Jets and Outflows in Compact Stellar Binaries

Michael P. Rupen
NRAO/Socorro
5 March 2012

Inspiration and insight from...

Amy Mioduszewski \& Vivek Dhawan (NRAO)

- James Miller-Jones (Curtin Inst.)

Elmar Kording (Nijmegen), Christian Knigge (Southampton)
, Jeno Sokoloski (Columbia) \& the eNova team (Laura Chomiuk, Miriam Krauss, Traci Johnson, Tommy Nelson, Koji Mukai)
, Jon Miller (Univ, of Michigan)
, Bob Hjellming (NRAO)
...plus many others

Why study accreting stellar binaries?

- Well understood
- Richly varied: statistical samples and fabulous individuals
- Many repeating sources too

Tie accretion to outflow

Accreting stellar binaries

BH/NS at low luminosities: small \& steady

BH low Lx/Ledd

- High/soft X-ray state: no radio

Low/hard Xray state (up to $\left.\sim 2 \% L_{\text {edd }}\right)$: steady radio with flat/rising spectrum

BH low Lx/Ledd

- Low/hard state imaging
- Most are unresolved (e.g., V404 Cyg <1.4au, MillerJones et al. 2009)

Cyg X-1 @ 1.86 kpc 15 Msun $i=27.1 \mathrm{~d}$ (Reid et al. 2011)
, Some show low, stable linear pol'n
Emission is synchrotron

BH low Lx/Ledd

- Radio scales as $F_{X}{ }^{0.7}$

Gallo, Fender, \& Pooley 2003

Neutron star binaries: low Lx/Ledd

- Only low-B NS XRBs detected (in ANY state)
Radio $\times 30$ fainter at given L_{x}
- goes as
$L_{x}{ }^{1.4}$ (Migliari et al. 2004)
Only $\times 10$
fainter in soft state (Migliari et al. 2004)

Soleri \& Fender 2011

BH+NS, low Lx/Ledd

More recent BH are also faint!
Note A062000: 1e-8.5 Ledd (Gallo 2007)

Soleri \& Fender 2011

BH/NS hard to soft transtions: fast ejecta

BH state transitions

Hard-to-soft (Xray) transitions produce radio flares

- Optically thin (falling synchrotion spectra)
- Can be highly polarized

BH state transitions

Imaging (often) shows O(c) (even superluminal) jets

- n.b. core reappears in a few days
- Record is V4641

Sgr: 0.4 arcsec/day
at $>7.4 \mathrm{kpc}$
(Gamma>10)

BH state transitions

Some remain bright, with no deceleration

- GRS 1915+105
- SS433
- Cyg X-3 (sometimes)

NS state transitions

, Very few NS XRBs have been imaged, even in outburst
X-ray/radio light curves seem similar (esp. Z sources, e.g., GX $17+2$ Migliari et al.)
> Cir X-1 VLBI: sep'n about 1.6c @ 7.8 kpc

BH state transitions

Some fade, then re-appear without decelerating

- H1743-322 (with synchrotron X-rays!)
- Note disappearance of core...

H1743-322

BH state transitions

Others fáade, then reappear \& decelerate

- X1550-564 (with synchrotion X-rays!)
- Initial beta_app~2

X1550-564

BH state transitions

Some are smothered at birth

NS state transitions

$\wedge \beta_{\text {blob }} \sim 0.3-0.6$
> $\beta_{\text {flow }} \geq 0.95$
A Also see transverse expansion
$>$ cf. Cir $X-1$: $\Gamma_{\text {flow }} \geq 21$? (Fender et all, 2003)

BH state transitions

- CI Cam had no discernible jet at all
- KE of jet was comparable to integrated Juminosity of entire outburst

CI Cam

Smothered jets on large scales

\checkmark KE of jets is quite significant, of order the total radiated Iuminosity \rightarrow quite efficient ($>5 \%$)
Alas, there are examples (cf. Heinz etc.)

Not everything is a jet...

- Smothered pulsar (pulsar wind nebula) see Paredes later today

BH/NS XRBs: spin

Spin is not obviously important for X-ray binary jets (Fender et al. 2010; Migliari et al. 2011)

- but spin measurements are controversial for BH XRBs, and observations are especially sparse for NS XRBs

White dwarf binaries

Accreting White Dwarfs

	Cataclysmic Variables (CVs)	Supersoft Sources	Symbiotics
Size	Small	Medium	Large
Mass donor	Dwarf	Evolved	Giant
M	Low	High	High
$L_{\text {WD }}\left(L_{\text {sun }}\right)$	Few	$1 e 4$	1 e 3
M Mech	Stable RL overflow	Unstable RL overflow	Wind
Jets?	YES	YES	YES

Cataclysmic variables: non-magnetic

, SS Cyg

- Dwarf nova
- Non-magnetice
- Nearby (100pc) \& bright
, Unresolved with VLBA
\checkmark Also detected

SS Cyg V3885 Sgjr, but not Z Cam (higher Mdot)

Cataclysmic variables: non-magnetic

, SS Cyg broadly fits the state transition/outf low paradigm
, Not detected in quilescence

Cataclysmic variables: intermediate polars

$>$ AE Aqr (e.g.,
Dubus et al. 2007): persistent with flares
V1223 Sgr (Harrison et al. 2010): opticallythin synchrotron flares (to mid-IR)

Cataclysmic variables: polars

, No emission from isolated magnetic WDs
, AR UMa (230 MG), AM Her

- Persistent but variable
- Seen even in low accretion state

AR UMa
$>$ Suggest accretion STOPS outflow in these systems!

Symbiotics

$\gg 5 \%$ have some evidence for collimated flows
Often transient
>10 s of mas to 10 s of arcsec (10s to 1000 s of au)
$>100 \mathrm{~s}$ to $1000 \mathrm{skm} / \mathrm{s}$
, Thermally-powered synchrotron

Symbiotics \& Supersofts: which give jets?

, Nuclear shell burning and not

- Close and wide symbiotics

With and (mostly) without strong WD magnetic fields
, Some associated with outbursts (e.g. novae), some not
Some may not have disks (SSS, novae)

Symbiotics

© CH Cyg: radio jet correlated with lack of optical flickering (Sokoloski \& Kenyon 2003)

Symbiotic novae RS Oph

Synchrotron shell

- $7500 \mathrm{~km} / \mathrm{s}$
- Asymmetric - red giant wind?

Symbiotic novae: RS Oph

- Thermal jets power the lobes 56 days after explosion
- Is there a disk??
- Continuous flow for at least 1 month after eruption
- Opening angle <4degs
$>$ Jets in quiescence too

Symbiotic novae: V407 Cyg

Mioduszewski et al.
, EVLA A config at day ~450
Aligns with early MERLIN

The future

The radio revolution

ALMA, JVLA...but also eMERLIN and VLBA

- Imaging is essential
- Very wide bandwidths: instantaneous spectral indices

The radio revolution

Sensitivity $=$ time resolution
Sensitivity $=$ spatial resolution
Sensitivity $=$ response time
Sensitivity $=$ polarization
Sensitivity = diffferent sources

- Neutron star binaries
- White dwarf binaries
- Really test importance of accretion disk, central source, magnetic fields.

The radio revolution

Sensitivity = serendipity

- Cf. V407 Cyg
- Spectral lines (masers, absorption) esp. with wide bandwidths
- "invisible" jets
- Unknown radio transients

New stuff

Thermal flows: ALMA, but also JVLA - radio recombination lines

Winds from companions

- maybe from disks, a la SS433 (cf. Blundell)
- jet powers!

Synchrotron turn-overs
Waaaay down in the jet

Stars are GREAT!

...and will soon be even better ©

