Star formation suppression by an AGN (in NGC 1266 and maybe more)

Katherine Alatalo
Infrared Processing & Analysis Center
Caltech
kalatalo@ipac.caltech.edu

with Philip Appleton, Carl Heiles, Kristina Nyland, Mark Lacy, Sabrina Cales, Ute Lisenfeld, Jeff Rich, Theodoros Bitsakis, Philip Chang, Timothy Davis, P.T. de Zeeuw, Susana Deustua, Genevieve Graves, Lisa Kewley, Lauranne Lanz, Carol Lonsdale, David Meier, Sergio Martin & Patrick Ogle
NGC 1266 appears to be a “quiescent” S0

NGC 1266 hosts a massive molecular disk (>10⁹ M☉)
and a massive (>10⁶ M☉) molecular outflow that is multiphase being driven by an AGN

A young (1/2 Gyr) stellar population outside the nucleus is the most recent (obvious) SF event

Star formation is suppressed by at least a factor of 70 seen in the nucleus

NGC 1266 appears to be a “quiescent” S0

NGC 1266 hosts a massive molecular disk (>10⁹ M☉) and a massive (>10⁸ M☉) molecular outflow that is multiphase being driven by an AGN.

A young (1/2 Gyr) stellar population outside the nucleus is the most recent (obvious) SF event.

Star formation is suppressed by at least a factor of 70 seen in the nucleus.

NGC 1266 contains massive molecular outflow

$M_{\text{gas}} \sim 4 \times 10^9 M_\odot$ (Young et al. 2011)

$M_{\text{outflow}} \sim \text{few} \times 10^8 M_\odot$

(Alatalo et al. 2011, new HCN and CS(2-1) have wings)

Outflow mass flux $\sim 110 M_\odot \text{ yr}^{-1}$

Outflow dynamical time < 3 Myr (Alatalo et al. 2011)
NGC 1266 contains massive molecular outflow

\[M_{\text{gas}} \sim 4 \times 10^9 M_\odot \text{ (Young et al. 2011)} \]

\[M_{\text{outflow}} \sim \text{few} \times 10^8 M_\odot \]

(Alatalo et al. 2011, new HCN and CS(2-1) have wings)

Outflow mass flux \(\sim 110 M_\odot \text{ yr}^{-1} \)

Outflow dynamical time < 3 Myr (Alatalo et al. 2011)
NGC 1266 is a poststarburst galaxy

NUV imaging show a larger distribution of young stars than the current site of the molecular gas.

A stellar population analysis shows that the population is poststarburst of age (~500 Myr) with mass fraction ~10%

Alatalo et al. 2014a
Modeling the SED of 1266 results in $\text{SF} \sim 2.2 \, M_\odot \, \text{yr}^{-1}$ is an upper limit, if all of this emission is from stars (it isn’t) and the free-free fit say $\text{SF} < 0.9 \, M_\odot \, \text{yr}^{-1}$.

$L_{\text{TIR}} \approx 3 \times 10^{10} \, L_\odot \, (1.2 \times 10^{44} \, \text{ergs s}^{-1})$

Alatalo et al. 2014b, submitted
Last burst of SF happened \(\sim 500 \) Myr ago and the nuclear molecular gas has remained since then.

SFR calculated using the free-free emission indicates a SFR of \(>0.9 \, M_\odot \, \text{yr}^{-1} \) (the ALMA decomposed data agree).

\[\Sigma_{\text{gas}} \approx 10^4 \, M_\odot \, \text{pc}^{-2} \]
(from CO, CS and HCN)

Using dense gas (CS) size and assuming SF/CS co-spatiality, NGC 1266 is a factor of \(\sim 70 \) off the K-S relation.
A scenario to explain NGC 1266

Alatalo et al. 2014a, 2014b (submitted)
A scenario to explain NGC 1266

1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266

Alatalo et al. 2014a, 2014b (submitted)
A scenario to explain NGC 1266

1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266

2. Gas collapses inward toward nucleus, and young stars (10% M_{bulge}) are formed within the 2kpc boundary

Alatalo et al. 2014a, 2014b (submitted)
1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266

2. Gas collapses inward toward nucleus, and young stars (10% M_{bulge}) are formed within the 2kpc boundary

3. Population ages, gas continues toward the AGN

Alatalo et al. 2014a, 2014b (submitted)
A scenario to explain NGC 1266

1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266

2. Gas collapses inward toward nucleus, and young stars (10% M_{bulge}) are formed within the 2kpc boundary

3. Population ages, gas continues toward the AGN

4. AGN radio jet ignites, injecting turbulence into the dense molecular disk, suppressing SF (x70) and driving an outflow

Alatalo et al. 2014a, 2014b (submitted)
1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266.

2. Gas collapses inward toward nucleus, and young stars (10% M_{bulge}) are formed within the 2kpc boundary.

3. Population ages, gas continues toward the AGN.

4. AGN radio jet ignites, injecting turbulence into the dense molecular disk, suppressing SF (x70) and driving an outflow.

5. AGN stops being fueled, radio turns off, and outflow begins falling back onto the nucleus. Turbulence dissipates.

Alatalo et al. 2014a, 2014b (submitted)
1. Minor merger causes the collapse of a subcritical molecular disk in the already mostly old NGC 1266

2. Gas collapses inward toward nucleus, and young stars (10% M_{bulge}) are formed within the 2kpc boundary

3. Population ages, gas continues toward the AGN

4. AGN radio jet ignites, injecting turbulence into the dense molecular disk, suppressing SF (x70) and driving an outflow

5. AGN stops being fueled, radio turns off, and outflow begins falling back onto the nucleus. Turbulence dissipates.

6. Gas re-ignites radio jet?

Duty cycle?

Alatalo et al. 2014a, 2014b (submitted)
we need a systematic search for these sorts of objects.

Case studies are great, but can’t tell us about a population.

What is the duty cycle of the SF quenching?

What evolutionary pictures lead to an AGN expulsion of molecular gas?

Can we begin to understand NGC 1266-like objects?

What is the redshift evolution of these objects?
Finding the needle in the haystack

NGC 1266 hosts an AGN-driven outflow, but also contains a unique set of optical features

shocked ionized gas (Davis et al 2012)

young(ish) stellar population
Alatalo et al. 2014a
shocked ionized gas ratios + poststarburst stellar population

=

a Shocked Poststarburst Galaxy (spog)

NGC 1266 is a spog.
SPOGS: First results

- **ELG**
 - $N_{\text{parent}} = 130788$

- **Seyferts**
 - $N_{\text{seyfert}} = 4765$

- **EW(Hδ) > 5Å**
 - $N_{\text{EW,H$\delta$}} = 46936$

- **SF**
 - $N_{\text{sf}} = 111972$

- **LINERs**
 - $N_{\text{liner}} = 11327$

- **SPOGS**
 - $N_{\text{spog}} = 1067$

Alatalo et al. 2014c (submitted)
SPOGS result: a surprise
a WISE infrared transition zone

when in doubt, cross-correlate with WISE

GZ sample from Schawinski et al. 2014; Alatalo et al. 2014c (submitted)
SPOGS result: a surprise

a WISE infrared transition zone

GZ sample from Schawinski et al. 2014; Alatalo et al. 2014c (submitted)
SPOGS* colors

u-r and W2-W3 transformation sequence

ELG

Seyferts

EW(H\(\delta\)) > 5\(\AA\)

SF

LINERs

SPOGs*

\(N_{\text{elg}} = 130788\)

\(N_{\text{seyfert}} = 4059\)

\(N_{\text{EW H\(\delta\)}} = 39132\)

\(N_{\text{sf}} = 93920\)

\(N_{\text{liner}} = 8091\)

\(N_{\text{spog}} = 857\)

Alatalo et al. 2014c (submitted)
The molecular outflow seen in NGC 1266 is about $110 \, M_\odot \, yr^{-1}$, far too large to drive with its star formation rate ($dM/dt/SFR \sim 100$).

ALMA observations have shown that star formation is suppressed currently by a factor of 70.

A radio duty cycle might explain how NGC 1266 has come to be (and provide a look at how AGNs are able to remain obscured.)

NGC 1266 is a shocked poststarburst galaxy (spog).

WISE+SDSS is a great tracer of transitioning galaxies.

The SPOGs survey seems to have found what it was looking for (transitioning objects)…