

The Role of AGN in Galaxy Evolution

Angela Bongiorno - INAF - Observatory of Rome (Italy)

E. Piconcelli, C. Feruglio, M. Brusa, R. Maiolino, V. Mainieri, G. Cresci, F. Fiore

AGN-galaxy co-evolution

The feedback or blow-out phase

Evolution of M_{BH}/M_{*}

Unobscured blue QSOs

 $\Gamma(z)=lg(M_{BH}/M_{*})(z) - lg(M_{BH}/M_{*})(z=0)$

M_{BH}/M_{*} increasing with z

Evolution of M_{BH}/M_{*}

Obscured red QSOs

- * Data very difficult to get: BH masses using the virial formula require the broad line
 - rest-frame UV line (MgII) obscured
 - rest-frame optical line (H α) redshifted in the IR

- **★ 12 objects from new observations:**
 - ✓ SINFONI obs: 3 H2XMM with broad H α (Sarria+10)
 - ✓ new SINFONI obs CDFS: 4 with broad H α
 - ✓ new XSHOOTER obs COSMOS: 5 with broad H α
- * 9 objects taken from literature with similar properties

Evolution of M_{BH}/M_{*}

Obscured red QSOs

Obscured, red QSOs have already the BH fully formed

- Obscured red QSOs are located around the local relation (big scatter).
- most massive objects are located above (Bongiorno et al, 2014)

* Obscured red QSOs and blue QSOs populate the same region of the plane

Physics of AGN in the "transition phase": obscured red QSOs from XMM-COSMOS

XShooter observations:

- * Broad (FWHM=900-1600 km/s) and shifted (Δv =300-500 km/s) components in the ionized lines ([OIII],[NII]) clearly revealed in 4/5 targets
- They can be ascribed to outflows!

Physics of AGN in the "transition phase": XID2028 an obscured red QSO at z=1.6

SINFONI observations: XID2028 - radio quiet - L_{bol} = 2 x 10^{46} - z=1.6

large scale OUTFLOW in [OIII]

v = -1500 km/s

d ~ **13 kpc** from the black hole

 $\dot{M}_{out} > 1000 M_{\odot}/yr$

SFR ~ $300 M_{\odot}/yr$

Physics of AGN in the "transition phase": XID2028 an obscured red QSO at z=1.6

Is AGN feedback influencing the host galaxy properties?

- * The outflowing material is sweeping the gas along the outflow core ('negative feedback')
- The outflowing material is compressing the gas at its edges inducing star formation ('positive feedback')

Physics of AGN in the "transition phase": XID2028 an obscured red QSO at z=1.6

PdBI observations: CO(3-2)

- * observed @133.37 GHz with PdBI
- * CO(3-2) emission line detected at $\sim 5\sigma$
- No blue/red/broad wings ascribed to the outflow detected due to low S/N

ALMA observations required!

green: K-band (galaxy)

white: CO map

- * $L'co = 1.9 \times 10^{10} \,\mathrm{K \, km/s \, pc^2}$
- * $L_{FIR} = 2.9 \times 10^{10} \, L_{\odot}$
- * SFE = $L_{FIR}/L'_{co} \sim 160$

- * Molecular gas mass: $M(H_2) = 1.5 6 \times 10^{10} M_{\odot}$
- * M★ ~ $4.5 \times 10^{11} M$ ⊙
- * $f_{gas}=M(H_2)/M_{tot}=3\% 15\%$

Physics of AGN in the "transition phase": ULAS1539+0557 an hyper luminous red QSO at z=2.658

PdBI observations: CO(3-2)

- observed @94.5 GHz with PdBI
- * CO(3-2) emission line detected at 5.4σ
- * L'co = $5.1 \times 10^{10} \,\mathrm{K \, km/s \, pc^2}$
- * Molecular gas mass: $M(H_2) = 4.1 \times 10^{10} M_{\odot}$
- \bullet M★= 3 x 10¹⁰ 3 x 10¹¹ M $_{\odot}$
- * $f_{gas} = M(H_2)/M_{tot} = 12\% 57\%$
- $M_{dyn} = 1 5 \times 10^{10} M_{\odot}$
- * $M(H_2)/M_{dyn} = 0.4 0.1$
- * SFE = $L_{FIR}/L'_{co} \sim 25 350$

Physics of AGN in the "transition phase"

(Carilli & Walter, ARA 2013)

What's next? ALMA

ALMA Cycle 2: program accepted as filler:

SAMPLE: objects selected from the Weedman et al. (2012) sample (All Sky WISE selected sample cross-correlated with the SDSS catalog)

- ◆ They are the most luminous type-1 AGN sample in the Universe at z>1.5
- They are unbiased against dusty object
- ◆ Best candidate for QSO feedback in action!

OBSERVATIONS:

- CO(3-2) for z~3 QSOs and CO(4-3) for z~ 3.5 3.8 QSOs
- CII and 160um continuum

GOALS:

- \star M(H2), f_{gas}
- * study the gas dynamics and search for AGN driven outflows
- ◆ measure SFR --> SFE

Summary

- * Obscured, luminous, red, QSOs are believed to undergo the brief **transitional phase** from a heavily enshrouded phase of SMBH growth to the blue unobscured QSOs.
- * M_{BH}/M_{*} : Intermediate Mass objects at z>1.2 still lie on the local M_{BH} M_{*} relation (big scatter) while High Mass objects are located above the local relation.
- * M_{BH}/M_{*} : At z > 1.2 obscured red QSOs are located in the same region of the M_{BH} M_{*} plane as unobscured blue QSOs. Their BH is already fully formed!
- * **OUTFLOW:** Detailed analysis of the XMM-COSMOS red QSOs revealed the presence of outflow in the ionized gas component ([OIII] and [NII] lines).
- * **OUTFLOW**: In XID2028 we resolve the outflow in the ionized component and find extended (>10 kpc scale) and powerful (\dot{M}_{out} > 1000 M_{\odot}/yr) outflow and evidence of both **`positive'** and **`negative' feedback**
- * **CO obs:** No sign of molecular outflow in XID2028 (low S/N). ULAS1539 and XID2028 have low gas fraction .i.e. the AGN driven outflow has been already efficient in cleaning the gas and dust surrounding the nuclear source
- * ALMA: Alma program to study the molecular gas content and search for AGN driven outflow in the most luminous red QSOs in the sky selected from the Weedman sample (WISE-SDSS)