

The Jansky VLA: Transforming the

Claire Chandler
NRAO Array Science Center

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Radio emission from outflows, winds, jets

- Thermal and non-thermal radio emission from outflows, winds, and jets common in a wide range of astrophysical sources
 - Young stellar objects of all masses
 - WR stars, evolved stars, planetary nebulae
 - X-ray binaries (WDs, NSs, BHs...)
 - Microquasars
 - Tidal disruption events
 - Galactic winds
 - AGN (FRI, FRII)
 - GRBs
- The superb combination of resolution, sensitivity, frequency coverage, and rapid scheduling of the VLA means that it has, and will continue, to play a key role in outflow/wind/jet studies
 - Structure, chemistry, dynamics, emission and absorption mechanisms,
 accretion, jet launch

The Jansky VLA

- Culmination of the decade-long Expanded Very Large Array project funded by the NSF, Canada, Mexico
- Multiplies by orders of magnitude the observational capabilities of the VLA
 - Full frequency coverage from 1 to 50 GHz, provided by 8 receivers
 - Up to 8 GHz/pol instantaneous bandwidth
 - 5 to 10 times better continuum sensitivity
 - New correlator with unprecedented capabilities
 - From 16384 to 4.2e6 channels in up to 64 independent sub-bands
- First fringes with the new correlator March 2010, full operation Jan 2013
- Fully dynamic scheduling (based on scientific priority, weather conditions, scheduling efficiency, time critical observations)
- New data reduction software (CASA)
- Pipeline-calibrated visibility data plus QA images

The Jansky VLA

- 27x25m antennas in an upside-down Y, in one of four configurations, D (most compact) to A (most extended)
- Located on Plains of San Agustin in central New Mexico at 2100m altitude

The Jansky VLA

 27x25m antennas in an upside-down Y, in one of four configurations, D (most compact) to A (most extended)

• Located on Plains of San Agustin in ce

Technical capabilities: receivers/bands

- 8 wideband receivers
- Switching receivers can be as fast as 20s

Band	Range		
	(GHz)		
20 cm (L)	1.0-2.0		
13 cm (S)	2.0-4.0		
6 cm (C)	4.0-8.0		
3 cm (X)	8.0-12.0		
2 cm (Ku)	12.0–18.0		
1.3 cm (K)	18.0–26.5		
1 cm (Ka)	26.5-40.0		
0.7 cm (Q)	40.0–50.0		

Technical capabilities: spatial resolution

- From the D to A configurations the VLA varies its angular resolution by a factor ~35 (depends on largest baseline/telescope separation)
- Reconfiguration every ~4 months

Configuration	A	В	С	D		
B _{max} (km ¹)	36.4	11.1	3.4	1.03		
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035		
	Synthesized Beamwidth θ _{HPBW} (arcsec) ^{1,2,3}					
74 MHz (4 band)	24	80	260	850		
1.5 GHz (L)	1.3	4.3	14	46		
3.0 GHz (S) ⁶	0.65	2.1	7.0	23		
6.0 GHz (C)	0.33	1.0	3.5	12		
8.5 GHz (X) ⁷	0.23	0.73	2.5	8.1		
15 GHz (Ku) ⁶	0.13	0.42	1.4	4.6		
22 GHz (K)	0.089	0.28	0.95	3.1		
33 GHz (Ka)	0.059	0.19	0.63	2.1		
45 GHz (Q)	0.043	0.14	0.47	1.5		

Technical capabilities: largest angular scale

- The shortest baseline sets the largest angular scale measured
- Compact configurations give less spatial resolution but better surface brightness sensitivity

Configuration	A	В	С	D		
B _{max} (km ¹)	36.4	11.1	3.4	1.03		
B _{min} (km ¹)	0.68	0.21	0.035 ⁵	0.035		
	Largest Angular Scale θ _{LAS} (arcsec) ^{1,4}					
74 MHz (4 band)	800	2200	20000	20000		
1.5 GHz (L)	36	120	970	970		
3.0 GHz (S) ⁶	18	58	490	490		
6.0 GHz (C)	8.9	29	240	240		
8.5 GHz (X) ⁷	6.3	20	170	170		
15 GHz (Ku) ⁶	3.6	12	97	97		
22 GHz (K)	2.4	7.9	66	66		
33 GHz (Ka)	1.6	5.3	44	44		
45 GHz (Q)	1.2	3.9	32	32		

Field of view (depends on diameter of a single antenna) 608' 30' 15' 7.5' 5.3'

1.4'

Technical capabilities: sensitivity

- At 10 GHz: in Ihour, $I\sigma = 2 \mu Jy$ continuum
- 0.8 mJy in 1 km s⁻¹ channel

NRAO

Scientific capabilities

- Wide bandwidths:
 - Continuum sensitivity
 - Spectral index information
 - Rotation measure studies
 - Survey speed for wide-field mosaics
 - Dynamic spectra
- Correlator flexibility:
 - Blind redshift surveys
 - Combined continuum and spectral line observations of star-forming regions and external galaxies
 - Multiple, key diagnostic lines for chemical and physical analyses
 - High spectral resolution
 - Very fast dumps for pulsars and transient searches

JVLA demonstration science: IRC+10216

Spectroscopy and imaging of IRC+10216

NRAO

JVLA demonstration science: IRC+10216

- Spectroscopy and imaging of IRC+10216
- HC₃N(4-3) emission a 36.4 GHz tracing the expanding shell

• Similar movies for $HC_5N(9-8)$, $HC_7N(22-21)$, SiS(2-1), reveal chemical

structure of the envelope

• 26 GHz emission from SS433, 0.095" (520 AU) resolution

NRAO

Tidal disruption events

- Swift discovered a unique, long duration, luminous event on March 25, 2011
- EVLA able to follow up within a day, discovers a radio transient with optically thick emission, localized to the center of a normal galaxy at z=0.354
- Radio emission best explained as a relativistic jet formed as the result of a tidal disruption event
- (See talk by Ashley Zauderer)

Winds, SNRs, HII regions in M82

 Non-thermal filaments trace the superwind perpendicular to the plane of the galaxy (Josh Marvil, PhD Thesis, NMT)

M87

NRAO

• Shocks, particle acceleration, and jet physics (EVLA demo science: F. Owen)

M87

Shocks, particle acceleration, and jet physics (EVLA demo science: F. Owen)

Hercules A

NRAO

4-9 GHz "true radio color"

Relics and jets in Abell 2256

- I-2 GHz, 20-arcmin on a side; color corresponds to spectral index (Owen, Rudnick, Eilek, Rau, Bhatnagar, Kogan)
- Studies of the complex interactions between galaxies, AGN feedback, ICM, magnetic fields, and dark matter content of clusters
- Role of radio galaxies and relics in cluster evolution?

Using the JVLA

- Next proposal deadline AUGUST 1, 2012
- General capabilities available:
 - Up to 8 GHz bandwidth, full polarization for continuum science
 - Standard spectral set-ups covering key lines plus continuum for each receiver band, for galactic and extragalactic applications
 - Fast dumps (subject to a data rate maximum)
 - Multiple sub-arrays
 - Mosaics
- Advanced capabilities for Resident Shared Risk Observers
 - Complex observing strategies and correlator set-ups
 - E.g., mixing of standard correlator modes and recirculation for phased array using ultra-fast dumps
 - Any other innovative uses of the telescope you can think of!
- Contact us through the NRAO helpdesk,
 - ttps://science.nrao.edu/observing/helpdesk