the image,
and can't currently "rank" the sources from brightest to faintest.

How Autoclean does Part B

Runs numpy.where to find current non-islanded above-threshold pixels. Identifies
next peak as the max of those pixels. Finds the position of that peak. There might be
an easier way to do this using either CASA tools or Python features, but I couldn't
figure it out. As it stands, [don't know of a way to run ia.statistics() on an image
while supplying a list of True/False values as the mask. It's not even clear to me
that a mask image can be given as input to ia.statistics via the mask parameter. If
this is changed, then it will be easy to get the peak flux/peak position using
ia.statistics and the current value of the xyMask|['mask'] array. Alternatively, if the
['value'] array in xyMask were zeroed when a pixel was added to the island (and its
xyMask['mask'] value set to False), then one could simply use
numpy.unravel_index(argmax()), similar to what Boxit does.

3 Autoclean algorithm

The Autoclean task in CASA iteratively finds clean regions in an image (using the
algorithm described in Section 2 of this memo) and cleans the image by calling the
CASA Clean task, and decides to stop the iterations using the heuristics described in
Section 1 of this memo. As of the CASA 3.2 release, the Autoclean task does not
work, because the Clean task has been modified while Autoclean has not been kept
up to date. I extracted the basic clean-boxing algorithm from the Autoclean task
which can work on an image on its own, without doing any of the cleaning
iterations. The python code “get_islands” for this algorithm is provided below.

import numpy

Starting with peak in image, find islands: contiguous pizels above threshold.

Tests peak: bright enough to cleanbox? Then adds chosen region shape to mask.

Continues with next peak pizel until Npeak peaks have been found.

def get_islands(imagename=’’, maskimage=’’, outputfile=’’, Npeak=3,
island_threshold=0, peak_threshold=0, diag=False):

Npeak: mazimum number of [new] bozes

1sland_threshold: flux threshold for island edges

peak_threshold: put boxzes around pizels with flux density above this wvalue
diag: count diagonal connections when tdentifying islands

writemask = bool(maskimage) # checking to see whether there is a mask image to modify

if (writemask) :

create/overwrite new output mask image

ia_tool = ia.newimagefromimage(infile=imagename,
outfile=maskimage,
overwrite=True)

ia_tool.set(pixels=0.0)

ia_tool.close()

ia_tool.done()

types (as lists) for the recarrays that will store pizel and island info.
pix_dtype = [(’x’,’i4’),(y’,’i4°),(’value’,’£8’), (’mask’, ’bool’)]

Find all pizels above the threshold; make temporary mask: tmp_mask
ia.open(imagename)
escape characters in image name that would confuse the lattice expression processor
escaped_imagename = imagename
for escapeme in [’-’, ’+’, %7, 7/, 2 ?]:
escaped_imagename = re.sub("[" + escapeme + "]", "\\" + escapeme, escaped_imagename)
mask_command = escaped_imagename+’>’+str(island_threshold)
origmask = ia.getregion(mask=mask_command,getmask=True) .squeeze()

pizel wvalues

pixelValues = ia.getregion() .squeeze()

ia.close()

store pizel positions and mask values in a numpy recarray

grid = numpy.indices(origmask.shape)

xyMask = numpy.rec.fromarrays([grid[0], grid[1], pixelValues, origmask], dtype=pix_dtype)
nx, ny = origmask.shape

outf = open(outputfile+’pixels.dat’, ’w’)

keep going until we’ve found Npeak islands

or there are no more pizels above the tsland_threshold
or the peak is less than the peak_threshold

Nregions = 0

Nkept = O

while Nregions < Npeak:

if not(xyMask[’mask’].max()):
no more pizels above island threshold: we’re done
break

find the next peak and its location

good = numpy.where (xyMask[’mask’])

peak = pixelValues[good] .max()

peakind = pixelValues[good] == peak

pos = (good[0] [peakind] [0], good[1] [peakind] [0])

if peak < peak_threshold:
1f peak is below peak threshold for clean bozing: we’re done
break

since we’ve already checked this pizel, set its mask to False
listPix = [xyMask[pos]]
xyMask [pos] [’mask’] = False

find all above-threshold contiguous pizels of this tsland
for pixel in listPix:

thisX = pixel[’x’]

thisY = pixel[’y’]

search the pizels surrounding the pizel of interest

xLookl = max(0,thisX-1) # in case we’re at the image edge...
xLook2 = min(thisX+2,nx-1) # /

yLookl = max(0,thisY-1) # /

yLook2 = min(thisY+2,ny-1) # 14

add new above-threshold pizels to the list for this <sland

if (diag):

contig_pix = xyMask[xLookl:xLook2, yLookl:yLook2]
listPix += [pix for pix in contig_pix.ravel() if(pix[’mask’])]
as we’ve now added these pizels, set their mask to False
(contig_piz is reference to zyMask)
contig_pix[’mask’] = False
else:
only look at the four pizels that share an edge with pizel-of-interest
contig_pix = []

contig_pix += [xyMask[thisX, yLook1]]

contig_pix += [xyMask[thisX, yLook2-1]]

contig_pix += [xyMask[xLookl, thisY]]

contig_pix += [xyMask[xLook2-1, thisY]]

listPix += [pix for pix in contig_pix if(pix[’mask’])]

since we’ve already added these pizels, set their mask to O
xyMask[thisX, yLookl] [’mask’] = False

xyMask[thisX, yLook2-1][’mask’] = False

xyMask [xLookl, thisY] [’mask’] = False

xyMask [xLook2-1, thisY] [’mask’] = False

found all pizels in this island; get bounding bozx
islandPix = numpy.rec.fromrecords(listPix, dtype=pix_dtype)
xmin = islandPix[’x’].min()

xmax = islandPix[’x’] .max()

ymin = islandPix[’y’].min()

ymax = islandPix[’y’].max()

Nregions += 1 # This tsland should be in a clean region.

This is a new tsland for clean boxing. Prepare to mask!
Nkept += 1

Write this island to the output file
for outpixel in listPix:
outstring = "%s %s %s %s" % (Nkept, outpixel[’x’],
outpixel[’y’], outpixel[’value’])
outf.write(outstring+’\n’)

Put these pizels into the tmage mask
if (writemask):
mask_island(maskimage, islandPix)

outf.close()
return Nkept

def mask_island(maskimage=’’, pixelList=None):
ia.open(maskimage)
mask = ia.getregion()
mask [pixelList[’x’], pixellList[’y’]] = 1
ia.putchunk (mask)
ia.close()
return

