The Connection Between Stellar Coronae and Accretion Disk Coronae

Ehud Behar

collaborators
Ari Laor, Evgeny Orsky

Technion

Modest Goals of This Talk

- to convince the audience that radio emission from accretion disks might not be solely due to jets, but also to a coronae akin to stellar (Laor & Behar 2008)
- to interest capable radio astronomers to monitor radio quiet AGNs at high frequencies (~ 100 GHz)
- to promote simultaneous radio and X-ray monitoring to test the coronal hypothesis

The Analogy

CARL BURNES STORES OF THE PROPERTY OF THE PARTY OF THE PA

A Few Things We Know about Stellar Coronae

Optically selected PG quasars (Boroson & Green 1992)

- 87 Low-z (<0.5)
- L_R = vL_v at 5 GHz 78/87 detected by VLA, (Kellerman et al. 1989, 1994) vs. non-simultaneous L_X from 0.2 to 20 keV 84/87 ROSAT detections (Brandt et al. 2000, Laor & Wills 2000)
- Remove RLQs and absorbed quasars (Laor & Brandt 2002) leaves 59 RQQs

L_R - L_X Correlation for Radio-Quiet PG Quasars

Extending to Lower Luminosities (VLA & XMM)

The Big News

Or

Coronal Conjecture for Radio-Quiet AGNs

- Magnetic activity above the disk produces relativistic electrons that emit radio
- · Main cooling mechanism is Coulomb collisions
- Thermalized electrons IC scatter disk photons to produce the X-rays (sparse covering factor)
- · Mass ejections create outflows
- · Differs from jet in lack of
 - collimation
 - relativistic ordered motion (global magnetic field lines)

Challenges to Analogy

- Variability
 - Stellar: Radio+X flares, e.g., Neupert effect
 - RQ AGNs: Rapid X-ray variability with very little radio variability
- · X-Ray Spectra
 - Stellar: thermal
 - RQ AGNs: non-thermal (IC scattering)
- Extended Emission
 - Stellar: coronal mass ejections
 - RQ AGNs: unresolved

(high) X-Ray vs. (low) Radio Variability in Seyferts

- See also Anderson & Ulvestad '05, Bell et al '11,
 Jones et al. '11, King et al. '11
- · Barvainis et al. '05 for quasars

The Radio-Sphere

• Synchrotron self absorption (from $L_v/4\pi d^2 = S_v \pi R^2/d^2$)

$$R_{ssa} = 0.1 \left(\frac{nL_n}{10^{40} \text{erg s}^{-1}} \right)^{1/2} \left(\frac{B_n}{\text{Gauss}} \right)^{1/4} \left(\frac{n}{5 \text{GHz}} \right)^{-7/4} \text{pc}$$

- RQQ $\{L_v \sim 10^{40} \text{ erg/s} \quad R_{ssa} \sim 0.1 \text{ pc} \quad \sim 4 \text{ light mon.}$ LLAGN $\{L_v \sim 10^{36} \text{ erg/s} \quad R_{ssa} \sim 10^{-3} \text{ pc} \quad \sim \text{ light day}$
- · Perhaps a tad less than observed variability time scales
- More than 10 times the corresponding nuclear X-ray variability time scales

Easily Refutable Prediction

· Sync. absorption decreases with frequency (v ∝v-(p+4)/2

$$R_{ssa} = 0.1 \left(\frac{nL_n}{10^{40} \text{erg s}^{-1}} \right)^{1/2} \left(\frac{B_n}{\text{Gauss}} \right)^{1/4} \left(\frac{n}{5 \text{GHz}} \right)^{-7/4} \text{pc}$$

- For B $\propto 1/R$ $R_{ssa} \propto L^{1/2}/v$
- · Higher Frequencies will Vary on Shorter Time Scales
- For flat spectrum, X-ray sizes expected at > 100 GHz
 - FIR dominated by dust emission at $T \ge 30$ K (Hass et al. '00), that drops by five orders of magnitude from 0.1 1 mm (Polleta et al. '00), so no dust emission by 300 GHz

Current Radio Telescopes

- Improved sensitivity enables simultaneous $L_{\rm R}$ $L_{\rm X}$ measurements of all PG quasars and perhaps extension of luminosity range (higher and lowersee Ashley King's talk from Saturday)
- Improved <u>resolution</u> enables better characterization of core and extended emission
- Most importantly, high-frequency capability enables for the first time to probe the inner synchrotron-self-absorbed region and perhaps to start approaching the size of the X-ray source

Modest Goals of This Talk

- ✓ Convince the audience that radio emission from accretion disks might not be due solely to jets, but also to a coronae akin to stellar
- ✓ Interest capable radio astronomers to monitor radio quiet AGNs at high frequencies
- ✓ Promote simultaneous radio and X-ray monitoring to test the coronal hypothesis

THANK YOU FOR YOUR ATTENTION

What About Galactic Black Holes?

Fundamental Plane for GBH & AGN

Merloni et al. (2003)
 also Flacke et al. (2004)

- $egin{split} rac{L_R}{L_X} & \propto L_X^{-0.46 \pm 0.14} igg(rac{M_{BH}}{M_{Sun}}igg)^{0.78 \pm 0.13} \end{split}$
- Main difference is M_{BH} and disk temp $T_{GBH} \sim 10-100 T_{AGN}$
- In a thin disk
 (Shakura & Sunyaev 1973)
- $\frac{L_{bol}}{L_{Edd}} \sqcup T^4 (R/R_g)^3 \frac{M_{BH}}{M_{Sum}}$ or $L_{bol} \sqcup M_{BH}^2 T^4$
- Using the bolometric relation (Just et al. 2007)

 $L_{_{\!X}} \mathrel{igsplus} L_{_{\!2500A}}^{_{\!-0.71\pm0.01}} \mathrel{igsplus} L_{bol}^{^{\!-0.71\pm0.01}}$

- The dependence on M_{BH} replaced by T
- $\frac{L_R}{L_X} \mu L_{bol}^{-0.33\pm0.10} M_{BH}^{-0.78\pm0.13} \mu T^{-1.32\pm0.4} M_{BH}^{-0.12\pm0.24}$
- Indeed, L_R/L_X differ by factor 10 100

Inverse-Neupert Effect in XRBs?

XTE J1118+480, Malzac et al. 2003

Large Stellar Coronal Flares The Neupert Effect

Cooling of The Radio Electrons

- · Radio synchrotron is likely not the main coolant
- · Compton cooling in radio-sphere is comparable or

faster
$$\frac{t_{comp}}{t_{synch}} = \frac{U_B}{U_{ph}} = \frac{B^2/8\rho}{L_{bol}/4\rho R^2 c} @ 0.1B_{\wedge}^{1/2}B^2 n_{5GHz}^{-7/2}$$

 In analogy with stellar coronae, radio electrons may cool through elastic Coulomb collisions

$$\frac{t_{coll}}{t_{synch}} = \frac{2 \cdot 10^{12} g/n}{5 \cdot 10^8 / gB^2} = 4000 \frac{g^2 B^2}{n}$$

provided that n is large enough > 10^5 cm⁻³

• If coll. dominate var. $t_{\text{coll}} < t_{\text{var}} \approx 10^4 - 10^7 \text{ s} \ (\approx \text{Rc})$ => $n > 2 \times 10^5 \text{ cm}^{-3} \ (\text{RQQ}) ; n > 2 \times 10^8 \text{ cm}^{-3} \ (\text{LLAGN})$

Preliminary Results & Prospects

- · X-ray-radio correlated variability
 - VLA with RXTE

· Clearly, more monitoring is needed

L_R and L_X in NGC 4051

- Jones et al. '11 ~consistent with $L_R \propto 10^{-5} L_X$
- Jones et al. '11,
 Ashley et al. '11
 find no significant
 radio variability
 with X-ray
 variability

Does $L_R \alpha L_X$ Hold at Higher Luminosities ($L_X > 10^{47} \text{erg/s}$)?

- $L_{2\text{keV}} \propto L_{2500\text{\AA}}^{0.72\pm0.08}$ mostly SDSS, independent of z (up to z \approx 5)
- FIRST survey for similarly high-L sources: L_R (5 GHz) $\propto L_{2500\text{\AA}}^{0.85\pm?}$ again with no significant z dependence
- Lack of z-dependence suggests again: Microphysics of electron heating and cooling determines L_R/L_X not the source specifics

Brocksopp et al. (2006)

ALTERNATION OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

Radio Observations of Stellar Corona (review by Güdel 2002)

- Resolved, extended coronal structures (mas) constrain a combination of $B-n_e$, through $F \sim I_{\parallel} R^2 \sim n_e B^{(p)} R^2$, but not B or n_e separately
- Turnover frequency v_{peak} at a few GHz (if identified) => B through B \sim v_{peak} (F/ θ^2)-2 \approx 100 Gauss
- Flares lasting minutes to hours; if synchrotron cooling dominates (with $\frac{1}{peak}$): B \geq 100 G; $\otimes \approx$ 7 (e.g., Benz et al. 1998).