The Main Sequence of Star-Forming Galaxies from CANDELS

Brett Salmon1, Casey Papovich1, Steven L. Finkelstein2, Vithal Tilvi1, Kristian Finlator, Peter Behroozi, Tomas Dahlen, Romeel Dave, Avishai Dekel, Mark Dickinson, Henry C. Ferguson, Mauro Giavalisco, James Long, Yu Lu, Naveen Reddy, Rachel S. Somerville, Risa H. Wechsler

1Texas A&M University, 2University of Texas
The Main Sequence of Star-Forming Galaxies from CANDELS

High redshift = $z > 2-3$

Brett Salmon1, Casey Papovich1, Steven L. Finkelstein2, Vithal Tilvi1, Kristian Finlator, Peter Behroozi, Tomas Dahlen, Romeel Davé, Avishai Dekel, Mark Dickinson, Henry C. Ferguson, Mauro Giavalisco, James Long, Yu Lu, Naveen Reddy, Rachel S. Somerville, Risa H. Wechsler

1Texas A&M University, 2University of Texas
What do we know?
The relation between SFR and M_\star reveals interesting galaxy physics

- SFR-M_\star can distinguish between star-forming, elliptical, and starburst galaxies
- The scatter about SFR-M_\star can be due to
 - scatter in the net inflow rate of gas to fuel star formation
 - scatter in the galaxy formation time
What drives galaxies off the SFR-M$_\star$ relation? and with what uncertainties?

- Physical causes:
 - Starbursts, AGN
 - Stochastic SF histories
 - Star-formation quenching (mainly at low redshift)
 - M$_\star$ correlates strongly with UV dust attenuation (Panella+14). Thus, galaxies with the same amount of SF are less attenuated at higher redshift (it is hosted by a less massive, less metal rich galaxy).
What drives galaxies off the SFR-M\(^\star\) relation, and with what uncertainties?

- SED fitting methods
- Template assumptions
- Redshift uncertainties
- Sample selection
- SFR indicators

Whitaker+12
What can broadband photometry tell us?

- We use a Bayesian SED fitting procedure that calculates the posterior on each galaxy and marginalizes over nuisance parameters.
- UV SFRs calculated using an age-dependent Kenicutt 1998 conversion
- See Salmon+14 (arXiv 1407.6012) for details
What drives galaxies off the SFR-M\star relation, and with what uncertainties?

- Right: an individual object’s 2D likelihood in the plane of SFR-M\star
- The scatter in determining a single object’s SFR or M\star is orthogonal to the main relation (from age-dust degeneracies)
- These observational uncertainties contribute scatter to the SFR-M\star plane, and must be accounted for with Monte Carlo simulations

Salmon+14 (arXiv 1407.6012)
What drives galaxies off the SFR-M\(\star\) relation, and with what uncertainties?

- We quantify our ability to derive SFR and M\(\star\) by comparing to the Somerville et al. SAMs.
- SAM fluxes are perturbed by CANDELS-like uncertainties, and used as inputs.
- The “best-fit” SED is less reliable at recovering SFR and M\(\star\) than using the median of the marginalized likelihood.
Result: Slope of SFR-M\textsubscript{★} remains un-evolving up to z\textasciitilde6

\[\log(\text{SFR}) \approx \alpha \log(M\textsubscript{★}) \]

\(\alpha \) remains <1 (about \(\alpha=0.6 \) across all redshift)

Salmon+14 (arXiv 1407.6012)
Result: Slope of SFR-M\textsubscript{★} remains un-evolving up to z~6

- \(\log(\text{SFR}) \approx \alpha \log(\text{M}_\text{★}) \), \(\alpha \) remains <1 (about \(\alpha=0.6 \) across all redshift)

- Considering most observational uncertainties (purple), the “true” intrinsic scatter in SFR-M\textsubscript{★} is as much as 0.2-0.3 dex

Salmon+14 (arXiv 1407.6012)
Result: SFR-M_\star is consistent with many theoretical models

- If SFR traces the net gas inflow, then the “true” scatter in the inflow rate is 0.2-0.3 dex.
- These observations favor smooth gas accretion over these redshifts and stellar masses

Salmon+14 (arXiv 1407.6012)
If SFR traces the net gas inflow, then the "true" scatter in the inflow rate is 0.2-0.3 dex.

- These observations favor smooth gas accretion over these redshifts and stellar masses
- Need ALMA to observe the gas-fraction scatter, thereby constraining the SFR efficiency

Result: SFR-M$_*$ is consistent with many theoretical models

Salmon+14 (arXiv 1407.6012)
How does the SFR evolve at these redshifts?

Does it match the observed SFR-M$_\star$ relation?

- A number-density selection can track the progenitor-to-descendant evolution across redshift.
- Objects were selected according to an evolving number density in stellar mass, as predicted by dark matter abundance matching (Behroozi+13b)
How does the SFR evolve at these redshifts?

Does it match the observed SFR-\(M_* \) relation?

• A number-density selection can track the progenitor-to-descendant evolution across redshift.

• Objects were selected according to an evolving number density in stellar mass, as predicted by dark matter abundance matching (Behroozi+13b)

• We find a rising SF history at high redshift, as expected, with \(\text{SFR} = (t/\tau)^\gamma \) and \(\gamma = 1.4 \)

• Now, let’s feed this history into a stellar population synthesis model

Salmon+14 (arXiv 1407.6012)
Does the SFR evolution match the observed SFR-M_\odot relation?

Salmon+14 (arXiv 1407.6012)
SFR-M ★ evolves little in slope, and decreases in scale over cosmic time

- At least since the first 800 Myr of the Universe, the scatter in SFR at a given mass is small (~0.2-0.3 dex after taking into account observational uncertainties).
- The SFH can be best described as a power law \(\text{SFR} = \left(\frac{t}{\tau} \right)^{\gamma} \), where \(\gamma = 1.4 \) at high redshift \((z>4)\).
SFR-M★ evolves little in slope, and decreases in scale over cosmic time

- At least since the first 800 Myr of the Universe, the scatter in SFR at a given mass is small (~0.2-0.3 dex after taking into account observational uncertainties).

- The SFH can be best described as a power law SFR = (t/τ)^γ, where γ=1.4 at high redshift (z>4).
ALMA: We need gas-mass fractions of high-z galaxies to constrain the SFR efficiency

- Theory predicts a rapidly evolving gas-mass fraction with redshift.
- CO emission can tell us dynamical mass, and therefore the gas-mass fraction. [CII] can tell us the dusty IR SFR, constraining the total UV+IR SFR
- ALMA can find the cause of the SFR-M_\star scatter (is it SF efficiency or scatter in galaxy formation time?)

Salmon+14 (arXiv 1407.6012)
Summary

• The relation between SFR and M_\star for star forming galaxies evolves little in slope, and declines in scale since the 1st Gyr of the Universe (Wuyts+11, Panella+14).

• The scatter in SFR at a given mass is small at all redshifts (~0.2-0.3 dex after taking into account observational uncertainties). If SFR traces the net gas inflow rate, then this result favors smooth, cosmological gas accretion.

• The SFH can be best described as a power law $SFR = (t/\tau)^\gamma$ at high redshift ($z>4$, $\gamma=1.4$), or a delayed-tau model across the age of the Universe (Salmon+14, arXiv 1407.6012)

• ALMA can constrain the gas-mass fraction, and place important limits on high-redshift SFR efficiency.
ALMA: We need gas-mass fractions of high-z galaxies to constrain the SFR efficiency
How does this relate to the Stellar Mass Function?

- Implies star formation evolves differently in galaxies of different masses.
- SFR-Mass slope cannot be <1 at all masses and redshifts

See Leja+14
What drives galaxies off the SFR-M★ relation, and with what uncertainties?

[Graphs showing scatter plots of various parameters vs. redshift, with annotations and data points indicated.]
What drives galaxies off the SFR-M relation, and with what uncertainties?