

Fire and Smoke: Probing Inflow and Outflow of Low Luminosity AGN with Millimeter Wavelength Polarimetry

Geoffrey C. Bower, Chat Hull, Dick Plambeck, Dan Marrone, Heino Falcke, Sera Markoff

Sagittarius A*

What We Don't Know Yet

- Why is Sgr A* so underluminous?
 - $L \sim 10^{-10} L_{Edd}$
- Models degenerate
 - Inflow, outflow, jets, nonthermal emission
- How does Sgr A* relate to other AGN?
- Fundamental gravity

Sagittarius A* Polarimetry

- Transition in LP fraction @~100 GHz
- RM = $-5 \times 10^5 \text{ rad m}^{-2}$
- RM stable $\tau > 10$ years
- Variation of intrinsic LP angle on short timescales
- CP from 1.4 to 345 GHz
- CP stable τ >30 years

Polarization Fraction of Sgr A*

Fig. 2.— Position angle as a function of frequency. Triangles are the A00 data. Squares are the BIMA data. The solid line is a fit for the RM excluding the A00 230 GHz result. The best fit is $-4.3 \pm 0.1 \times 10^5$ rad m⁻² with a zero-wavelength position angle of 181 ± 2 degrees.

Bower et al 2003

Turbulent Accretion

- Changing density/Bfield in accretion region
- Radius:≥ 10 1000 R_g
- Time: hours to years
 - Viscous time scale
- Structure function of δ RM will provide accretion structure
 - CARMA, SMA, ALMA

Accretion Simulations

Figure 1. 2D slice of the simulation for 600^3 box at 15 Bondi times. Colour represents the entropy, and arrows represent the magnetic field vector. The right-hand panel is the equatorial plane (yz), while the left-hand panel a perpendicular slice (xy). White circles represent the Bondi radius $(r_B = 1000)$. The fluid is slowly moving, in a state of magnetically frustrated convection. A movie of this flow is available as Supporting Information with electronic version of this article (see Appendix C for a description).

Pang, Pen, et al 2011

Simulated RMs

~1 Year

Sensitive to

- Accretion Profile
- Radius of relativistic electrons
- Viewing Angle
- Magnetic Field Stability

Pang, Pen, et al 2011

Planned Simultaneous SMA/CARMA Observations

- What causes the stability of the RM?
- How stable and on what timescale is the RM?
- Are there non- λ^2 effects?
- Is there a relationship between LP, CP, and RM variability?

CARMA Time Resolved Polarimetry of Sgr A*

- 1.3 mm
- October 2011
- Preliminary!

The Wildcard Event

Gillessen et al 2011

LLAGN

- Share many properties with Sgr A*
 - L \sim 10⁻⁵ L_{Edd}
- Nearby LLAGN show no or weak LP at cm wavelengths

M81*

Fig. 4. Spectra of the total intensity (circles) and the fractional circular polarization (squares) from 2 March 2001 (open) and 15 June 2001 (filled).

CARMA Upper Limits at 230 GHz LP < 1.3%

RM Limits for LLAGN

- High Frequency
 VLA Survey Finds
 no LP from LLAGN
 up to 43 GHz
- Clearly distinct from other AGN population
- Assuming bandwidth depolarization, allows us to set lower limits on RM

ALMA Polarimetry of Sgr A*/LLAGN

- High sensitivity to short timescale variations over wide frequency range
- Sensitivity to RMs >10¹² rad m⁻²
- Large sample of nearby LLAGN to explore statistical properties

Summary

- Polarimetry probes the turbulent accretion structures of LLAGN
- EVLA/CARMA/SMA observations can provide significant improvements over the current capabilities
- We need ALMA polarimetric capabilities!