Theoretical Review of Outflow Phenomena from High Energy Systems **Roger Blandford**, **KIPAC Stanford** with **Jonathan McKinney (Stanford, Maryland) Sasha Tschekovskoy (Princeton)** Nadia Zakamska (JHU)

3 iii 2012

NRAO

Phenomenology

Some Issues

- Anatomical
 - Multi-frequency jet structure
 - Kinematics
 - Composition
- Physiological
 - Emission mechanisms
 - Pressures and powers
 - Confinement
- Sociological
 - Counts, LF, multivariate properties
 - Backgrounds

The Bigger Picture

Prime Mover?

- Protostars, stars, superstars, supernovae, pulsars... holes

- Black Hole Engineering?
 - Energy flow: disks or holes to jets
 - Mechanism: (Electro)magnetic vs gas, Accretion vs spin?

NRAO

- Galaxy Formation, Evolution/Feedback
 - Major vs Minor mergers
 - Gas vs Stars
 - AGN vs Starbursts
 - Jets vs Winds
- Environmental impact
 - (Re-)ionization
 - Cluster evolution...

Ten Challenges

- 1. Locate the sites of radio, γ emission
- 2. Map jet velocity fields and causality
- 3. Verify the emission mechanism
- 4. Understand the changing composition
- 5. Measure external pressure
- 6. Deduce jet confinement mechanism
- 7. Infer jet powers, thrusts
- 8. Test Central Dogma
- 9. BHGRMHD capability
- 10. Quantify role in clusters

Ten Challenges

- 1. Locate the sites of radio, γ emission -10-10⁶m!
- 2. Map jet velocity fields and causality $\gamma \theta$ =?
- 3. Verify the emission mechanism 5, C⁻¹, maser?
- 4. Understand the changing composition EM -> L -> H
- 5. Measure external pressure ISM, CGM, IGM
- 6. Deduce jet confinement mechanism B or P?
- 7. Infer jet powers, thrusts L_{jet} , L_{wind} / L_{bol} ?
- 8. Test Central Dogma M, M'/M, ΩM => intrinsic properties
- 9. BHGRMHD capability add microphysics
- 10. Quantify role in clusters environmental impact

Observation and Simulation

- FGST, ACT...OP...Radio, v all working well
- N~1000 sources sampled hourly-weekly
- Large data volumes justify serious statistical analyses of multi- λ data
 - Irregular sampling, selection effects
 - Work in progress
- Account for Extreme Jets
 - Most variable, fast, bright, polarized...

- Simulations are now becoming available
 - Understand kinematics, QED, fluid dynamics
 - Ignorant about particle acceleration, transport, radiation, field evolution

Latest Photon Intensity Map

832AGN+268Candidates+594Unidentified!

3C454.3

2x10⁵⁰erg s⁻¹ isotropic

Radio Monitoring (OVRO 40m)

- ~1500 sources
- Radio and γ -ray active
- Spectrum, polarization

Distribution of CGRaBS sources in equatorial coordinates. Red circles CGRaBS, Blue circles ILAC Max-Moerbeck etal

3 iii 2012

Rapid MAGIC variation

22:10:00

22:20:00

Time (UT)

• PKS 1222+21

3 iii 2012

3C 279: multi- λ observation of γ -ray flare

- ~30percent optical polarization
 => well-ordered magnetic field
- τ~ 20d γ-ray variation
 r~γ²cτ ~ pc or τ_{disk}?
- Correlated optical variation?
 => common emission site
- X-ray, radio uncorrelated
 > different sites
- Rapid polarization swings ~200°
 rotating magnetic field in dominant part of source

$r \sim 100 \text{ or } 10^5 \text{ m}?$

Abdo, et al Nature, 463, 919 (2010)

PKS1510+089 (Wardle, Homan et al)

43 GHz VLBA Images of PKS 1510-089

Two bright superluminal blobs emerged during the outbursts in brightness during the 2nd half of 2008 & the 1st half of 2009

Rapid swings of jet, radio position angle
High polarization ~720° (Marscher)
Channel vs Source
TeV variation (Wagner / HESS)
EBL limit
r_{min}; r_{TeV}>r_{GeV}

(B+Levinson)

Theory and Simulation

Flow Descriptions

Hydrodynamics

- Inertia, isotropic P, strong shocks,
- Efficient impulsive acceleration
- Force Free
 - No inertia, anisotropic P, no shocks
 - Electrostatic and stochastic acceleration

Relativistic MHD

- Mixture of both,
- Relativistic reconnection acceleration

Unipolar Induction

Rules of thumb:			
• $\Phi \sim B R^2$; $V \sim \Omega \Phi$;			
I~V / Z ₀ ; P ~ V I			
	PWN	AGN GR	B
В	100 MT	1 T	1 TT
Ω/2	10 Hz	10 μ Hz	1 kHz
R	10 km	10 Tm	10 km
V	3 PV	300 EV	30 ZV
I	300 TA	3 EA	300 EA
Ρ	100 XW	1 TXW	10 PXW

3 iii 2012

NRAO

Intermediate Mass Supply

- Thin, cold, steady, slow, radiative disk
- Specific energy $e = -\Omega l/2$

$$\begin{aligned} G - M'\ell &= const \approx 0\\ \frac{dL}{dr} &= \frac{d(\Omega G - M'e)}{dr} \approx 3M' \frac{de}{dr} \end{aligned}$$

Energy radiated is 3 x the local energy loss

• G

Supply

- $M' < M'_E$, tenuous flow cannot heat electrons and cannot cool
- M'>>M'_E, dense flow traps photons and cannot cool
- Thick, hot, steady, slow, adiabatic disk
- Bernoulli function: b =e+h

$$G - M'\ell \approx 0$$
$$\Omega G - M'b \approx 0$$
$$\Rightarrow b \approx -2e > 0$$

Energy transported by torque unbinds gas => outflow ADiabatic Inflow-Outflow Solution

Dipolar vs Quadrupolar

3D GRMHD Simulations

- >10⁵m Kerr-Schild, HARM, 512x768x64
 - Quasi-steady state
- Build up flux -back reaction
 - Thick spinning disks, suppress MRI
 - Dipolar not quadrupolar
- Efficient extraction of spin energy-> jets
 - Prograde not retrograde
- Wind outflows

3 iii 2012

- Poorly collimated, slow
- QPOs,
 - -~70m, a~ 0.9; Q~100 (jet) ~3 (disk)
- Strong intermittency
 - Helical instability m=1

McKinney, RB; McKinney, Tschekovskoy, RB

General Inferences

- FRII/FSRQ?
 - a>0.9
 - Hole powered
 - Long range order in field
 - Groups not clusters, few mergers
 - Thick disk?
 - Large mass relative to mass supply rate
 - Low gas density
 - Ellipticals not spirals

What happens to radial/horizontal field? Is polarity maintained along jet?

General Inferences II

- FRI/BL Lac
 - a<0.9
 - Disk powered
 - Short range order in field
 - Many mergers, spin according to FP equation with deceleration (Hughes & B)
 - Thick disk
 - Low gas density

"Observing" Simulated Jets Synchrotron Radiation

We know P', B', N', V on gridWork in jet frame

•Rotate spatial grid so that observer along z direction

•Shear in t - z space introducing $t_0 = t - z$

$$I_{\nu\Omega}(\nu,t_o) = \int dz \delta^2 j'_{\nu'\Omega'}(\nu/\delta,t_o) e^{-\int dz \delta^{-1} \kappa'(\nu/\delta,t_o)}$$
$$\delta = \frac{1}{\gamma(1-V_z)}$$
$$S_{\nu}(\nu,t_o) = \frac{1}{ad^2} \int dx dy I_{\nu\Omega}(\nu,t_o) \qquad \leqslant$$

Make emission model

•eg j' ~ P' B'^{3/2} $\nu \Box^{-1/2}$; $\kappa \Box$ ~ P' B'² $\nu \Box^{-3}$

Polarization - perpendicular to projected field in cm frame

Vß

 $\mathbf{Z}^{\mathbf{Z}}$

Z

"Observing" Simulated Jets Inverse Compton Radiation

- Work in jet frame
- Compute incident radiation along all rays from earlier observer times
- Compute $j_{\nu\Omega}$ directly

"Observing" Simulated Jets Pair Opacity

External and internal radiationInternal radiation varies

$$\kappa = \int ds d\Omega dv N_{v\Omega}(\vec{r} - \vec{s}, t_o - s(1 - \cos\phi), v) \sigma_{PP}(1 - \cos\phi)$$

Quivering Jets

- Observe γ -rays (and optical in 3C279)
- Gammasphere $\tau_{\gamma\gamma} \sim 1$, 100-1000m ~ Ey
- Rapid variation associated with convected flow of features (2min in Mkn 501)
- Slow variation associated with change of jet direction on time scale determined by dynamics of disk (precession?) or limited by inertia of surrounding medium or both as with m=1 wave mode.

Optical emission from jet with $\gamma \sim 3-4$

Zakamska, RB & McKinney in prep

3 iii 2012

NRAO

Total Flux and Degree of Polarization

3 iii 2012

Dynamical elements

- Bulk flow
- Shocks
- Shear flow
- Plasmoids, flares, minijets, magnetic rockets...
 - Lorentz boosting
- Precession
 - Disk
 - m=1 instability
- Turbulence

Each of these elements changes the field and the particles

Pair vs Ion Plasmas

- Pairs must be heavily magnetized to avoid radiative drag
- Circular polarization, Faraday rotation/pulsation
- Expect? pairs, field todecrease, ions to increase along jet

Particle acceleration in high σ environments

- Internal shocks are ineffectual
- Reconnection can be efficient
 E>B??
- Shear flow in jets
 - Full potential difference available particles accelerated when undergo polarization drift along E
 - UHECR (eg Ostrowski & Stawarz, 2002)
- Fast/intermediate wave spectrum
 - Nonlinear wave acceleration(Blandford 1973...)
 - Mutual evolution of wave cascade and particle distribution function
 - Charge starvation (eg Thompson & Blaes 1997)
- Force-free allows E>B catastrophic breakdown

Particle Acceleration

•S-C⁻¹ transition quite high in BLLacs

- •"Theoretically" $E_{\gamma} < \alpha^{-1} m_e c^2 \sim 60 MeV$
- •cf Crab Nebula, UHECR
- •Large scale electric fields
- •Lossy coax??
- •Follow particle orbits.
- •Which particles carry the current
- •Is the momentum elctromagnetic?

Pictor A

Electromagnetic Transport 10¹⁸ not 10¹⁷ A DC not AC No internal shocks New particle acceleration mechanisms

Wilson et al

Current Flow

Nonthermal emission is ohmic dissipation of current flow?

Pinch stabilized by velocity gradient

Equipartition³⁴ core

Faraday Rotation

Observations ???

Broderick & McKinney

3 iii 2012

$$\frac{\partial^2}{\partial x^2}V = LC\frac{\partial^2}{\partial t^2}V + (RC + GL)\frac{\partial}{\partial t}V + GRV$$
$$\frac{\partial^2}{\partial x^2}I = LC\frac{\partial^2}{\partial t^2}I + (RC + GL)\frac{\partial}{\partial t}I + GRI$$

Telegraphers' Equations

3 iii 2012

NRAO

Relativistic Reconnection

High σ flow
Hall effects may save Petschek mechanism
Anomalous resistivity?
Also for AGN

Inhomogeneous Sources

- Radio synchrotron photosphere, r ~ λ – Doppler boosting
- Compton gammasphere, r ~ E?
 - Internal, external radiation
 - Test with variability, correlation
- Electron acceleration
 - −>100 TeV electrons ↑

Summary

- Protostars->GRBs->Quasars
- Location, mechanism, collimation, origin...?
- FGST+TeV+multi- λ observations of blazars
- Major monitoring campaigns
- Rotating polarization, rapid variation
- GRMHD simulations answering basic questions about flows, dynamics
- "Observations" of simulations now possible to (in)validate simple phenomenological models and test against data and "best" examples.