The Science Case for Band 1 (31-45 GHz)

D. Johnstone, J. Di Francesco, B. Matthews, N. Bartel, S. Casassus, S. Chitsazzadeh, G. Duchene, A. Hales, M. Houde, P.M. Koch, R. Kothes, S-P. Lai, T. Maccarone, G. Moriarty-Schieven, A.M.M. Scaife, D. Scott, H. Shang, S. Takakuwa, J. Wagg, A.Wootten

Based on 'The Science Case for Building a Band 1 Receiver for ALMA' Johnstone et al. – Astro-Ph

Band 1 Characteristics

- frequency range -> 31-45 GHz
 - what drives these limits scientifically?
- @ 8 GHz instantaneous bandwidth
 - excellent for continuum studies
- angular resolution down to about 0.1"
- velocity resolution down to about 0.1 km/s

Equivalent to Level 1 Science Goals

- Evolution of grains in protoplanetary discs
 - as a complement to gas kinematics
- © Detection of the CO 3-2 line in distant Galaxies
 - probing the era of re-ionization (6.5 < z < 10)

- Planet formation takes place in disks surrounding young stars
- To form terrestrial planets dust grains must agglomerate from ISM sizes to planetesimals
- Larger dust radiates more efficiently at longer wavelengths -> Band 1
- The timescale for this grain growth appears to be between 1-10 Myrs

SED for 3 Disc Models changing only maximum grain size

- Band 1 follows grain growth through cm-sizes
 - with Band 3,4 etc yields dust emissivity index
- Band 1 can resolve nearby discs ~ 10's AU scale
- Band 1 observations will also help disentangle the contribution from free-free emission

- For older Debris Discs the grains are being eroded to smaller sizes
- Larger grains have longer resonant lifetimes and thus are better probes of structure
- Many debris discs close to the Sun
 - therefore subtend large areas on the sky
 - large ALMA primary beam very helpful
 - also the ACA will be instrumental

Level One Science: First Generation of Galaxies

Level One Science: First Generation of Galaxies

- the first generation of Galaxies began the re-ionization of the Universe
- it appears the Universe was re-ionized by about z = 11 ± 1.4
- the 'near' edge of re-ionization has been inferred to be at z > 6
- thus, lots of interest in studying 6 < z < 11</p>
 - nominal Band 1 -> 6.5 < z < 10</p>

VLA Image of a Quasar J1148+5251 CO 3-2 at z = 6.419

Level One Science: First Generation of Galaxies

- Band 1 is very well suited for CO 3-2 measurements over this redshift range
 - might want to push to even higher frequencies ~ 50 GHz (to get z ≈ 6)

ALMA CO coverage vs z observed frequency of 12CO

A Broad Range of Science 1) Continuum Observations

- very small grains (PAHs and other carbon sinks)
 - can be made to spin and therefore radiate
 - spectrum peaks between 30-40 GHz
 - excellent way to examine this dust component
- o pulsar wind nebulae, supernovae, X-ray binaries
 - synchrotron emission from relativistic particles
- young stellar jets
 - free-free emission from dense ionized gas

Emission from Spinning Dust

Oph PDR (Red MIPs, Green IRAC, Blue 2mass, Contour 31GHz)

Casassus et al. 2008

A Broad Range of Science 2) Molecular Line Diagnostics

- chemical differentiation
 - ability to spatially resolve heavy molecule condensations in dark clouds
 - ability to spatially resolve molecular outflows from young stars
- maser diagnostics
 - o need to probe range of conditions large frequency range
 - two excellent maser candidates are SiO and CH₃OH
- magnetic fields through Zeeman measurements
 CCS line at 33 GHz is considered optimal for this
- molecular gas content in AGN at high redshift
- star-forming galaxies at redshift z ≈ 2

Sample Molecular Line List

Molecular Transitions between 34 and 49 GHz (ALMA Band 1: 31-45 GHz).

$\mathrm{CH_{3}CCH}$	2-1	$34.183414~\mathrm{GHz}$
$\mathrm{HC_5N}$	13 - 12	$34.614386~\mathrm{GHz}$
SO	$2_3 \!\!-\!\! 2_2$	$36.202040~\mathrm{GHz}$
$\mathrm{HC_{3}N}$	4 - 3	$36.392332~\mathrm{GHz}$
HCS^+	1-0	$42.674205~\mathrm{GHz}$
$\mathrm{HC_5N}$	17 - 16	$45.264721~\mathrm{GHz}$
CCS	$4_3 – 3_2$	$45.379033~\mathrm{GHz}$
$\mathrm{HC_{3}N}$	5 - 4	$45.490316~\mathrm{GHz}$
CCCS	8–7	$46.245621~\mathrm{GHz}$
$\mathrm{C_{3}H_{2}}$	$2_{11} - 2_{02}$	$46.755621~\mathrm{GHz}$
$\mathrm{C^{34}S}$	1-0	$48.206956~\mathrm{GHz}$
$\mathrm{CH_{3}OH}$	$1_0 - 0_0$	$48.372467~\mathrm{GHz}$

A Broad Range of Science 3) Sunyaev-Zel'dovich

- clusters of Galaxies contain hot inter-cluster gas
 - CMB photons inverse Compton scatter off this gas
 - characteristic decrement of background emission at radio wavelengths
 - amplitude of depression related to electron pressure in cluster
 - Band 1 has sensitivity to detect SZ from halos around massive galaxies
- Band 1 provides resolution to map sub-structure
 - challenge the models of cluster evolution
 - better understand virialization and hydrostatic equilibrium

Band 1 Characteristics Redux

- frequency range: 31-45 GHz (what drives these limits scientifically?)
 - © Galaxies at re-ionization might benefit from a higher ending frequency ~50 GHz
 - but CCS 3-2 at 33 GHz is important for Zeeman measurements and 'young' cores
 - also consider SiO 1-0 (45GHz), CCS 4-3 (45GHz), CS 1-0 (49GHz)

Fin