Kinetic Luminosity of Quasar Outflows and its Implications to AGN Feedback: HST/COS Observations

Collaborators: Doug Edmonds Benoit Burguet Jerry Kriss Max Moe Jay Dunn Kirk Korista Chris Benn Manuel Bautista Eric Hallman Elisa Costantini Kentaro Aoki

Nahum Arav Virginia Tech

The average luminous quasar Has sub-relativistic outflows with:

- Large scale (~1000 pc.)
- Large mass flow (100 M_/yr)
- Kinetic luminosity sufficient for AGN feedback processes

Jet problems as AGN feedback agents - Narrow opening angle (coupling) - Negligible mass flux per unit of energy (~1000 times smaller than BALs)

Quasar 30175 VLA 6cm image (c) NRAO 1996

Kinetic luminosity of absorption outflows

$$\dot{E}_k = \frac{1}{2} \dot{m} v^2 \approx 2\pi f R N_H 1.4 m_p v^3$$

Up until about 5 years ago:

$$N_H \approx 10^{20-24} cm^{-2}$$

 $R \approx 0.01 - 10000 pc$
 $f \approx 0.2$
Exceptions: De Kool + (3 objects); Hamann 3c191

How do we go from the spectrum to measuring the kinetic luminosity?

From absorption troughs to kinetic luminosity

- Reliable measurements of N_{ion} cannot use EW, tau_{ap}
- Photoionization modeling to convert N_{ion} to N_H and U
- Distance of the Outflow from the Central Source:

$$U \propto \frac{L}{n_H R^2}$$

- Number Density via Troughs from metastable levels
- Fe II* UV1, UV2...; Si II* 1264, 1533... (see also poster by Doug Edmonds)

kinetic luminosity of component C in the SDSS 0838+2955 outflow (Moe+2009)

AGN feedback models need kinetic luminosity ~0.5-5%LBOL

What about the solid angle subtended by the wind? 20-40% of quasars show high ionization (C IV) winds $\to f\cong 0.2-0.4$

But only 20% of all outflows show low ionization species (Dai+ 2010)

What is the **full** kinetic luminosity of the SDSS 0838+2955 outflow?

Summery of problems

 Longwards of 1150 AA (HST band), most excited troughs are observed from Singly ionized species (Fe II, Si II, C II), which appear in only 10% of the outflows **Problems**: Solid angle and relevance to high ionization are model dependent.

(C III* is rare and kinematically undesirable and S IV* is rare see poster by Benoit Borguet)

- 2. No Handle on the very high ionization phase that dominates N_H in warm absorbers.
- Difficulties in separating photoionization from abundances and dust depletion effects due to the lack of troughs from two or more ions from the same element.

	Maior	Secondarv	Science diagnostics .				
500	lines	lines	Distance	Warm	Ionization		
				absorber	Abundances	12	
						1.2	
600							
700						0 5	
_						0.5	
ngt						ift	
eler						lsh	
/ave						Rec	
st St							
Res						0.0	
_							
1150			S115/E	chelle		0.1	
	Lya 1216	Ra	re occurrences of	no connection	only N V and C IV,	0 0	
	NV 1239/1243	Si I	I* and C III*	with WA	disentangle	0.0	
1600	CIV 1548/1551	SilV 1394/1403 (2 r	oublished objects)	material	abundances from		
1000		(4)			Ionization enects		

Enter He0238-1914

Mrk 279 photoionization curves

Mrk 279 photoionization curves

Physical parameters of the outflow

	Log (n _e)	R(pc)	M _{dot}	L _k 10 ⁴⁴ erg/s	v km/s
А	3.8	800	100	4 (0.5%L _{BOL})	4000
В	3.9	300	250	20 (2%L _{BOL})	5000

Physical parameters of the outflow

	Log (n _e)	R(pc)	M _{dot}	L _k 10 ⁴⁴ erg/s	v km/s
А	3.8	800	100	4±0.4dex	4000
В	3.9	300	250	20±0.8dex	5000

Consequences for AGN feedback

 Over 10⁸ years quasar duty cycle, such kinetic luminosity (2x10⁴⁵ ergs/s) will yield a total kinetic energy of 10⁶¹ ergs. Enough to inflate the largest observed Xray bubbles.

Intracluster chemical enrichment (Eric Hellman, Harvard)

For dynamical modelers

In most determined cases the outflows are $10^2 - 10^4$ pc from the AGN, far away from their presumed acceleration zone.

 Instead of calculating detailed absorption profiles for an accelerating winds, we need models that create and maintain absorption troughs at ~1000 pc away from the AGN

(Claude-André Faucher-Giguère + 2011)

For Gas Flows in Galaxies

Most galaxies experienced a violent period of high-energy high-speed outflows during their active quasar phase that influenced at least their inner 1-10kpc .

These episodes might have been the most important events in the relationship between the SMBH and the galaxy and other structure around it

Summary

Kpc scale quasar outflows are a major component of AGN feedback, reaching kinetic luminosities of a few percent of L_{BOL}, with mass flux of hundreds of solar masses per year.

Due to their larger opening angle and higher mass fluxes, absorption outflows may be more efficient for AGN feedback processes than AGN jets.

COS targeting objects at 0.5<z<1.5 is the way to go!

