VLBA & Chandra Observations of UGC FRI radio galaxies: Constraints on Jet Evolution

Preeti Kharb

Postdoctoral Fellow, Department of Physics, Rochester Institute of Technology (RIT), Rochester, NY

Chris O'Dea, Avanti Tilak, Stefi Baum, Jake Noel-Storr, Evelyn Haynes, Chris Fallon, Kevin Christiansen

Radio Galaxy Sample

- \diamondsuit Complete sample of 21 nearby (z < 0.023) Fanaroff-Riley type I radio galaxies from the Uppsala General Catalog
- ♦ <u>Multiwavelength campaign:</u> Verdoes Kleijn et al. (1999, 2002, HST/WFPC2); Noel-Storr et al. (2003, HST/STIS); Xu et al. (2000, 1.6 GHz VLBA-VLA)
- ♦ 10 of 21 showed parsec-scale core-jet structures

These 10 observed with polarization sensitive VLBA at 5 GHz
(Kharb et al., 2012, submitted to ApJ)

VLBA Polarimetry

- \Rightarrow 7 of 10 show polarized emission in jet; $m_{jet} \sim 5\%$ 30% "Spine sheath" structure --- Jet-medium interaction or Helical magnetic field
- \diamond At 5 GHz, RM \approx 220 rad m⁻² required to rotate χ by 45° --- *Observed* in FRI jets (e.g., *Taylor et al. 2001; Kharb et al. 2009*)
- \Rightarrow Jet sheath with path length = 10% of jet width (~5 pc), electron density ~0.1 cm⁻³ (hot X-ray gas in ellipticals; *Mathews & Brighenti, 2003*), "equipartition" B field ~5 mG

"Mixing layer" between jet and surrounding medium - threaded by a helical magnetic field (?)

Jet Intensity Evolution on Parsec-scales

- \Leftrightarrow 7 jets have $\log(I_{\nu})$ vs. $\log(d)$ slopes \approx -1.5
- \Rightarrow 3 jets have slopes \approx -3.5

Adiabatic Expansion: Relativistic Jet

$$I_{v} \propto (\Gamma_{j} v_{j})^{-(\gamma+2)/3} r_{j}^{-(5\gamma+4)/3} D^{2+\alpha}$$

$$I_{\nu} \propto (\Gamma_{j} v_{j})^{-(5\gamma+7)/6} r_{j}^{-(7\gamma+5)/6} D^{2+\alpha}$$

B_{pol} -dominated region

B_{tor} -dominated region

(Baum et al., 1997, ApJ)

$$\gamma = 2 \alpha + 1;$$
 D = 1/[$\Gamma(1-\beta \cos \theta)$]; $\beta = v_i/c;$ $\Gamma = 1/\sqrt{(1-\beta^2)}$

Case-I

- \Leftrightarrow For a jet with constant velocity on parsec-scales and α = 0.7 (γ = 2.4) $I_{\nu} \sim r_{j}^{-5.3}$ B_{pol} $I_{\nu} \sim r_{j}^{-3.6}$ B_{tor}
- \Leftrightarrow If $r_i \sim d^p$, then $p \sim 0.3$ 0.4 for the sources with slopes \approx -1.5
- \Rightarrow r_j ~ d^{0.4} gradual jet expansion which we cannot observe with our data. Need higher resolution observations, e.g., 15 GHz

Case-II

 \Rightarrow For a jet with constant radius on parsec-scales and $\alpha = 0.7$ ($\gamma = 2.4$)

$$I_{\nu} \sim (\Gamma v_j)^{-1.5} D^{2.7}$$
 B_{pol} $I_{\nu} \sim (\Gamma v_j)^{-3.2} D^{2.7}$ B_{tor}

- ♦ If $v_j \sim d^q$, then slopes match observations for jet distances = 0.5 3.5 pc $\theta \sim 15^\circ 25^\circ$ for B_{tor} , $\theta \sim 30^\circ 50^\circ$ for B_{pol} , $\beta = 0.9 0.6$ q = 0.05 0.23 \rightarrow Accelerating jet!
- → <u>Acceleration on parsec-scales</u> → "<u>Magnetic driving</u>" in highly magnetized jets (e.g., Vlahakis & Konigl, 2004, ApJ)
- → Pro: VLBI monitoring reveals accelerating jet knots (e.g., Cotton et al. 1999)
- → Con: Jet speed exceeds speed of light beyond ~4 pc!
- ♦ Case I is favored jets expand gradually but unobservable at 5 GHz
- \Rightarrow 3 sources with slopes \approx -3.5, may have high jet Lorentz factors Doppler dimming faster fall in Intensity with distance

Chandra Observations of UGC FRI sample

♦ 9/15 (~60%) sources observed with *Chandra X-ray Observatory* reveal X-ray jets

Radio = Grey-scale X-ray = Contours

- ❖ X-rays in FRIs are synchrotron emission (*e.g.*, Worrall 2009, A&A Rev.)
- ♦ Need particle re-acceleration
- ♦ Sites of bulk jet deceleration
- ♦ Scales ~ few kpc

Summary

- ♦ VLBP @ 5 GHz of 10 FRI radio galaxies from a complete sample of 21 UGC FRIs reveals polarized emission in 7 → presence of highly ordered magnetic fields on parsec scales.
- ♦ Aligned magnetic fields at jet edges "sheath"; Bimodal magnetic field structures
 "spine-sheath" → Jet-medium interaction or Helical magnetic fields.
- ♦ Can explain the oblique polarization as coming from a "sheath" which is a "mixing" layer. This outer layer could be threaded by a helical magnetic field.
- ♦ Intensity evolution suggests that *if jets expand adiabatically* then (1) jet expansion is gradual and unobservable in 5 GHz VLBI images, or (2) the jet is accelerating on parsec-scales. Case I favored.
- ♦ 9 out of 15 FRIs show X-ray jets → sites of bulk deceleration and particle reacceleration.
- ♦ FRI jets start out relativistically on parsec-scales, but decelerate on kpc-scales.