
Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

A Better Interface Between Scientists
and Data Reduction Software

B. Nikolic

Astrophysics Group, Cavendish Laboratory, University of Cambridge
http://www.mrao.cam.ac.uk/˜bn204/

ALMA Software Development Workshop
NRAO/Charlottesville

October 2011

http://www.mrao.cam.ac.uk/~bn204/

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Aims for this talk

This talk will aim to convince you:
I We can make data reduction significantly easier,

faster and more reliable
I We can do this relatively easily
I This is likely to be worth doing

I would like to take home:
I Feedback on the ideas and approach presented
I Is it worth doing?
I Good project for the ALMA development programme?

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Data reduction, software, and pipelines

I This talk is relevant to data reduction like we currently
do for aperture synthesis interferometry:

1. Environments like CASA or AIPS+Python wrappers
2. Iterative flagging/calibration/imaging
3. Large datasets, expensive to move around and

expensive to process
4. Mostly about command interface ≡ Language

I A fully commissioned pipeline that delivers reduced
calibrated data will remove the need to develop this
for ALMA! (No interaction – no interface needed!)

I However some of the ideas may be useful in
development of a pipeline too

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Automatised data reduction/Human decision
making

We can’t solve all data reduction problems –
Lets give everybody an easy interface to solve it

themselves 1

1This particular paraphrasing inspired by slides of one of David
Nolen’s presentations

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Automatised data reduction/Human decision
making

I This is how I would approach reducing a significant
quantity of observations from ALMA

I All the ‘tools’ are there, linking them up is too time
consuming/difficult

I Currently mostly just ideas – little implementation yet
I Aiming to develop a small, scaled back, prototype

implementation for analysis of WVR testing data
I Likely would require funding from the ALMA

development programme for a full implementation

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

A better interface can be:

1. Faster
I Less Wall-clock time
I Less Scientist’s time
I Fewer computational resources

2. More reliable
I Fewer opportunities for user error
I Easier to make fully repeatable
I Easier to review by reading the script

3. More communicable
I The data reduction script can be used to

communicate what needs to be done to other people
as well as the computer

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Why?

I Much more data/observations/spectral lines/fields per
radio astronomer! Can we keep up?

I Barriers to understanding and doing aperture
synthesis must be minimised – ‘we’ll do it for you’ is
not a solution

I In some aperture synthesis experiments there is no
single ‘right’ way of doing the reduction – peers must
be able to easily repeat and adjust our reduction

I In new generation of telescopes much cheaper to
move data reduction ‘scripts’/‘recepies’ and products
rather than the visibility data

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Straw-man requirements

1. Commands should be designed to best communicate
to other scientists what needs to be done

2. Trying out different parameters/commands should be
easy, efficient – should recognise there is no single
‘correct’ result

3. Concise
4. Efficient, fast

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Simple flagging-based example

Note:

I I use flagging here for illustration only
I Similar principles apply to many other operations

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Flagging fragment

A fragment of an ALMA data reduction script:
1 # Python /CASA
2 v i s = ” mydata .ms”
3 f l agda ta (v i s =v is , au tocor r=True)
4 f l agda ta (v i s =v is , mode= ’ shadow ’ , diameter =12.0)
5 f l agda ta (v i s =v is , antenna= ’DV04 ’)

This likely causes three complete iterations through the
data. Why:

I The interface is fully procedural
I Each flagdata only knows about itself – it doesn’t know it

is followed by another similar command
If Input/Output limited⇒ big performance penalty

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Operation folding ‘by hand’

Compare to following hypothetical command:
1 # Python / Something l i k e CASA
2 v i s = ” mydata .ms”
3 f l a g d a t a (v i s =v is , [{ ’ au tocor r ’ : True} ,
4 { ’mode ’= ’ shadow ’ , ’ d iameter ’ : 12.0} ,
5 { ’ antenna ’= ’DV04 ’ }])

I All three operations have been ‘folded’ into a single
command

I flagdata can execute all of them in a single iteration
through the data set

Drawbacks:
1. The user must decide what commands to fold and

when
2. Different interaction when doing single commands to

script

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Folding multiple operations?

But, maybe there is also a benefit of combining application
of calibration and flagging?

1 # Python / Something l i k e CASA
2 v i s = ” mydata .ms”
3 gencommand (v i s =v is , [{ ’ op ’ : ’ f l agda ta ’ , ’ au tocor r ’ : True} ,
4 { ’ op ’ : ’ f l agda ta ’ , ’mode ’ : ’ shadow ’ , ’ d iameter ’ : 12.0} ,
5 { ’ op ’ : ’ f l agda ta ’ , ’ antenna ’ : ’DV04 ’ } ,
6 { ’ op ’ : ’ app lyca l ’ , ’ c a l t a b l e ’ : [’ myvis . bpass ’ ,
7 ’ myvis .W’] }
8])

It is clear where this is going:
1 # Python / Something l i k e CASA
2 gencommand (’ myscr ip t . py ’)

Back to square one!
⇒ The ‘script’ must be in a non-procedural language

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Proposal

Operations automatically re-ordered and folded to optimise
performance:

1 # Python /CASA
2 v i s = ” mydata .ms”
3 f l agda ta (v i s =v is , au tocor r=True)
4 f l agda ta (v i s =v is , mode= ’ shadow ’ , diameter =12.0)
5 f l agda ta (v i s =v is , antenna= ’DV04 ’)

⇒ Automatic translation (‘re-writing’)⇒
1 # Python / Something l i k e CASA/ User does not see t h i s
2 v i s = ” mydata .ms”
3 f l a g d a t a (v i s =v is , [{ ’ au tocor r ’ : True} ,
4 { ’mode ’= ’ shadow ’ , ’ d iameter ’ : 12.0} ,
5 { ’ antenna ’= ’DV04 ’ }])

⇒ Execution!

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Restart after additional calibration

Initial
Flagging

Calibration

Imaging Decide?

Additional
flagging

Where should be reduction con-
tinue after additional flagging:

I Before calibrations if they
affected by the new flags

I After calibrations if the new
flags only affect the science
target

I In each case only the SPWs,
fields, etc that can be affected
should be redone

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Restart – the old fashioned way

#Python /CASA
i f 1:

I n i t i a l f l a g
f l agda ta ()

. . . .
i f 1:

C a l i b r a t i o n
c a l t a b l e = roo t + ’ .W’
ga inca l (. . .)

i f 1:
app lyca l (. . . , c a l t a b l e)
. . .

i f 1:
#Imaging
clean (. . . .)
. . . .

#Python /CASA
I n i t i a l f l a g
f l agda ta ()
. . . .
C a l i b r a t i o n
ga inca l (. . .)
app lyca l (. . .)
. . .
#
Imaging
clean (. . . .)
#clean (. . . .)
#

1. Error prone!
2. The script looks different from the interactive

commands
⇒ The computer should decide which steps need to be
done and which not!

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Proposal

I The user always runs the entire script
I Only the operations which could have different

outcome are executed by the computer

Advantages

I The script is always in final version
I No possibility of mistake due to incorrect restart
I Save time by avoiding unnecessary full restarts

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Intermediate data product tracking

Integration vs. scan based gain calibration tables:
1 #Python /CASA
2 ga inca l (v i s = s p l i t 1 , f i e l d = ’ 0 ’ , ga in tab le = roo t + ’ bandpass . bca l ’
3 r e f a n t = ’DV02 ’ , c a l t a b l e = roo t + ’ in tphase . gca l ’ ,
4 calmode = ’ p ’ , s o l i n t = ’ i n t ’ ,
5 minsnr =2.0 , minb lperant =4)
6 ga inca l (v i s = s p l i t 1 , f i e l d = ’ 0 ’ , ga in tab le = roo t + ’ bandpass . bca l ’
7 r e f a n t = ’DV02 ’ , c a l t a b l e = roo t + ’ in fphase . gca l ’ ,
8 calmode = ’ p ’ , s o l i n t = ’ i n f ’ ,
9 minsnr =2.0 , minb lperant =4)

...
1 #Python /CASA
2 ga inca l (v i s = s p l i t 1 ,
3 f i e l d = ’ 0 ’ ,
4 ga in tab le = roo t + ’ bandpass . bca l ’
5 r e f a n t = ’DV02 ’ ,
6 c a l t a b l e = roo t + ’ i n f−phase−dv02−f i e l d 0−b lperan t4 . gca l ’ ,
7 calmode = ’ p ’ ,
8 s o l i n t = ’ i n f ’ ,
9 minsnr =2.0 ,

10 minb lperant =4)

⇒ eventually the name of the table encodes all the
parameters!

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Proposal

1. The computer should be keeping track of intermediate
data products, calibration tables, plots, images etc

2. We should access them by primarily calling the
commands that created them!

3. Closely related to dependency tracking, data
reduction branches

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Data Reduction Branches – script

d e f a u l t (gencal)
v i s = myvis .ms ’
c a l t a b l e = ’ a n t p o s f i x ’
ca l t ype = ’ antpos ’
antenna = ’DV02, DV04, DV05, DV06, DV07, DV08, DV10, DV12, DV13,PM01,PM03 ’
parameter = [

0.000228 , −0.000334, −0.000013,
0.000163 , 0.000239 , 0.000025 ,
0.000060 , −0.000092, 0.000384 ,
0.000053 , 0.000158 , 0.000001 ,
0.000103 , 0.000328 , 0.000351 ,
−0.000039, −0.000085, −0.000041,
−0.000331, −0.000056, 0.000246 ,

0.000133 , −0.000210, −0.000160,
−0.000045, 0.000104 , 0.000109 , # Not sure about t h i s one ! (BN)

0.000191 , 0.000010 , 0.000119 ,
0.000159 , 0.000005 , −0.000054

]
gencal ()

os . system (’ . . /WVRGCAL/ b in / wvrgcal −−ms myvis .ms \
−−output myvis .W−−t o f f s e t −1 ’)

d e f a u l t (app lyca l)
v i s = ’ uid A002 X219601 X4cd .ms ’
ga in tab le = ’ a n t p o s f i x ’
ga in tab le = [’ a n t p o s f i x ’ , ’ uid A002 X219601 X4cd .W’]
app lyca l ()

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Data reduction branches – notes

Note:
1. The user obviously wants to try with/without the WVR

calibration – uses the commenting out technique
2. Also want to try with/without correction for antenna

DV13
3. Note also the difficulty of attaching antenna names to

position correction values

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Data reduction branches – graph

Antenna
position

correction
(except
DV13)

View

WVRGCAL View

Antenna
position
DV13

View

WVRGCAL View

I Recording just the data reduction path that happened
to work in one case is not enough

I Decisions need to be made by scientists
I But, all inputs for their decisions prepared

automatically

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Proposal

1. The user should be able to specify multiple branches
of data reduction where different
parameters/procedures/options are invoked

2. The computer should keep track of the results of
computation and present them to the user

3. The reductions would ideally be parallelised

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

In advance: Sorry!

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Preamble

Python/CASA is a huge improvement on many previous
environments. In some cases, only now, that many
CASA/Python scripts are available to be analysed can we
identify problems.

Two approaches:

1. Look for examples in existing scripts of what can be
done better and implement that

2. Look for patterns in the examples and derive more
general solutions.

What pattern links the above examples?

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Procedural model

Also called the ‘von Neumann’ model:

1. Key feature are pervasive states
2. Program consist of creation and sequential execution

of blocks of manipulations of states (i.e., procedures)
3. The major part of most compilers today is undoing the

von Neumann model behind the scenes
4. Originally states ≡ program variables
5. Our state? The measurement set

I A very large state
I Very expensive to manipulate

Sequentially, blindly executing unoptimised blocks of
operations on measurement set is very inefficient

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Backus on the Procedural model

Conventional programming languages are
growing ever more enormous, but not stronger.
Inherent defects at the most basic level cause
them to be both fat and weak:
[...]
their inability to effectively use powerful
combining forms for building new programs
from existing ones, and their lack of useful
mathematical properties for reasoning about
programs

John Backus, ACM Turing Award Lecture, 1977

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Solution? (In theory only?)

Applicative language + program transformation

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Solution? (In theory only?)

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Solution? (In theory only?)

(In fact we can get most of the way there quite easily, see
later)

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Implementation choices

I Keep the existing interface / improve the interpreter
I Hard!
I Would not satisfy requirements
I Fragile

I A Python wrapper for the existing interface
I This talk

I More radical departure – use another language
I Maybe in the future...

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Python wrapper

Advantages

I Keep the existing language foundation
I Incremental development, immediate results
I Easy distribution to users
I Integration with other analysis done in Python
I Feasible!

Disadvantages

I Need to reduce the range of possible programming
constructs

I Slightly awkward syntax

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

How does it work

I Applicative on measurement sets – no side effects,
each command transforms the data

I Lazy – results only computed when requested by the
user, not as encountered

I No flow control(!)
Decisions made by scientists
(Flow control based on original data easily
implementable)

I Optimisation/rewriting stage just before execution

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Prototype Example

def mydata () :
return Vis (” uid A002 X219601 X4cd .ms”)

def mostpos (d) :
” Correc t f o r antenna p o s i t i o n s t h a t we are sure about ”
d=Antpos (d , ”DV02” , [0.000228 , −0.000334, −0.000013])
d=Antpos (d , ”DV04” , [0.000163 , 0.000239 , 0 .000025 ,])
d=Antpos (d , ”DV07” , [0.000103 , 0.000328 , 0.000351])
d=Antpos (d , ”DV10” , [−0.000331 , −0.000056, 0.000246])
d=Antpos (d , ”DV12” , [0.000133 , −0.000210, −0.000160])
d=Antpos (d , ”DV13” , [−0.000045 , 0.000104 , 0.000109])
d=Antpos (d , ”PM01” , [0.000191 , 0.000010 , 0.000119])
d=Antpos (d , ”PM03” , [0.000159 , 0.000005 , −0.000054])
return d

def maybepos (d) :
” Not sure about t h i s one ! W i l l want to t r u w i th and w i thou t ”
d=Antpos (d , ”DV08” , [−0.000039 , −0.000085, −0.000041])
return d

def antcheckd ()
return Selec t (mydata () , spw=1)

P lo t (VisRaster (mostpos (antcheckd ())) ,
dims =[” t ime ” , ” phase ”])

P lo t (VisRaster (maybepos (mostpos (antcheckd ()))) ,
pdims =[” t ime ” , ” phase ”])

go reduce ()

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Version 0 goals

1. Applicative sub-language of Python
2. Commands for basic calibration, flagging, continuum

imaging only

Features

1. Restart/Dependency tracking
2. DR Branching
3. Folding

3.1 Antenna flagging
3.2 BL correction

4. Simple intermediate product cache

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Future goals (relatively easy reach)

I Automatic parellelisation multi-thread/SMP/cluster
I Can parallelise on outermost scale, high efficiency

I Summary reports of all data reduction steps
I Automatic management of cache of intermediate data

products

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Outline

Introduction

Examples and Derived Proposals
Operation Folding
Dependency tracking
Intermediate product tracking
Data reduction branches

Theory

Implementing a better interface

Summary

Introduction

Examples and
Derived Proposals
Operation Folding

Dependency tracking

Intermediate product
tracking

Data reduction branches

Theory

Implementing a
better interface

Summary

Summary

1. Data reduction interfaces are important for ALMA
today

2. We can make them faster, more efficient, more
reliable

3. Making them so is feasible, not a large scale project
4. In my opinion: This is the route to solving the data

reduction problem

	Introduction
	Examples and Derived Proposals
	Operation Folding
	Dependency tracking
	Intermediate product tracking
	Data reduction branches

	Theory
	Implementing a better interface
	Summary

