

Collaborators:

Radio: P. E. Hardee (U. Alabama), W. Junor (UC/LANL), F. Davies (UCLA), C. Ly (STSci) High Frequencies: M. Beilicke (WUSTL), C. C. Cheung (NRC/NRL), D. E. Harris (DfA), H. Krawczynski (WUSTL), D. Mazin (IFAE), W. McConville (U. Maryland), M. Raue (U. Hamburg), and R. M. Wagner (MPI für Physik), The VERITAS, H.E.S.S., and MAGIC collaborations.

M87 - THE BEST SOURCE FOR IMAGING A JET BASE

- Large angular size black hole
 - $-6.1 \times 10^9 \, M_{\odot}$ at 16.7 Mpc.
 - $-R_s = 7.2 \mu as = 120 au (2GM/c^2)$
 - 1 c = 3.8 mas/yr
 - Variations slow enough for Earth rotation synthesis
- Bright jet with complex observable structure
 - 43 GHz Peak ~0.7 Jy can self-calibrate VLBI data
 - Resolved transversely very near core
 - Easy to observe with northern hemisphere instruments
- VLBA 43 GHz resolution; 210 X 430 μ as (~30 X 60 R_s)
- Well studied at all wavelengths from radio to TeV
- Other candidates have no jet (SgrA*) or smaller black hole (CenA)

OBSERVATIONAL CONSTRAINTS FOR JET LAUNCH THEORY

- There is overlap between regions imaged and regions simulated
- Potentially can compare:
 - Shape Wide opening angle base, width vs distance
 - Transverse structure Edge brightening
 - Polarization structure Implications for magnetic field
 - Dynamics including apparent velocity field and acceleration
 - Counterjet including velocity information from beaming

A random example of jet launch numerical modeling McKinney & Narayan 2007

Max scale $\leftarrow 40 c^2/(GM) 1000 \rightarrow$

THE VLBA 43 GHz M87 MOVIE PROJECT

- Pilot observations to determine sampling interval
- 18 Observations at 3 week intervals through 2007
 - Current best movie from first 11 observations
 - Undersampled despite pilot
- 14 Observations at 5 day intervals in early 2008
 - Hampered by less effective dynamic scheduling
 - Major flare seen coinciding with a TeV flare
- Prepared to respond to TeV trigger 2009 2011
 - Triggered in 2010
- Reduction and analysis continuing

THE VLBA 43 GHz M87 MOVIE PROJECT AVERAGE OF 23 OBSERVATIONS

Beam: $0.43 \times 0.21 \text{ mas}$ $0.2 \text{mas} = 0.016 \text{pc} = 28 \text{R}_s$ 1 mas/yr = 0.25 c

The VLBA 43 GHz M87 Movie - First 11 Observations

Beam: 0.43x0.21 mas $0.2mas = 0.016pc = 28R_s$ 1mas/yr = 0.25c Motions ~0.5 mas/frame (3 weeks) which is about 2c Much faster than 15 GHz results from MOJAVE

The VLBA 43 GHz M87 Fast Sample Movie

- Image every 5 days
- Flare on core. New features
 - Flare coincides with TeV flare

M87 Brightness Profile Along Jet

Analysis of this and other structure data in progress
Rapidly increasing jet/counterjet sidedness radio suggests acceleration

Teaser: New Polarization Results

- Jet side of core: E vectors are along the jet direction
 - Vectors show the wide opening angle base
- Counterjet side: E vectors are across the jet, or wrapped around core
- Probable azimuthal field geometry, but modeling needed
 - Close angle to line of sight
 - Wide opening angle base
 - Rapid brightness decrease with distance[™]
 - Counterjet
 - Possible acceleration, beaming, optical depth and faraday rotation effects
- Will stack images when have more to see the fields farther down jet

TeV/VLBI Connection

- Location of TeV emission not known
- TeV and 43 GHz VLBI flares at same time in 2008 - suggests TeV in core
 - Acciari et al. 2009, Science, 325, 444.
- But no 43 GHz with 2010 TeV flare
 - Abramowski et al, 2012, Ap. J. 746, 151.
 - Possible activity at HST1
 - · Giroletti et al 2012 A&A

Event Horizon Telescope

- mm VLBI resolution similar to event horizon in M87 and SgrA* (~10µas)
- Current observations with JCMT, CARMA, SMTO
 - Determined SgrA* size near 4 R_s
- Add several more telescopes
- Anchored by phased ALMA
- Main goal to study relativistic effects near the black hole
- Also study the jet base

Black hole and jet, 345 GHz Broderick and Loeb 2007

End

SUMMARY

 M87 is the best source for imaging a jet launch region

- Multi-epoch VLBA observations of M87
 - $-30 \times 60 R_s$ resolution at 43 GHz
 - Edge brightened structure
 - Rapidly changing "smoke plume"
 - Apparent 2c motions. Maybe acceleration in inner 1mas.
 - Counterjet seen decays faster than main jet
 - Interesting polarization structure. Not yet modeled
 - Radio flare seen at time of 2008 TeV flare
 - Suggests TeV from very close to the black hole.
 - Issue confused by lack of radio flare with 2010 TeV flare