ALMA in the Coming Decade: A Development Workshop – March 21-22, 2011 NRAO, Charlottesville, VA

Receiver Development for ALMA from 300 GHz to 1+ THz

A. R. Kerr 21 March 2011

Current ALMA receiver sensitivity

SIS junction characteristics

- Energy gap of the superconductors (limits max frequency).
- Specific capacitance C_s of the tunnel barrier (limits bandwidth).
- Critical current density J_C of the tunnel barrier (limits bandwidth).
- Leakage current (gives shot noise).

Circuit theory bandwidth limits

RF: For a capacitive device:

Bode limit.

Extended Fano limit when inductance is present.

Unwanted EM modes in substrate channel.

IF: RF matching circuit can limit IF bandwidth

Conductor loss

- Multiplies the intrinsic mixer and IF noise contributions.
- Limits the ability of circuit elements to do broadband matching.
 Normal metals waveguides.

Superconductors – mixer chip – loss is small below f_{gap}

Input optics loss

- IR filter at 80 K.
- Vacuum window at 300 K.

LO sideband noise

Material and Junction Characteristics – 1

Critical temperature T_c : Nb ~ 9 K

NbTiN ~ 15 K (cold deposited) NbTiN ~ 17 K (hot deposited)

Energy gap at T = 0:

Theoretical $(\Delta_1 + \Delta_2)/e = 3.52k_BT_C/e$ [1, p. 72] Experimental $(\Delta_1 + \Delta_2)/e$:

Nb//Nb 2.73 mV Nb//Nb 2.80 mV typical

Nb//NbTiN 3.64 mV Nb//NbTiN 3.27 mV measured to date

NbTiN//NbTiN 4.55 mV (hot deposited) NbTiN//NbTiN ???

Energy gap frequency: $F_g = (\Delta_1 + \Delta_2)/h$ [1, p. 129]

Nb//Nb 660 GHz

Nb//NbTiN 880 GHz – measured 790 GHz to date

NbTiN//NbTiN 1.10 THz - ???

Ref.: A. W. Lichtenberger, 2007

^[1] T. van Duzer and C.W. Turner, "Principles of superconductive devices and circuits," second ed. New York, Prentice Hall, 1999.

Material and Junction Characteristics – 2

$$R_N I_C$$
: $R_N I_C = (\pi/4e)(\Delta_1(T) + \Delta_2(T)) \tanh\{(\Delta_1(T) + \Delta_2(T))/4kT\}$ [1, p. 162]

Nb//Nb 2.14 mV cf. 1.8 mV typically measured

Nb//NbTiN 2.50 mV NbTiN//NbTiN 3.57 mV

Critical current density J_C:

 $Nb/Al-AlOx/Nb \leq 10,000 A/cm^2$

Nb/Al-AlN/Nb \leq 30,000 A/cm² —

 $Nb/Al-AlN/NbTiN \leq 30,000 A/cm^2$ (to date 5,000)

NbTiN/Al-AlN/NbTiN $\leq 30,000 \text{ A/cm}^2$ (not yet demonstrated)

Specific capacitance C_s:

Depends on J_C and tunnel barrier material.

Lea's empirical formula [2] for Al₂O₃ and AlN barriers:

 $C_S = -18.1 + 24.9 * log_{10}(J_C)$ fF/ μ m² – typ. 75-90 fF/ μ m²

London penetration depth λ_i :

Nb 85 nm [2] NbTiN 280 nm [3]

Ref.: A. W. Lichtenberger, 2007

^[1] T. van Duzer and C.W. Turner, "Principles of superconductive devices and circuits," second ed. New York, Prentice Hall, 1999.

^[2] D. M. Lea, A. W. Lichtenberger, A. R. Kerr, S.-K. Pan, and R. F. Bradley, "On-wafer resonant structures for penetration depth and specific capacitance measurements of Nb/Al-Al2O3/Nb trilayer films," Applied Superconductivity Conference, 1994.

^[3] M. Cyberey, R. Weikle and A. Lichtenberger, "On-wafer penetration depth measurements of superconducting films," Int. Symp. Space Tech., Oxford, UK, April 2010.

Material and Junction Characteristics - 3

Other superconducting materials:

● Pb	$T_{c} = 7 \text{ K}$
------	-----------------------

Nb
$$T_C = 9 K$$

• NbTiN
$$T_c = 15 \text{ K}$$

• BKBO (Ba(1-x)K(x)BiO3)
$$T_C = 34 \text{ K isotropic}$$

•
$$MgB_2$$
 $T_C = 39 \text{ K}$ dual energy gaps

•
$$Nb_3Ge$$
 $T_C = 23 K$

• Other A15 (
$$V_3$$
Si, V_3 Ga, Nb_3 Sn) $T_C \approx 20 \text{ K}$

SIS mixer with BKBO grain-boundary junction

References: Y. Wada, T. Takami, K. Kuroda and T. Ozeki, "Significant Improvement in Ba1-xKxBiO3 Grain Boundary Junctions on MgO Bicrystal Substrates by Minimal BaBiO 3 Sputtering," Jpn. J. Appl. Phys. vol. 37, pp. L725-L727, 1998.
T. Takami, Y. Wada, K. Kuroda, T. Ozeki, and K. Hamanaka, "Quasiparticle Mixing in Ba-K-Bi-0 Grain Boundary Junctions,"

IEEE Trans. Applied Superconductivity, vol. 9, no. 2, June 1999.

SIS junction characteristics

- Energy gap of the superconductors (limits max frequency).
- lacktriangle Specific capacitance C_s of the tunnel barrier (limits bandwidth).
- Critical current density J_C of the tunnel barrier (limits bandwidth).
- Leakage current (gives shot noise).

Circuit theory bandwidth limits

RF: For a capacitive device:

Bode limit.

Extended Fano limit when inductance is present.

Unwanted EM modes in substrate channel.

IF: RF matching circuit can limit IF bandwidth

Conductor loss

- Multiplies the intrinsic mixer and IF noise contributions.
- Limits the ability of circuit elements to do broadband matching.
 Normal metals waveguides.

Superconductors – mixer chip – loss is small below f_{gap}

Input optics loss

- IR filter at 80 K.
- Vacuum window at 300 K.

LO sideband noise

Bandwidth Limits for SIS Mixers

Bode bandwidth limit for an RC circuit

$$\ln\left(\frac{\pi}{\rho_{a,\min}}\right) = \frac{\pi}{RC(\omega_2 - \omega_1)}$$

SIS mixer with series inductance

Two cases:

- (i) If $L < L_B$, the bandwidth is limited only by C and the Bode limit [7] applies.
- (ii) If $L > L_R$, the bandwidth is limited by L and C. Then the Fano limit [8] applies.

For an SIS junction, can not do LP \rightarrow BP transformation because it is not possible to connect an inductor directly in parallel with the junction capacitance. Then the modified Bode-Fano theory of [9] is used:

$$ho_{\rm a}$$
 is given by $K=rac{2}{\pi}\lnigg(rac{1}{
ho_{a,{
m min}}}igg)$, where K is the real solution of
$$K^3-rac{6}{bB_C}K^2+igg[rac{12}{b^2}igg(1+rac{1}{B_C{}^2}igg)igg]K-rac{24}{b^3X_LB_C{}^2}=0$$
 with $b=2rac{\omega_2-\omega_1}{\omega_2+\omega_1}$, $B_C=\omega_0C$, and $X_L=\omega_0L$.

[7] H. W. Bode, "Network Analysis and Feedback Amplifier Design," New York: Van Nostrand, 1945.

[8] R. M. Fano, "Theoretical Limitations on the Broadband Matching of Arbitrary Impedances," J. Franklin Inst., vol. 249, pp. 57-83 and 139-155, Jan. and Feb. 1950.

[9] A. R. Kerr, "Some fundamental and practical limits on broadband matching to capacitive devices, and the implications for SIS mixer design," IEEE Trans. Microwave Theory Tech., vol. MTT-43, no. 1, pp. 2-13, Jan. 1995

Series Arrays of SIS Junctions

Advantages of a series array of N junctions

For a given impedance level the junctions can be N times larger.

Larger junctions:

- More consistent I_C and C_I
- Better I(V) quality \rightarrow lower noise.
- Higher gain compression level (x N^2) \rightarrow better calibration

Arrays allow higher impedance levels (x N)

- Helps reduce loss
- Allows better coupling to IF amplifier

Series connection allows IF circuit to be decoupled from the RF circuit

- Wider IF bandwidth [10].

Disadvantages

Require more LO power (x N²). Not usually a problem with modern LO sources. (Offset by balanced mixers which require 10-20 dB *less* LO power.)

RF Bum IF + DC

Four-junction series SIS array as in the ALMA Band 6 SIS mixers

[10] A. R. Kerr, S.-K. Pan, A. W. Lichtenberger and H. H. Huang, "A Tunerless SIS mixer for 200–280 GHz with low output capacitance and inductance," Proceedings of the Ninth International Symposium on Space Terahertz Technology, pp. 195-203, 17-19 March 1998. http://www.nrao.edu/meetings/isstt/papers/1998/1998195203.pdf

SIS junction characteristics

- Energy gap of the superconductors (limits max frequency).
- Specific capacitance C_s of the tunnel barrier (limits bandwidth).
- Critical current density J_C of the tunnel barrier (limits bandwidth).
- Leakage current (gives shot noise).

Circuit theory bandwidth limits

RF: For a capacitive device:

Bode limit.

Extended Fano limit when inductance is present.

Unwanted EM modes in substrate channel.

IF: RF matching circuit can limit IF bandwidth

Conductor loss

- Multiplies the intrinsic mixer and IF noise contributions.
- Limits the ability of circuit elements to do broadband matching.
 Normal metals waveguides.
 Superconductors mixer chip loss is small below fgan

Input optics loss

- IR filter at 80 K.
- Vacuum window at 300 K.

LO sideband noise

Transmission line characteristics

Example: Loss vs Z₀ for microstrip and coplanar waveguide at 800 GHz

SIS junction characteristics

- Energy gap of the superconductors (limits max frequency).
- lacktriangle Specific capacitance C_s of the tunnel barrier (limits bandwidth).
- Critical current density J_c of the tunnel barrier (limits bandwidth).
- Leakage current (gives shot noise).

Circuit theory bandwidth limits

RF: For a capacitive device:

Bode limit.

Extended Fano limit when inductance is present.

Unwanted EM modes in substrate channel.

IF: RF matching circuit can limit IF bandwidth

Conductor loss

- Multiplies the intrinsic mixer and IF noise contributions.
- Limits the ability of circuit elements to do broadband matching.
 Normal metals waveguides.
 - Superconductors mixer chip loss is small below f_{gap}

Input optics loss

- IR filter at 80 K.
- Vacuum window at 300 K.

LO sideband noise

LO Sideband Noise

System SSB noise temperature averaged over 4-8 GHz IF band

Reference: V. Vassilev, D. Henke, I. Lapkin, O. Nyström, R. Monje, A. Pavolotsky, and V. Belitsky, "Design and Characterization of a 211–275 GHz Sideband Separating Mixer for the APEX Telescope," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, pp. 58-60, January 2008.

Improved sub-mm receivers for ALMA and the path to > 1 THz

- AlN barriers to replace Al₂O₃ barriers
 - Higher J_C allows wider RF bandwidth
- Wider-band IF amplifier
 - 5-15 GHz (?) with no IF isolator
- Balanced mixer configuration
 - Superconducting 180° IF hybrid
 - Rejects LO noise
- Drop-in 90° waveguide hybrid for balanced &/or sideband separating mixers
 - Reduced loss and greater reproducibility
- Drop-in LO couplers
 - Greater reproducibility
- Put mixer circuit on Si membrane with beam leads
 - Greater reliability. Easier to fabricate and mount (higher yield)
- New superconductors for Band 10 and above (?)

<u>Some components for next-generation SIS receivers – 1</u>

Drop-in 90° waveguide hybrid

Waveguide size 250 x 125 µm for 1 THz operation

Reference: E. Bryerton & A. W. Lichtenberger, 2010

SIS mixer circuit on a 3-µm Si membrane with beam leads

Waveguide size 250 x 125 μm for 1 THz operation

Superconducting 4-12 GHz 180°-hybrid on a quartz chip

Reference: A. R. Kerr, A. W. Lichtenberger, C. M. Lyons, E. F. Lauria, L. M. Ziurys, and M. R. Lambeth, "A Superconducting 180° IF Hybrid for Balanced SIS Mixers," Proc. 17 th Int. Symp. on Space THz Tech., Paris, pp. 29-32, May 2006.

<u>Some components for next-generation SIS receivers – 2</u>

Adjustable drop-in LO coupler – 10/16/20 dB

Waveguide size 250 x 125 μm for 1 THz operation

Next-generation SIS mixers - 1

[11] F. P. Mena and A. Baryshev, "Design and Simulation of a Waveguide Load for ALMA-band 9", ALMA Memo 513, Jan 2005. http://science.nrao.edu/alma/aboutALMA/Technology/ALMA_Memo_Series/alma513/memo513.pdf

Next-generation SIS mixers – 2

Sideband-separating mixer

"It's just a theory, but perhaps it's their opposable thumbs that makes them crazy."