VLBI Special Session

Walter Brisken
Raghvendra Sahai
Ciriaco Goddi
Keiichi Asada
R.Craig Walker

VLBI's key qualities

- (sub-) milliarcsecond resolution
 - AU-scale in MW, pc-scale extragalactic
 - Astrometry at 10s of microarcsecond precision
- Requires high surface brightness
 - Brightness temperatures > 10e5 K
 - No thermal molecular emission observable
- Special relationship to gamma-ray telescopes
 - Unresolved gamma-ray objects likely detectable with VLBI: pulsars, AGNe, GRB, ...

VLBI Capability/Target Matrix

Target	Time evolution	Astrometry	Imaging	Polar'n	Wide-field	Spect'y
AGNe						
Masers						
SN, GRB, TDE						
Colliding winds						
MicroQSO						
Active stars						
Pulsar, bow shock						

NGC 4258 Distance

- Example of multiple capabilities being used together
 - Spectroscopy → physical velocity
 - Astrometry → angular velocity
 - Together a distance is determined

Megamaser cosmology project Braats, Kuo et al.

- Builds on NGC4258 result; extends to other sources
- Goal: Measure Hubble constant
 - Determine geometric distance to AGNs hosting water maser disk through orbit modeling high velocity maser motions
 - Couple to redshift determined from systemic maser velocity
- Goal: Measure black hole masses precisely
- 1st results from galaxies within the Hubble flow: H₀=69±11 km/s

AGNe as resources

- AGNe form the most important class of VLBI calibrator sources
 - Used for VLBI astrometric and polarization references
 - Understanding of their time evolution is crucial for accurate results
 - VLBA archive is teeming with calibrator data of scientific quality
- AGNe form the basis of the International Celestial Reference Frame

New/upcoming instrumentation

- Phased-array ALMA
 - 10x sensitivity, 2x resolution improvement in mm
 - To probe the accretion disk of Sgr A*, M87
- RadioAstron (space-ground VLBI)
 - Baselines up to 50,000 km
 - To probe AGNe at 50 microarcsecond resolution
 - To measure or limit the highest brightness temperature sources (10e14K)
- VLBI2010
 - AGN core stability (in freq, time, pol)

Next speaker...

Key questions to ask of VLBI

- AGB → PPN
 - Structure/evolution of water fountains
 - Nature of mass loss and its evolution during transition
- YSOs
 - Does collimation depend on YSO age? Or mass?
 - Can a massive YSO still accrete once a HC HII region has formed?
- AGN jets
 - Acceleration/formation/collimation mechanism?
 - Why do AGN jets exist at all? Why not ubiquitous?
 - Origin of circular polarization?
- General
 - Distances (via trigonometric parallax or other?)