Gamma-Ray Bursts: EVLA, ALMA, and Multi-Wavelength Observations

Edo Berger (Harvard) Ashley Zauderer, Tanmoy Laskar, Wen-fai Fong

Outflows, Winds and Jets: From Young Stars to Supermassive Black Holes – March 4, 2012

Outline

• GRBs as spectacular collimated explosions:

- The properties of the ejecta
- Jets, energetics, and environments
- Dark GRBs
- Short GRBs: progenitors, jets, energetics

• GRBs as probes of high redshift galaxies:

- Optical absorption studies of atomic interstellar gas at high redshift
- EVLA/ALMA absorption studies of molecular gas at high redshift

★A new frontier: EVLA/ALMA synergy

Explosion Physics & Energetics

Berger PhD thesis

Radio observations provide information on energy, expansion, geometry, local environment, galactic environment

Pre-EVLA/ALMA, radio afterglow detection rate is only ~10%

Relativistic Expansion

Pihlstrom et al. 2007

Relativistic Expansion

VLBI

Pihlstrom et al. 2007

Interstellar scintillation

e.g. Waxman et al. 1998; Chandra et al. 2008

The Properties of the GRB Ejecta

Afterglow emission is due to interaction with the circumburst environment (forward shock) and with the ejecta (reverse shock) \Rightarrow R.S. probes ejecta composition, Lorentz factor; peaks in the cm/mm

The Properties of the GRB Ejecta

Berger et al. 2003

The Properties of the GRB Ejecta

Energetics: Jets & Y-rays

t [sec] 105 106 5×10⁵ 104 5×104 ○ This paper 18 D OGLE R by \triangle Other data 19 20 ര Ъ, 21 2 'n 22 23 24 25 0.5 1 5 10 Days after UT May 10.36743

 $\theta_j \sim 1/\Gamma \propto t_j^{3/8}$

Energetics: Jets & Y-rays

Energetics: Jet Structure

Energetics: X-rays Flares

35

30

25

 z^{20}_{15}

10

- X-ray plateaus require energy injection into forward shock of ~10-100% of E_K
 - \Rightarrow wide distribution of Lorentz factors

Energetics: Blastwave Energy

The X-ray afterglow luminosity at ~I day provides a direct measure of the blastwave kinetic energy ($\Gamma \sim I0$); independent of density.

$$L_{\rm X,iso} \propto \epsilon_e E_{\rm K,iso} \implies L_{\rm X} \propto \epsilon_e E_{\rm K}$$

Narrow distribution with $E_{\rm K} \sim 10^{51}$ erg

Energetics: Radio Calorimetry

When $M_{swept} \sim E_K/c^2$ the blastwave becomes non-relativistic and spherical; energy can be measured independent of initial beaming (peaks in radio).

Frail et al. 2000, Berger et al. 2004

Energetics: Radio Calorimetry

When $M_{swept} \sim E_K/c^2$ the blastwave becomes non-relativistic and spherical; energy can be measured independent of initial beaming (peaks in radio).

Frail et al. 2000, Berger et al. 2004

Snapshot radio SED at ~I year can provide E_K with similar accuracy to multi-wavelength modeling.

Can be done routinely with EVLA

Environment: Circumstellar Environment

cm/mm observations (EVLA/ALMA) uniquely determine the density profile (optical/X-ray degenerate)

Environment: Circumstellar Environment

"Dark bursts" lack optical afterglows:

- High redshift?
- Dust extinction?

Using radio + X-rays we can infer the required extinction & determine positions for host galaxy searches.

"Dark bursts" lack optical afterglows:

- High redshift?
- Dust extinction?

Using radio + X-rays we can infer the required extinction & determine positions for host galaxy searches.

Zauderer et al. in prep.

 $E_{
m K,iso} = 7 \times 10^{52} \text{ erg}$ $\dot{M} = 6 \times 10^{-6} \ M_{\odot}/\text{yr}$ $\epsilon_e = 0.02$ $\epsilon_B = 0.10$ $t_{
m jet} = 3 \ d$ $\theta_j = 4.5^{\circ}$ $E_K = 2 \times 10^{50} \ \text{erg}$ $E_{\gamma} = 9 \times 10^{50} \ \text{erg}$ $A_V > 6 \ \text{mag}$

Zauderer et al. in prep.

z < 3.5 based on host

Zauderer et al. in prep.

$$E_{\rm K,iso} = 3 \times 10^{53} \text{ erg}$$

 $\dot{M} = 2 \times 10^{-6} \ M_{\odot}/\text{yr}$
 $\epsilon_e = 0.005$
 $\epsilon_B = 0.01$
 $t_{\rm jet} = 15 \ d$
 $\theta_j = 8.5^{\circ}$
 $E_K = 4 \times 10^{51} \ \text{erg}$
 $E_{\gamma} = 2 \times 10^{51} \ \text{erg}$
 $A_V > 9 \ \text{mag}$

z < 3.5 based on host

Zauderer et al. in prep.

Perley et al. 2009; Zauderer et al. in prep.

Zauderer et al. in prep.

Perley et al. 2009; Zauderer et al. in prep.

Zauderer et al. in prep.

Time since burst (d)

Perley et al. 2009; Zauderer et al. in prep.

The Progenitors of Short GRBs?

<u>NS-NS / NS-BH</u>

Eichler et al. 1989; Narayan et al. 1992

- Broad delay-time distribution
- Diverse environments / redshifts
- <u>"Kicks"</u>
- Gravitational waves

Short GRB Hosts

Association with elliptical galaxies & no accompanying supernova

Castro-Tirado et al. 2005; Gehrels et al. 2005; Hjorth et al. 2005; Bloom et al. 2006; Prochaska et al. 2006

Berger 2010

Berger 2010

$$P(\leq \delta R) = 1 - e^{-\pi(\delta R)^2 \Sigma(\leq m)}$$

Short GRB offsets agree with NS-NS merger models. Large offsets not expected in other models.

Short GRB Afterglows

Berger et al. 2005

 $\theta_{j} > 25 \text{ deg}$ $E_{\gamma,iso} \approx 4 \times 10^{50} \text{ erg} (>4 \times 10^{49} \text{ erg})$ $E_{K,iso} \approx 2 \times 10^{51} \text{ erg} (>2 \times 10^{50} \text{ erg})$ $n \approx 0.01 - 0.1 \text{ cm}^{-3}$

> Afterglow physics similar to long GRBs, but lower *E*, *n*

 $\theta_j \approx 7 \text{ deg}$ $E_Y \approx 1.5 \times 10^{49} \text{ erg}$ $E_K \approx 0.8 \times 10^{49} \text{ erg}$ $n \approx 1.5 \times 10^{-3} \text{ cm}^{-3}$

Short GRB Afterglows

Fong et al. in prep.

Existing radio data*: $n_0^{1/2} E_{\rm K,51}^{5/6} \lesssim 0.03$

* Iong GRBs: ~I

Short GRB Afterglows

Fong et al. in prep.

Existing radio data*: $n_0^{1/2} E_{\rm K,51}^{5/6} \lesssim 0.03$

* Iong GRBs: ~I

Rezzolla et al. 2012

 $\theta_j \approx 10 - 30^\circ$ $E_{\rm B-Z,iso} \approx 10^{51} B_{15}^2 \,\,{\rm erg}$

Rezzolla et al. 2012

 $\theta_j \approx 10 - 30^\circ$ $E_{\rm B-Z,iso} \approx 10^{51} B_{15}^2 \,\,{\rm erg}$

Rezzolla et al. 2012

 $\theta_j \approx 10 - 30^{\circ}$ $E_{\rm B-Z,iso} \approx 10^{51} B_{15}^2 \text{ erg}$

QSOs act as background sources of illumination GRBs are embedded within

their host galaxies

GRBs vs. quasars:

- In star forming regions
- No Mpc proximity effect
- Higher redshifts

Berger et al. 2006

Intrinsic

Berger et al. 2006

Ly series absorption

Berger et al. 2006

Berger et al. 2006

Metals

Berger et al. 2006

 $\log N_{H} = 22.1 \pm 0.1$ [S/H] = 0.06 Z_o

Berger et al. 2006

Berger et al. 2006

 $\langle N(HI)_{GRB} \rangle \sim 10 \times \langle N(HI)_{QSO} \rangle$

Molecular Absorption Spectroscopy

Absorption spectroscopy of cm/ mm emission can probe molecular gas (e.g. CO, HD, etc.) <u>in normal galaxies</u>.

Independent of galaxy mass, SFR, redshift.

Connect atomic and molecular gas information with galaxy SFR, M, etc.

Can be done for free with TOO observations (Cycle 1 proposal).

High-Redshift GRBs

z ≈ 8.26 (625 Myr)

Tanvir, Berger, et al. 2009

$z \approx 9.4$ (525 Myr)

High-Redshift GRBs

.

Ν

 $z \approx 8.26$ (625 Myr)

Radio emission can be detected at z>8; can provide a probe of Pop III stars

$z \approx 9.4$ (525 Myr)

• GRBs are laboratories for the structure, composition, evolution of highly relativistic jets.

• Evidence for collimation in short GRBs (NS-NS/NS-BH mergers).

• EVLA+ALMA synergy will revolutionize studies of GRB energetics, environments, hosts (obscured SF, molecular gas).