INFRARED FINE STRUCTURE LINES: RISING C+: The New Workhorse for Submm studies of Galaxy Evolution

Image: Katsushika City Museum

Presented by Drew Brisbin ALMA postdoctoral fellow

August 7, 2014

[CII]

- Very bright, up to ~1% FIR
- Associated with SF

[CII]

- Optically thin
- Very little extinction

Line diagnostics

Radiation field - [OIII]/[SIII]

- Radiation field :
 - [OIII]/[SIII]
 - [NII]/[OIII](Ferkinhoff 2011)

Line diagnostics

Resolved line emission M51: [NII] 122 [CII]

[OI] 63

(Parkin et al. ApJ 776, 2013)

[OI] 145

[OIII] 88 [NII] 205

A&A 565, A59 (2014)

is $0.38'' \times 0.29''$ at PA = 59° (FWHM), with $T_b/S = 118 \text{ K Jy}^{-1}$. The cross marks the phase reference position, at 12:36:51.980, +62:12:25.70 (J2000). The C⁺-line contours are superimposed on a greyscale version (Downes et al. 1999) of the BVI image from the Hubble Deep Field.

[CII] from ionized gas?

- (Decarli et al. ApJL 782, 2014)

[NII] [CII] metallicity

(Nagao et al. A&A 542 2012)

ALESS 73.1, z=4.76

Fig. 1. Velocity-integrated [N II] map of LESS J0332 after the continuum subtraction, with the spatial sampling of 0.2 arcsec/pixel. The velocity range from -558 km s^{-1} to -154 km s^{-1} (with respect to the Ly α emission-line peak) is integrated. Contours at 3σ , 4σ , 5σ , 6σ , and 7σ levels are also given in the map. The shape of the synthesized beam is shown at the lower left-hand corner.

ing a 90 km s⁻¹ binning (Coppin et al. 2010). *Middle panel*: APEX [C II] 158 μ m spectrum with a 28 km s⁻¹ binning (De Breuck

Summary

- [CII] is good
- Many lines is better

A [CII] AND [OI] SURVEY OF Z~1-2 **STAR FORMING GALAXIES**

DREW BRISBIN, CARL FERKINHOFF, THOMAS NIKOLA, STEPHEN PARSHLEY, GORDON J. STACEY, HENRIK SPOON, STEVEN HAILEY-DUNSHEATH, APRAJITA VERMA

Presented by Drew Brisbin ALMA postdoctoral fellow Charlottesville, VA

August 7, 2014

Nature of star formation

major mergers

[CII]

- ٠

•

[CII]

Observations

- 8 luminous star forming galaxies with PAH detections
- Z=1-2
- Redshift (z) Early Universe Spectrometer (ZEUS)

Caltech Submillimeter Observatory (CSO)

FIR Photometry from literature

•

SCUBA

Herschel (HerMES)

re ES)

Current picture

(Stacey 2010, Ferkinhoff 2014, Hailey-Dunsheath *in prep*)

(Brauher 2008) (Armus 2009, Diaz-Santos 2013) (Farrah 2013)

Other high z sources from (Maiolino et al 2009 A&A 500) (Ivison et al 2010 A&A 518) (Marsden 2005 MNRAS 359) (Iono 2006 ApJ 645)

[OI] 63.2 μm

[OI] and [CII]

6 sources in our PACS +1 in *Herschel Extreme Observations (HELLO)* PI

[CII]/FIR

Log(G₀)

([CII]+[OI])/FIR [OI]/[CII]

[OI] and [CII]

[CII]/FIR

1

([CII]+[OI])/FIR

	E				
Log(G ₀)	6 MIP	Source		PDR parameters	
	4		$\log(n \ cm^3)$	$\log(G_0)$	S
	3	MIPS 22530	$3.75\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	2	SWIRE 3-9	$3.5\pm^{0.5}_{0.5}$	$2.5\pm^{0.25}_{0.25}$	
		SWIRE 3-14	$3.5\pm^{0.25}_{0.5}$	$2.75\pm^{0.25}_{0.25}$	
	6 SI	SWIRE 3-18	3-5	$2.0\pm^{0.25}_{0.5}$	
	5	SMM J03	$3.25\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	4	SWIRE 4-5	$4.25\pm^{0.25}_{0.5}$	$1.25\pm^{0.5}_{0.5}$	
	2	SWIRE 4-15	$4.25\pm^{0.25}_{0.5}$	$2.25\pm^{0.25}_{0.75}$	
	1	SDSS J12	$3.5\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	1 2 3	4 5 6 2	3 4 5 6	2 3 4 5 6	
	. 2 0		Loa	$(n \ cm^3)$	

Summary

- 'Cll deficit' ~ indicates mode of star formation
 - [CII]/FIR ~ merger fraction?
- High z ULIRGS high [CII]/FIR ratios •
- PDR paradigm

•

- Modest SF extended over several kpc scale
- Individual pictures emerging
 - Shocks may be involved

Log(G₀)

[CII]/FIR

1

([CII]+[OI])/FIR

	E				
Log(G ₀)	6 MIP	Source		PDR parameters	
	4		$\log(n \ cm^3)$	$\log(G_0)$	S
	3	MIPS 22530	$3.75\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	2	SWIRE 3-9	$3.5\pm^{0.5}_{0.5}$	$2.5\pm^{0.25}_{0.25}$	
		SWIRE 3-14	$3.5\pm^{0.25}_{0.5}$	$2.75\pm^{0.25}_{0.25}$	
	6 SI	SWIRE 3-18	3-5	$2.0\pm^{0.25}_{0.5}$	
	5	SMM J03	$3.25\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	4	SWIRE 4-5	$4.25\pm^{0.25}_{0.5}$	$1.25\pm^{0.5}_{0.5}$	
	2	SWIRE 4-15	$4.25\pm_{0.5}^{0.25}$	$2.25\pm^{0.25}_{0.75}$	
	1	SDSS J12	$3.5\pm^{0.25}_{0.25}$	$2.25\pm^{0.25}_{0.25}$	
	1 2 3	4 5 6 2	3 4 5 6	2 3 4 5 6	
	. 2 0		Loa	$(n \ cm^3)$	

[OI] trends

H

(Wolfire, Tielens, and Hollenbach, 1990)

 G_{0}

 $G_0 \propto \frac{L_{IR}\lambda}{R^3} (1 - e^{-R/\lambda})$

 $\lambda >> R$

Current picture

(Stacey 2010, Ferkinhoff 2014, Hailey-Dunsheath *in prep*)

(Brauher 2008) (Armus 2009, Diaz-Santos 2013) (Farrah 2013)

Other high z sources from (Maiolino et al 2009 A&A 500) (Ivison et al 2010 A&A 518) (Marsden 2005 MNRAS 359) (Iono 2006 ApJ 645)