HFET Receivers for ALMA Bands ## 1, 2 and 3

Marian W. Pospieszalski CDL

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Band #1:31.3 to 45 GHz

Specifications:

I	Freq (GHz)	Specification		Goal	
		T(SSB) over 80%	T(SSB) at any freq	T(SSB) over 80%	T(SSB) at any freq
	31.3 – 45	15 K	23 K	10 K	14 K

Standard waveguide bands: WR28 26-40 GHz, $F_c=21.2$ GHz WR22 33-50 GHz, $F_c=26.4$ GHz ALMA Band#1 fits a new "WR25" waveguide band

KaDCM = Ka-Band Down-Converter Module is a custom-built Multi-Function Module containing 7 MMIC chips

EVLA Receiver Courtesy: R. Hayward, P. Harden, NRAO

NOISE TESTING OF K-, K_a- and Q-band AMPLIFIERS

EVLA K_a-Band Amplifier

EVLA K_a-Band Amplifiers at 19 K

→ 38 **→** 37 **→** 35 **→** 32 **→** 40 **→** 41

Over 60 amplifiers have been built

Noise Performance of Q-Band Amplifiers

EVLA K_a-Band Amplifiers

ALMA Band #I Amplifier Performance

Band #2 and 3

Specifications:

NUM DA	Freq (GHz)	Specification		Goal	
Band		T(SSB) over 80%	T(SSB) at any freq	T(SSB) over 80%	T(SSB) at any freq
2	67 – 90	28 K	43 K	16 K	24 K
3	84 – 116	34 K	54 K	19 K	29 K

Test Receiver Noise Temperature

Noise Temperature Summary of Cryogenic HEMTs

Comparison of 80 nm Cryo3 Chip&Wire Amplifier with 35 nm MMIC

Expected Noise of Cryo3 Chip&Wire 75-115 GHz Amplifier

Conclusions

Band #1 amplifiers can be built with cryo3 wafer devices satisfying all T_{rcvr} specifications with good margins

Band # 2 amplifiers can be built with cryo3 wafer devices satisfying all T_{rcvr} (max) specifications and marginally satisfying T_{rcvr} < 28 K (80% of band)

A receiver covering 75-116 GHz (bands ##2&3) is possible with $T_{\rm rcvr}$ < 50 K

