Linked Visualizations for

Astrophysical Data

Chris Beaumont (U. Hawaii, Harvard)
with
Alyssa Goodman, Michelle Borkin, Thomas Robitaille

Motivation

Links Across Data

Lada, Lombardi, Alves 2010

Links Across Data

Links Across Data

Beaumont et al. in prep

Two Challenges

	Conceptually Easy	Conceptually Hard
Computationally Easy	Basic reduction and analysis of small data (data << RAM)	Uncovering relationships within: several data sets high-dimensional data
Computationally Hard	Basic reduction and analysis of large data	Feature Extraction Automatic data calibration/analysis

• The MB-GB realm is still relevant

- The MB-GB realm is still relevant
- A wealth of computational resources

- The MB-GB realm is still relevant
- A wealth of computational resources
- Relevant for the resources most researchers already have

- The MB-GB realm is still relevant
- A wealth of computational resources
- Relevant for the resources most researchers already have
- Computers get faster -- brains don't

- The MB-GB realm is still relevant
- A wealth of computational resources
- Relevant for the resources most researchers already have
- Computers get faster -- brains don't
- Not incompatible with the computationally hard domain

Requirements

Picturing

Picturing

Rotation

Picturing

Rotation

Isolation

Picturing

Rotation

Isolation

Masking

Picturing

Rotation

Picturing

Rotation

and these "need to work together" in a "dynamic display"

Linking

Picturing

Rotation

and these "need to work together" in a "dynamic display"

Linking

Results...

- I. for immediate insight
- 2. as visual source of ideas for statistical algorithms

DataDesk (est. 1986)

DataDesk (est. 1986)

Practical Issues

- Visualization and connection of several data products
 - catalogs, images, spectra, data cubes
- Support for common file formats and coordinates
 - WCS, FITS, VOTable, CSV, ...
- Ability to script and extend
 - Preferably in a language astronomers use (IDL, Python)

Implementation

Pre-existing tools?

SPLAT

First Attempt: CloudViz

http://code.google.com/p/cloud-viz/

First Attempt: CloudViz

http://code.google.com/p/cloud-viz/

Second Attempt (python)

Subsets

Data

Hub

Visualization Client

Visualization Client

Visualization Client

Subsets

Data

Subsets

Data

Subsets

Data

Subsets

Data

Subsets

Data

Subsets

(Catalog)

Data

Subsets

(Image)
Data

Hub

Data Bridge

Subsets

(Catalog)

Data

Subsets

(Image)
Data

Hub

Data Bridge

Next Steps

- UI design
- 3D selection (Borkin PhD Thesis)
- Topcat/ds9/etc clients via SAMP
- Extension to big data