X-Ray Jets from Young Stars

Manuel Güdel University of Vienna

100-400 km s⁻¹

Protostar

<u>Outline</u>

- Herbig-Haro Objects
- Inner Jets
- Cooling
- Heating
- Conclusions

HH34

Shocks against ISM

Shock temperature

$$T_s = 1.5 \times 10^5 \,\mathrm{K} \left(v_{100} \right)^2$$
,

(Raga et al. 2002) requires a few 100 km s⁻¹: OK

Luminosity for radiative or non-radiative shock:

$$L^{\rm r} = 4.1 \times 10^{-6} n_{100} (r_{16})^2 (v_{100})^{5.5} L_{\odot}$$
$$L^{\rm nr} = 4.5 \times 10^{-5} (n_{100})^2 (r_{16})^3 v_{100} L_{\odot}$$

(Raga et al. 2002) typically works OK ($L_X \approx 10^{29-31} \text{ erg s}^{-1}$).

<u>HH 2 (Orion)</u>: at bow shock of HH object, 10^6 K, $L_{\chi} \approx 5 \times 10^{29}$ erg s⁻¹

V_{shock} = 200 km s⁻¹ required for heating measured motion: 230 km s⁻¹

(Pravdo et al. 2001)

<u>HH210 (Orion)</u>: T = 0.8 MK in fastest HH feature, $L_X \approx 10^{30}$ erg s⁻¹:

 $V_{shock} = 170-240$ km s⁻¹ required

observed bow-shock velocity 133-425 km s⁻¹

(Pravdo et al. 2004; contours: HST H α)

HH 80/81 (from very luminous source)

1.5x10⁶ K, $L_X \approx 4.5x10^{31} \text{ erg s}^{-1}$

 V_{shock} = 320 km s⁻¹ required some optical features are much faster (600-1400 km s⁻¹)

OD (HST; NASA/ESA)

Cepheus A East & West: HH168

6.4x10⁶ K, $L_X \approx 1.7x10^{30} \text{ erg s}^{-1}$

X-rays behind Hα:

cooling post-shock gas?

 $V_{shock} = 280-680 \text{ km s}^{-1} \text{ sufficient}$

~consistent with optical line width in some places (200-600 km s⁻¹)

(Pravdo et al. 2005, Schneider et al. 2009)

DG Tau X-Ray

X-Rays (Güdel et al. 2005/08)

X-rays located close to jet base: Internal shocks, or collimation shocks?

Coronal (hard) emission absorbed by dust-depleted accretion flows with $N_H > 10^{22} \text{ cm}^{-2}$

225 deg

Offset in 2010 approx. identical to 2005/06 (Schneider et al.: POSTER P47): standing structure; collimation region!

Radiative	Cooling V	r f
$EM = 0$ $\tau = 3$	$).83n_{\rm e}^2 V f$ $3kT/(n\Lambda)$	$f^{1/2} = (\mathrm{EM}/V)^{1/2} \tau \Lambda / (3kT)$ $n_{\mathrm{e}} = 3kT / (\tau \Lambda)$
DG Tau:	: EM = $1.39 \times 10^{52} \text{ cm}^{-3}$ V = $1.77 \times 10^{43} \text{ cm}^{-3}$ T = $3.7 \times 10^{6} \text{ K}$ T = 0.6 yr L _X = $1.8 \times 10^{29} \text{ erg s}^{-1}$	$f = 3.5 \times 10^{-5}$ $n_e = 4.8 \times 10^6 \text{ cm}^{-3}$
IRS 5:	$\begin{split} EM &= 8.0 \times 10^{51} \ \mathrm{cm^{-3}} \\ V &= 5 \times 10^{45} \ \mathrm{cm^{-3}} \\ T &= 7.0 \times 10^{6} \ \mathrm{K} \\ T &= 15 \ \mathrm{yr} \\ L_{X} &= 8.0 \times 10^{28} \ \mathrm{erg} \ \mathrm{s^{-1}} \end{split}$	f = 1.23×10^{-5} n _e = 3.6×10^{5} cm ⁻³

Jet intrinsic FWHM (AU)

Cooling of inner source including expansion

initial radius: 0.1" half opening: 10 deg

L1551 IRS5

(Schneider et al. 2011)

Pressure in the Plasma: Stationary Source

Hot gas contributes to jet expansion if not located at surface of jet or confined by magnetic fields

Origin of X-Ray Sources

X-ray shocks in collimation region

X-ray scattering

Colliding winds/jets from the two components

(Bally et al. 2003)

Plasma Mass Loss Rate

(Agra-Amboage+ 2011)

Small amount of high-velocity gas that has escaped detection in the optical? (Günther et al. 2009)

Pulsed jets

- Periodically ejected blobs
- Random velocity

Collisions between blobs and environment: knots

Depending on shocks, chains of X-ray knots

especially in low-density jets

mostly at jet base

Higher ejection rate \rightarrow higher L_X

(Bonito et al. 2010)

Diamond shock at nozzle, 1500 km s⁻¹ \rightarrow 8 MK (Bonito et al. 2011 for L1551 IRS5)

Reconnection

Winding up star-disk fields

- \rightarrow Antiparallel fields
- \rightarrow Heating and Reconnection
- \rightarrow Ejection of hot plasmoids
- \rightarrow _Further shock heating
- \rightarrow Jets?

(Hayashi et al. 1996)

Photoevaporation by X-Ray Jets?

Mass loss rate from DG Tau disk dominated by jet irradiation at

r > 22 AU

(Owen et al. in prep.)

...although this wind does not compete with accretion: star: $dM/dt \approx 3x10^{-10} M_{\odot} \text{ yr}^{-1}$ jet: $dM/dt \approx 7x10^{-10} M_{\odot} \text{ yr}^{-1}$

"SPECTROSCOPIC X-RAY JETS":

Conclusions

- X-rays found in protostellar and T Tauri jets from the base (collimation region?) to distant Herbig-Haro objects
- Plasma close to stars: high densities in standing structure
- Heating: shocks or magnetic?
- Important influence on protoplanetary disks: heating, ionisation, chemistry, photoevaporation

END