Recent studies of submillimetre galaxies in the COSMOS field

I) Physical properties and environment of z>4 SMGs

II) (Sub)mm interferometric imaging of a sample of COSMOS/AzTEC SMGs

Oskari Miettinen (Univ. Zagreb) V. Smolčić (Univ. Zagreb) M. Novak (Univ. Zagreb)

M. Aravena, J. Banfield, F. Bertoldi, M. Bondi, S. Bourke,
P. Capak, C. L. Carilli, P. Ciliegi, F. Civano, C. Feruglio,
A. Finoguenov, G. Hallinan, O. Ilbert, A. Karim,
J. S. Kartaltepe, H.-R. Klöckner, C. Laigle, O. Le Fèvre,
B. Magnelli, D. Masters, H. J. McCracken, K. Mooley,
E. Murphy, F. Navarrete, D. A. Riechers, M. Salvato,
M. Sargent, E. Schinnerer, K. Sheth, S. Toft, G. Zamorani

SMGs

- very high IR luminosities of $L_{IR} \sim 10^{12} 10^{13} L_{\odot} \Rightarrow$ dusty objects
- very high SFRs: ~100-1000 M_☉ yr⁻¹ ⇒ **starbursts** (triggered by mergers ?)
- the bulk of SMGs at *z* ~ 2.2-2.5 (e.g. Chapman et al. 2005; Casey et al. 2013; Simpson et al. 2014)
- the high-z (z > 3-4) SMG population provides important knowledge of galaxy formation/evolution

Precursors of massive elliptical galaxies ?

Source sample 6 SMGs in the COSMOS field

J1000+0234 4.542 Schinnerer et al. 2008	
J1000+0234 • J1000+0234 • AzTEC1	
•AK03	
AzTEC/C1594.569This work: V. Smolčić et al., in prep.	
Vd-17871 4.622 A. Karim et al., in prep. 4.622	
AzTEC1 4.640 Smolčić et al. 2011 • Vd-17871	
AK03 4.747 <i>This work</i> : V. Smolčić et al., in prep. 30' • AzTEC/C	159
AzTEC3 5.298 Capak et al. 2011 VI A 3 GHz	

	t _{form}	<i>M</i> _*	T _{dust}	M DL07 dust	$L_{\rm IR}^{\rm DL07}$	SFR
	Myr	$10^{11} M_{\odot}$	K	$10^9 \mathrm{M}_{\odot}$	$10^{13} L_{\odot}$	M _☉ yr ⁻¹
Range	~110- 710	~0.5-4	~39- 48	~1-5	~0.5- 2.5	~450- 2500
Median	~200	~1.0	~42	~2	~0.9	~915
Mean	~280	~1.4	~43	~3	~1.3	~1300
yo sy:	ung stems	high stellar masses	relativ warm	Hy /ely dust	LIRGs starb (Cha	oursts brier IMF

Radio characteristics

Image courtesy: NRAO/AUI and NRAO

Median radio-emitting size: $0.63'' \ge 0.35'' \ge 4.1 \ge 2.3 \text{ kpc}^2$ $\Rightarrow \ge \text{extent of SF in lower-}z \text{ SMGs}$ and local normal galaxies, but > in local ULIRGs

Radio SEDs:

- GMRT 325 MHz (A. Karim+, in prep.)

- VLA 1.4 GHz - JVLA 3 GHz

Source	$\alpha_{1.4\text{GHz}}^{325\text{MHz}}$	$\alpha_{3\rm GHz}^{1.4\rm GHz}$	$\frac{L_{1.4\rm GHz}}{[\rm WHz^{-1}]}$
AzTEC1	1.24 ± 0.28	0.90 ± 0.46	$1.4 \pm 0.4 \times 10^{25}$
AzTEC3	> 1.54	> 0.09	$< 3.1 \times 10^{25}$
AzTEC/C159	0.76 ± 0.19	0.83 ± 0.17	$1.4 \pm 0.4 \times 10^{25}$
J1000+0234	> 1.11	0.98 ± 0.38	$< 1.2 \times 10^{25}$
Vd-17871	0.88 ± 0.24	1.1 ± 0.3	$1.1 \pm 0.4 \times 10^{25}$
AK03	0.82 ± 0.20	1.54 ± 0.27	$1.4 \pm 0.4 \times 10^{25}$

α

radio

1.4GHz

Environments

Visible/Infrared (Subaru)

Most Distant, Massive Galaxy Proto-Cluster (Redshift = 5.3)

AzTEC3 sits in a protocluster

Credit: Capak et al. 2011 / Nature

Subaru / P. Capak (SSC/Caltech)

ssc2011-02a

Surface density of galaxies: Voronoi tessellation (photo-z bin used: $\Delta z_{\text{phot}} = \pm 0.3$)

Counterpart identification

Redshift analysis

Summary

- Physical properties of the studied *z*>4.5 SMGs put them at the high end of the $L_{\rm IR}$ - $T_{\rm dust}$ relation
- Extent of SF ~ that in lower-z SMGs
- Overdensities associated with AzTEC1 and -3
 - No evidence of that for the rest of the sources (which are "clumpy")
- Heterogeneous sample → different evolutionary stages ?
- AzTEC1-30 are now followed-up with (sub-)mm interferometers (SMA, PdBI, ALMA)

With ALMA:
dust continuum emission @ higher resolution
high-res. spectral line imaging
⇒ sizes, morphologies, gas kinematics, chemical properties

ESO/C. Malin