

European ALMA Development Projects and Studies

Outline

- EU Call for Studies 2010: progress report
- ALMA Band 5
- Forthcoming Call for Studies

2010 Call for Studies

- Following overall scientific priorities (ASAC and ad hocworking group)
- Study process
 - Open call
 - Evaluation (ESO + community involvement from ESAC and STC)
 - Deliver science case + technical information (conceptual design, supporting R&D, detailed design or implementation plan, as appropriate)
 - Duration 1-2 years
 - In practice, external funding used to supplement ESO resources

Call Details

Timeline

- Recommendation Apr 2010, call/deadline July/Sept 2010
- Evaluation Oct 2010
- Kick-off 2011-2012 (phased)

Selected studies

- Preparation for Band 5 full production (NOVA, GARD, STFC)
- Sideband separation upgrade for Band 9 (NOVA)
- ALMA Phasing Project (zero cost; MPIfR)
- Design and components for ALMA Band 2+3 (Manchester, STFC, IRAM, INAF)
- Supra-THz interferometry (Oxford, Cambridge, STFC)
- Costing of options for upgrading bandwidth (ESO internal)

Band 5

Study

- Optimization of Band 5 design for full production
- 45k€ ESO + EC-FP6
- Completed Feb 2012
- Led to full production proposal

Science

- 163-211 GHz
- Originally lower priority because of atmospheric water line
- Water in the nearby Universe (183 GHz line)
- [CII] from distant galaxies
- Science Workshop (Rome, May 2010)

Band 5 Project

- Receiver development and pre-production
 - OSO/GARD, STFC/RAL, U Chile, ESO
 - ALMA Enhancement EU FP6 (6.5M€)
 - **-** 2006-2012
 - 5 cartridges now in Chile (6th retained for pre-production tests)
- Preparation for full production
- Production
 - ESO contract with NOVA and OSO/GARD for cold cartridge (12.5M€). Commits EU Development Budget until ~2017
 - NRAO manufactures local oscillator (3.3M\$)

Band 5 Performance

Specification

 Noise temperature 55K over 80% of band (was 65K); 75K over full band (was 108K)

More stringent image rejection criterion

- LO range extended to keep atmospheric water line out of

sideband

Band 5 Key Dates

- Jan 2006 EU FP6 project start
- Dec 2009 Band 5 CDR
- Feb 2012 Review of pre-production study
- April 2012 First light at OSF
- April 2012 ALMA Board approves full production
- October 2012 First fringes
- Feb 2013 Start of full production
- February 2014 Acceptance of first cartridge
- March 2017 Completion of production

Band 9 Upgrade

- Goal: upgrade Band 9 to use sideband separation
- Details
 - 35k€ ESO + NOVA internal
 - Completed April 2012
 - Successful prototype testing
 - Science
 - Factor of 2 decrease in integration time for the same line sensitivity
 - Improved rejection of unwanted sideband, so line confusion reduced
 - Option to increase bandwidth (8 GHz for each of USB and LSB)
 - Implementation straightforward

Band 2+3

- Band 2 or combined Band2+3 design
 - 150k€ ESO + in-kind
 - Start June 2012
 - Science
 - Deuterated moleculaes
 - Low-J CO at high redshift
 - Single receiver to cover Bands 2 and 3
 - Wide bandwidth option
 - Deliverables
 - Science case (Workshop, Bologna, May 2013)
 - Study of key technologies (active components, optics, windows, OMT)
 - Collaboration with Caltech on LNAs; also commercial HEMTs
 - Promising results so far

Supra-THz interferometry

- Feasibility of THz astronomy with ALMA
 - 30k€ ESO + matching STFC to look at technical developments
 - Start Nov 2012
 - Science case and synergies (Workshop Oxford March 2013)
 - Which atmospheric window(s)?
 - Transmission, phase correction, antenna performance
 - Likely instrumental capabilities (especially noise temperatures)

Options for increasing bandwidth

- Cost and feasibility of increasing the digital bandwidth to 16 GHz (or more) per polarization
 - ESO internal study
 - Draft report complete
 - Approximate costs for back-end and correlator using existing technology as a baseline (not recommended)
 - Assessment of evolving technology (high-speed digitizers) suggests that eliminating the second down-conversion will be possible and cost-effective by ~2016

2013 Call

Timeline

- Recommendation ESAC/STC next week
- Call May/June; deadline Aug/Sept
- Review October (ESAC/STC meetings)
- Start 2014-2015 (3-year cycle)
- Max ESO funding available 200 k€/year

Perspectives

- Coordinate call with other executives (this workshop)
- How to approve/merge/fund multi-region studies?

2013 Call: Example topics

- Components
 - Preparation for production
 - Upgrade of existing receiver band
 - Upgrade of digital processing system (including correlator)
 - New software
- Techniques
 - Advanced calibration
 - New observing modes
 - Data processing/analysis tools
- Research and Development
 - Receivers and focal plane concepts
 - Software
 - Digital processing