

Data Reduction and Modeling Access to Raw and Processed Data

Russell O. Redman

Raw Data Access

- How much do we as clients want, now and ultimately?
 - Multi-TB datasets
 - bandwidth, storage, processing power, etc.
 - Server side processing versus home institutions

Raw Data Access Search Parameters

- Astronomical
 - target position, frequency, time, polarization
- Programmatic
 - Proposal ID, Title, Applicant names
- Environmental
 - Tamb, humidity, etc.
- Instrumental
 - ???
- Quality
 - ???

Processed Data Access

- Processing ideally removes instrumental, environmental signatures
 - How much to preserve in processed products
- Instrumental configuration often ambiguous
 - "any matching X" versus "all matching X"
- Identify related files
 - Derived from raw data
 - Derived immediately from (e.g. catalogs from images)
 - Siblings (e.g. line catalog, point source catalog, clump catalog)

Access Interface

Web site

- Easy to use + understand (if well-designed)
- Adequate for 95% of users (proposal_id + UT date)
- Inflexible and hard to maintain (power users unhappy)

TAP server

- SQL-like interface
 - obscore + ALMA-specific parameters
- Very flexible (power users happy)
- Allows large, long-running queries
- Learning-curve for SQL (minimized by not requiring joins)

Sample TAP Query

```
SELECT Observation.collectionID AS "Collection ID",
  Observation.telescope name AS Telescope,
  Observation.instrument name AS Instrument,
  Plane.dataProductType AS "Data Product Type",
  Observation.target name AS Target,
  COORD1(CENTROID(Plane.position bounds)) AS RA,
  COORD2(CENTROID(Plane.position_bounds)) AS DEC
FROM caom. Observation AS Observation
  JOIN caom. Plane AS Plane
      ON Observation.obsID = Plane.obsID
WHERE Observation.collection = "BLAST"
  AND Observation.target_name = "BLAST"
```


User-Processed Data

•

- Experienced users almost always better than pipelines
- Quality control/certification
 - key projects/surveys versus joe astronomer?
 - security against malicious users
 - server-side data products versus externally generated
- Linking to journal articles
 - Normally long after products are generated and archived

Advanced Imaging with Custom Models

- Moving target against sidereal background
 - Often useful for solar system studies
 - Point, multiple or compact targets
- Fitting externally generated models
 - e.g. outflow simulations, stellar dust rings
 - scale, translate, rotate in 3-D
 - arbitrary parameters
 - interface to external modeling software (e.g. mathematica)
 - Server-side versus client processing again

Modeling-Related Issues

Parallel / cloud processing

- Processing speed
- Explore parameter spaces, confidence intervals
- Client clouds or ALMA-certified clouds?

Library of basic models?

- shock fronts
- jet/outflow models
- Moving point sources (possibly multiple)
- Others????

NRC-CNRC

Herzberg Institute of Astrophysics

Science at work for Canada

National Research Council Canada Conseil national de recherches Canada

Canada