ALMA Development in NA ALMA Development in NA

- Al Wootten
- North America ALMA Science Center
- •Charlottesville, Virginia U.S.

Atacama Large Millimeter/submillimeter Array **Expanded Very Large Array** Robert C. Byrd Green Bank Telescope Very Long Baseline Array

ALMA Development/NA

- Process began with March 2011 Workshop to collect response and ideas for a Call for Development Studies patterned after the earlier Eu Call
- Good response resulted in a refined draft Call, distributed to other entities among the NA partners and to NSF
- In response to that draft, a further refinement has been made and will soon be submitted to NSF seeking development study proposals from among North American entities
- A Software Development Workshop will be held at NRAO 12-14 Oct 2011
 - Aim is to come up with a set of ideas for software applications that will enhance the science output from ALMA
 - Some topics include
 - Line forest analysis
 - Feature finding in large datacubes
 - Matching data to simulations
 - Visualization
 - Compressive Sensing

Current NA Timeline

- Concurrently with Call, refinement of the implementation plan
- Call for Studies 'soon'
 - To include hardware and software
 - Better definition of software after Oct workshop
- Evaluation winter 2011/2 by external-to-NRAO committee
 - ANASAC involvement
- Kick-off for Studies early 2012

ANASAC: B1 Frequency Range

- ANASAC charge: The ANASAC is asked to comment on the scientific advantages of resiting ALMA Band 1 in frequency from 31.3-45 GHz to e.g. 34-53 GHz. Please note scientific advantages for the locations of the upper and lower edges of the band. Note that a paper on science goals of Band 1 is available in arXiv:0910.1609.
- ALMA may provide better complementarity to the eVLA if operating at higher B1 frequencies.
 - At these frequencies ALMA ~30 times faster for a point source (same beam) and covers 4x the field of view
 - Opposing hemispheres
- Propose (Draft) that Development proposers recommend that the specifications for Band 1 be broadened to allow for the development of the most effective and efficient receiver consistent with ALMA design with a frequency range anywhere from 31GHz to 51 GHz
 - Designing outside the approved range will require some redesign, which must be included in a Development proposal.

Science Drivers

- Frequency range: 31-45 GHz only loosely driven scientifically.
 - for continuum studies the effect of going to higher frequencies is a wash
 - anomalous dust observations : frequency variation with density is so far uncertain
- Line studies: no major loss moving the range higher--better for high-z CO studies. Some Line target gains:
 - CCS 4_3-3_2 45.38 GHz
 - Considered and early-stage molecule and magnetic field tracer through Zeeman measurements
 - Ground State CS lines (with isotopologues) note only 2.5 GHz apart
 - CS 1-0 48.99 GHz
 - C\$^33\$\$\$ 1-0 48.58 GHz
 - C\$^34\$S 1-0 48.21 GHz
 - \$13\$CS 1-0 46.25 GHz
 - CH\$_3\$OH 1_0-0_0 48.37 GHz Ground state methanol
 - H\$_2\$CO 4_13-4_14 48.28 GHz density tracer unaffected by optically thick dust
 - NH\$_2\$D 2(2,0)-2(2,1) 49.96 GHz and 3(1,3)-3(0,3) 43.04 GHz deuteration and excitation tracer (line ratio good for temperatures in the range 0-100K)