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What do we know?
The relation between SFR and M reveals interesting galaxy physics
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* SFR-M, can distinguish between star-forming, elliptical, and starburst galaxies
* The scatter about SFR-M,, can be due to

e scatter in the net inflow rate of gas to fuel star formation

» scatter in the galaxy formation time
Wuyts+11



What drives galaxies off the SFR-M relation?

Physical causes:

e Starbursts, AGN
e Stochastic SF histories

e Star-formation quenching
(mainly at low redshift)

M, correlates strongly with UV dust
attenuation (Panella+14). Thus,
galaxies with the same amount of
SF are less attenuated at higher
redshift (it is hosted by a less
massive, less metal rich galaxy).

log(SFR) [Mg yr™']

2.5

2.0

g J

15

0.5

0.0

1

ll]lllllllll'lllllllllllllllll

lllllll‘llllllllllllll]l!ll LI

dusty, blue:

AGN and/or
starburst

\\
\0‘\
.\0\'\
o

/c,&

O
.&\6

0‘6\ low-dust, red:
star formation

lllllllllllllllllllllllllllllll

i e
,.:‘e\A shutting down
I’ \
lllb
llllllllllllllllllllllllllllll
2.0 9.9 (108 {0 | AE TS
log(M) [Mo]

Whitaker+12



What drives galaxies off the SFR-M,_ relation,
and with what uncertainties?
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Sample: CANDELS GOODS-S, photometric-redshift selection

What can broadband photometry tell us?

 We use a Bayesian SED fitting procedure
that calculates the posterior on each
galaxy and marginalizes over nuisance

parameters.
e UV SFRs calculated using an age- 228
dependent Keniccutt 1998 conversion e foaaPie
250
* See Salmon+14 (arXiv 1407.6012) for 200
. = = sam e
details 150 S
100 z=6 sample

N=266

950
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What drives galaxies off the SFR-M,_ relation,
and with what uncertainties?

* Right: an individual object’s 2D
likelihood in the plane of SFR-M,,

* The scatter in determining a single
object’s SFR or M, is orthogonal to
the main relation (from age-dust
degeneracies)

log(SFR/[Me/yr])

* These observational uncertainties

2 % Accepted Value
contribute scatter to the SFR-M ST —68% limit

plane, and must be accounted for
with Monte Carlo simulations

9.0 9.5 10.0 10.5 11.0
log(Mass,/Mg)

Salmon+14 (arXiv 1407.6012)



What drives galaxies off the SFR-M,_ relation,
and with what uncertainties?

We quantify our ability to
derive SFR and M by
comparing to the Somerville
et al. SAMs.

SAM fluxes are perturbed by
CANDELS-like uncertainties,

and used as inputs

The “best-fit” SED is less
reliable at recovering SFR and
M, than using the median of
the marginalized likelihood.
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Result: Slope of SFR-M, remains un-evolving up to z™6

log(SFR/[Me yr™'])
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* log(SFR) = a log(M, ), a remains <1 (about a=0.6 across all redshift)

Salmon+14 (arXiv 1407.6012)



Result: Slope of SFR-M, remains un-evolving up to z™6
3f T T

log(SFR/[Me yr™'])

O Medians-ff-
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log(Mass,/Mg) log(Mass,/Mg) log(Mass,/Mg)

* log(SFR) = a log(M, ), a remains <1 (about a=0.6 across all redshift)

* Considering most observational uncertainties (purple),
the “true” intrinsic scatter in SFR-M_is as much as 0.2-0.3 dex

Salmon+14 (arXiv 1407.6012)



Result: SFR-M is consistent with many theoretical models
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* If SFR traces the net gas inflow, then the
“true” scatter in the inflow rate is 0.2-0.3 dex.

* These observations favor smooth gas accretion
over these redshifts and stellar masses

Salmon+14 (arXiv 1407.6012)



Result: SFR-M is consistent with many theoretical models

g T e P :
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. Somerville et al. i
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* If SFR traces the net gas inflow, then the
“true” scatter in the inflow rate is 0.2-0.3 dex.
* These observations favor smooth gas accretion
over these redshifts and stellar masses
* Need ALMA to observe the gas-fraction scatter,
thereby constraining the SFR efficiency Salmon+14 (arXiv 1407.6012)
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How does the SFR evolve at these redshifts?

292« A number-density selection can track the
Y . .
] progenitor-to-descendant evolution across
rAads B
10-° 2~425 redshift.
- 5% 1 e« Objects were selected according to an
P~ w0 evolving number density in stellar mass, as
SN, NS predicted by dark matter abundance
N _ _
1o~k R matching (Behroozi+13b)
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Salmon+14 (arXiv 1407.6012)



log(SFR/[Mo/yr])
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How does the SFR evolve at these redshifts?
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A number-density selection can track the

progenitor-to-descendant evolution across
redshift.

Objects were selected according to an
evolving number density in stellar mass, as
predicted by dark matter abundance
matching (Behroozi+13b)

We find a rising SF history at high redshift,
as expected, with SFR = (t/t)*y and y=1.4

Now, let’s feed this history into a stellar
population synthesis model

Salmon+14 (arXiv 1407.6012)



log(SFR/[Mo/yr])

Does the SFR evolution match the observed SFR-M relation?
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SFR-M, evolves little in slope,
and decreases in scale over cosmic time

At least since the first 800 Myr of
the Universe, the scatter in SFR at
a given mass is small (~0.2-0.3 dex
after taking into account
observational uncertainties).

The SFH can be best described as
a power law SFR = (t/t)?y, where
y=1.4 at high redshift (z>4).

=
=
o
o}
"’l
=
oc
(NN
w
[@)]
O

3.0

—
=}

1.5¢

98 10.0 102 104 106 108 11.0
log Mass (M_solar)

Speagle+14



SFR-M, evolves little in slope,
and decreases in scale over cosmic time

3.0

o z=4,5, & 6

- Salmon+14

At least since the first 800 Myr of
the Universe, the scatter in SFR at
a given mass is small (~0.2-0.3 dex
after taking into account
observational uncertainties).
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The SFH can be best described as
a power law SFR = (t/t)?y, where
y=1.4 at high redshift (z>4).

log SFR (M_solar/yr)
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ALMA: We need gas-mass fractions of high-z galaxies
to constrain the SFR efficiency

Theory predicts a rapidly evolving
gas-mass fraction with redshift.

CO emission can tell us dynamical
mass, and therefore the gas-mass
fraction. [CII] can tell us the dusty IR
SFR, constraining the total UV+IR SFR

ALMA can find the cause of the SFR-
M, scatter (is it SF efficiency or
scatter in galaxy formation time?)
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Summary

The relation between SFR and M, for star forming galaxies evolves little in slope,
and declines in scale since the 15t Gyr of the Universe (Wuyts+11, Panella+14).

The scatter in SFR at a given mass is small at all redshifts (~0.2-0.3 dex after taking
into account observational uncertainties). If SFR traces the net gas inflow rate,
then this result favors smooth, cosmological gas accretion.

The SFH can be best described as a power law SFR = (t/t)"y at high redshift

(z>4, y=1.4), or a delayed-tau model across the age of the Universe (Salmon+14,
arXiv 1407.6012)

ALMA can constrain the gas-mass fraction, and place important limits on high-
redshift SFR efficiency.
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n(>M) [Mpc ]

How does this relate to the Stellar Mass Function?
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Implies star formation evolves differently in galaxies of different masses.

SFR-Mass slope cannot be <1 at all masses and redshifts

See Leja+14



What drives galaxies off the SFR-M,_ relation,
and with what uncertainties?
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What drives galaxies off the SFR-M,_ relation,

log(Mt,neb/Mt,no neb)

log ( M*,SMC/Mt,starburst)
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