dense ISM in ULIRG mergers : NGC 6240 and Arp 220 Cycle 0 ALMA --

Band 7 (0.5"): HCN (4-3), CS (7-6), $\underline{\text{H26}\alpha}$

Band 9 (0.3"): HCN (8-7)

Cycle 1 → **Band 7 w/ 0.2**"

w/ Sheth, Manohar, Zschaechner, Walter, Koda, Tacconi, Davies, Narayanan, Brown, van der Werf, Hayward, Robertson, Thompson, Barnes, Hernquist, Genzel, Fomalont, Sanders

submm recomb lines modeling of disks

 $2.5x10^{12} L_{\odot}$ 1 arcsec → 361 pc

 $9x10^{11} L_{\odot}$ 1 arcsec \rightarrow 475 pc

continuum

Masses from RJ dust continuum:

$$\mathbf{M}_{\rm ISM} = \frac{0.87 \, S_{\nu}(\text{mJy}) d_{\rm Gpc}^{2}}{(1+z)^{4.8} \, T_{25} v_{350}^{3.8} \Gamma_{\rm RJ}} 10^{10} \, \mathrm{M_{sun}}$$

ISM Masses from Dust Continuum

Source	$ u_{obs}$	Flux	T_d a	Γ_{RJ}	Mass	diameter ^b	Radius	$<\Sigma_{gas}>^{\mathrm{c}}$
	GHz	mJy	K		$10^9~{ m M}_{\odot}$	//	pc	${ m M}_{\odot}~{ m pc}^{-2}$
Arp 220 East Arp 220 West	$347.6 \\ 347.6$	161 342	100 100	$0.917 \\ 0.917$	1.96 4.16	$\stackrel{<}{\sim} 0.38 \ \stackrel{<}{\sim} 0.36$	$\stackrel{<}{\sim}69 \ \stackrel{<}{\sim}65$	$\stackrel{>}{\sim} 1.3 \times 10^5$ $\stackrel{>}{\sim} 3.1 \times 10^5$
NGC 6240	693.5	126	25	0.468	1.64	0.8	190	$\gtrsim 1.4 \times 10^4$

→ counter-rotating disks (as in Sakamoto et al '98)

double Gaussian fits

			Beam		Deconvolved						
Source		major "	minor "	PA °	najor "	minor "	T_B K				
band 7											
Arp~220	continuum	0.60	0.42	-32.0	0.28	0.27	33.9				
Arp 220	continuum	0.60	0.42	-32.0	0.37	0.27	11.1				
Arp 220	continuum	0.52	0.39	-27.2	0.36	0.24	34.9				
Arp~220	$\operatorname{continuum}$	0.52	0.39	-27.2	0.38	0.32	9.6				
NGC 6240	$\operatorname{continuum}$	0.55	0.46	65.6	0.50	0.39	0.4				
NGC 6240	$\operatorname{continuum}$	0.55	0.46	65.6	1.09	0.53	0.1				
NGC 6240	$\operatorname{continuum}$	0.53	0.44	64.7	0.49	0.40	0.3				
NGC 6240	continuum	0.53	0.44	64.7	1.07	0.57	0.0				
band 9											
Arp 220	continuum	0.32	0.28	-38.6	0.23	0.19	148.9				
Arp 220	continuum	0.32	0.28	-38.6	0.30	0.24	47.2				
NGC 6240	continuum	0.27	0.24	29.7	0.82	0.30	0.2				
		•	1 =								
band 7											
Arp220	CS(7-6)	0.60	0.42	-32.0	0.49	0.43	10.1				
Arp220	CS(7-6)	0.60	0.42	-32.0	0.40	0.35	7.5				
$\mathrm{Arp}220$	HCN(4-3)	0.52	0.39	-27.2	0.57	0.41	39.3				
Arp220	HCN(4-3)	0.52	0.39	-27.2	0.58	0.45	21.5				
	CS (7-6)	0.55	0.46	65.6	\dots^{a}	a	a				
NGC 6240	HCN(4-3)	0.53	0.44	64.7	1.14	0.60	1.5				
	` /										

major axis radii ~0.25'' → r ~90 pc

kinematics →

spatial – velocity strip maps along major axes

kinematic modeling

use kinematic deconvolution Scoville, Young & Lucy '83

if vel. field known, use observed line profiles

→ super resolution much better than beam width

solve for rot. curve and emissivity (r) which give best fit between obs. and model line profiles

Disk Models

Source	V_0	R_0	incl.	PA	σ_v
	${\rm km~s^{-1}}$	рc	0	0	${\rm km~s^{-1}}$
Arp 220 East Arp 220 West NGC 6240	350 360 100	30 40 20	71 64 70	47 -15 -6	90 90 160

Arp 220 West – observed and model spectra

NGC 6240 – observed and model spectra

Arp 220 East – observed and model spectra

ISM Masses from Dust Continuum

Source	$ u_{obs}$	Flux	T_d a	Γ_{RJ}	Mass	diameter ^b	Radius	$<\Sigma_{gas}>^{c}$
	GHz	mJy	K		$10^9~{\rm M}_{\odot}$	11	pc	${ m M}_{\odot}~{ m pc}^{-2}$
Arp 220 East Arp 220 West	347.6 347.6	161 342	100 100	0.917 0.917	1.96 4.16	$\begin{array}{l} \lesssim 0.38 \\ \lesssim 0.36 \end{array}$	$\lesssim 69 \lesssim 65$	$ \gtrsim 1.3 \times 10^5 $
NGC 6240	693.5	126	25	0.468	1.64	0.8	190	$\gtrsim 1.4 \times 10^4$

diagnosing AGN vs Starburst Power

ALMA Band 7 -- 350 GHz integrated spectra

diagnosing AGN vs Starburst Power

long standing issue with ULIRGs – AGN vs SB ?? ALMA can discriminate !!

EUV spectra are very different !!

H vs He⁺ submm recomb. lines Scoville & Murchikova '13 (ApJ)

ionization equilibrium:

→ He⁺⁺ / H⁺ changes by 20x

H 26α – a new probe of dust obscured SF!!

H 26α : 4 Jy km/s

low-n recomb. line flux →HII emission measure (n² x volume) →Lyc v

 $4 \text{ Jy km/s} \rightarrow 100 \text{ M}_{\odot} / \text{yr}$