COSMOS HI LARGE EXTRAGALACTIC SURVEY

Ximena Fernández **Columbia University**

A pathfinder to the SKA and its pathfinders

HILES Team

Columbia University

Jacqueline van Gorkom Julia Gross David Schiminovich David Hendel Ximena Fernández

University of Cape Town

Kelley Hess Danielle Lucero Natasha Maddox Claude Carignan Amidou Sorgho

UMASS- Amherst

Min Yun Hansung Gim

Yonsei University

Aeree Chung

West Virginia University

D.J. Pisano Lucas Hunt

Michigan State

Laura Chomiuk

NRAO

Emmanuel Momjian John Hibbard Jennifer Donovan-Meyer

Caltech/JPL

NIck Scoville Joe Lazio

University of New Mexico

Patricia Henning Genevieve Vaive

University of Wisconsin

Eric Wilcots Matthew Bershady Charee Peters

Groningen/ASTRON

Tom Oosterloo Marc Verheijen Rien van de Weygaert

MPIA

Kathryn Kreckel

UWA/ICRAR

Attila Popping Martin Meyer Andreas Wicenec

+ CHILES CON POL (commensal survey led by Chris Hales)

Key questions:

How do galaxies lose their gas?

How do galaxies accrete their gas?

What is the relationship between SFR and gas?

Key questions:

How do galaxies lose their gas?

How do galaxies accrete their gas?

What is the relationship between SFR and gas?

How does it change as a function of environment and across cosmic time?

HI Imaging in the Nearby Universe

NGC 4402 (Chung et al. 2009)

- Galaxies in clusters: galaxies lose their gas due to interactions with the ICM

HI Imaging in the Nearby Universe

NGC 4402 (Chung et al. 2009)

- Galaxies in clusters: galaxies lose their gas due to interactions with the ICM

KK 246 (Kreckel et al. 2010)

- Galaxies in void accretion

Galaxies in voids: evidence for on-going

Studies of SFR & Gas at z~0

Filled contours: Inside *r*₂₅

ISM dominated by molecular gas

Empty contours: Outside *r*₂₅ ISM dominated by HI

VLA HI Deep Field

VLA HI Deep Field

+ MeerKat, ASKAP & SKA

An Upgraded VLA

	OLD	PILOT	NOW
Bandwidth (MHz)	6.25	240	480
Channels	31	16384	30720
Velocity resolution (km/s)	40	3.5	3.5
Instantaneous z coverage	0 <z<0.004< td=""><td>0<z<0.193< td=""><td>0<z<0.5< td=""></z<0.5<></td></z<0.193<></td></z<0.004<>	0 <z<0.193< td=""><td>0<z<0.5< td=""></z<0.5<></td></z<0.193<>	0 <z<0.5< td=""></z<0.5<>

1. HI images in different environments across cosmic time

1. HI images in different environments across cosmic time

- HI images will provide constraints to simulations to study gas accretion and removal processes.

- In combination with ALMA, we can study SFR properties in selected systems

1. HI images in different environments across cosmic time

- HI images will provide constraints to simulations to study gas accretion and removal processes.

- In combination with ALMA, we can study SFR properties in selected systems

2. How does the HI mass function (HIMF) evolve with redshift and environment?

1. HI images in different environments across cosmic time

- HI images will provide constraints to simulations to study gas accretion and removal processes.

- In combination with ALMA, we can study SFR properties in selected systems

2. How does the HI mass function (HIMF) evolve with redshift and environment?

- Our survey will probe the evolution of the high-mass end of the HIMF

1. HI images in different environments across cosmic time

- HI images will provide constraints to simulations to study gas accretion and removal processes.

- In combination with ALMA, we can study SFR properties in selected systems

2. How does the HI mass function (HIMF) evolve with redshift and environment?

- Our survey will probe the evolution of the high-mass end of the HIMF

3. How does the cosmic HI gas density evolve with time?

1. HI images in different environments across cosmic time

- HI images will provide constraints to simulations to study gas accretion and removal processes.

- In combination with ALMA, we can study SFR properties in selected systems

2. How does the HI mass function (HIMF) evolve with redshift and environment?

- Our survey will probe the evolution of the high-mass end of the HIMF

3. How does the cosmic HI gas density evolve with time? - Our survey will help constrain Ω_{HI} in the interval 0 < z < 0.5

Commensal Observing

- Survey led by Chris Hales
- Full polarization continuum image
 - Noise: 400 nano-Jy/beam
- weak lensing and cosmic magnetism

- Science goals: galaxy evolution, transients,

Observation Setup

- B array observations (5" resolution)
 - Spatial: 0.68-29 kpc
- 1002 hours of requested time scheduled over 3 B-arrays
 - Observations started Fall 2013
- Correlator setup:
 - Frequency dithering: 3 frequencies settings (941-1420 MHz)
 - 30,720 channels each of ~3.5 km/s

Target: COSMOS Field

Deep multiwavelength data
No strong radio continuum sources

HI Deep Field

Survey design: detect 3 x 10¹⁰ M_☉

A Pilot for CHILES: z<0.2

33 HI detections in different environments across cosmic time

Full Survey: HI Predictions

~ 300 5 σ detections

Full Survey

- 178/1002 hours done
- Data reduction is mostly done
 - modified the NRAO pipeline for our observations
 - 1.5 TB per 6 hours, pipeline runs for 60 hours
- uv gridder: new imaging task developed
 - 2 TB (compared to 100 TB)
 - testing phase
- Expect to make cube of the first 178 hours in September

Spectrum: 950~1420 MHz

First HI cube covering the entire 0 < z < 0.5 range

Frequency dithering

6-hour run

3 frequency settings combined (18 hours)

Verification

Brightest detection in the pilot

In a few years...

To Do:

1. Observe 1002 hours to get HI images of these galaxies

2. Pointed observations with ALMA for a subset of these in different environments and z