

Outflows from Young Stars

Frank H. Shu Academia Sinica & University of California ALMA/NAASC 2012 Workshop 3 March 2012 Charlottesville, VA

Outline and Logic of Talk

- Contemporary formation of high- and low-mass stars is dominated by how $\lambda \equiv 2\pi G^{1/2} M / \Phi$ becomes ≥ 1 .
- Nonideal MHD collapse leads to some loss of flux at tens of AU scale, with $\lambda = 4$ to 10 being a typical outcome.
- Most of the mass ends up in the star; almost all of the flux in the disk. MRI gives turbulent v and η .
- The latter yield $\Sigma(\varpi)$, $B_z(\varpi)$, $\Omega(\varpi) = \bar{f} (GM_* / \varpi^3)^{1/2}$ with $\bar{f} < 1$ (sub-Keplerian rotation) of inner disk.
- Viscous/resistive heating is too weak to launch a magnetocentrifugal disk-wind, but photoevaporation can assist a wind in the outer disk.
- Fast jet (X-wind) originates in the innermost part of the disk before truncation by a funnel flow onto a strong stellar magnetic field.
- In transients, magnetic pressure ("magnetic tower") can help drive the outflow, but effect is sensitive to details of v and η . Asymptotically in time, such a magnetic tower becomes an X-wind.

LMSF: NGC 1333 IRS 4A Girart, Rao, Marrone (2006)

Binary formation: Kratter, Matzner, Krumholz, Klein (2010) Best Fit:Goncalves, Galli, Girart (2008) based on ideal (Allen, Li, Shu 2003) & non-ideal collapse theory (Galli, Lizano, Shu, Allen 2006). $\lambda_{\text{split monopole}} \approx 1.6$ $R_{\rm Ohm} \approx 5 - 50 \, {\rm AU}$ $\eta \approx 1 - 4 \times 10^{20} \text{ cm}^2/\text{s}$ for d = 300 pc. Likely value in star plus disk: $\lambda_0 \approx 4$.

HMSF: W51

• 1.3 mm Polarization Map (Lai et al. 2001)

0.87 mm Polarization Map (Tang et al. 2009)

IMSF: Polarized Radio Emission Carrasco-Gonzalez et al. (2010)

Mixing-Length Theory of MRI Loop Soup

(Shu, Galli, Lizano, Glassgold, Diamond (2007)

Cf. Lubow, Papaloizou, Pringle (1994); Bai & Stone (2010), local sim.

Strongly Magnetized Disks Are Sub-Keplerian Shu, Lizano, Galli, Mohanty, Cai (2008)

Sub-Keperianity $\overline{f} \le 1$ and disk compression $A / A_0 \le 1$, where $A_0^2 = 2a^2 \overline{\omega} / GM_* \ll 1$, are related to magnetization $\mu = B_z^2 / 4\pi P_0$: $1 - \overline{f}^2 = \frac{A_0}{I_0} \left(\frac{A_0}{A} - \frac{A}{A_0} \right),$ $\frac{A}{A_0} = \left(1 - \frac{I_\ell^2}{2}\mu\right)^{1/2}.$ For model of Blandford & Payne (1982), $B_{z} \propto \overline{\omega}^{-5/4}, \ \ell = 1/4, \ I_{\ell} = 1.43 = \tan i,$ $i = 55^{\circ} > 30^{\circ}$, good news for disk-winds. Problem: $1 - \overline{f}^2 = O(A_0)$ if $A / A_0 \sim 0.5$. Thermal launch: $1 - \overline{f}^2 = O(A_0^2)$.

Disk winds cannot both thermally launch and fling unless magnetic diffusivity is large (e.g., Konigl, Salmeron, Wardle 2009).

X-winds in Action Cai, Shang, Lin, Shu (2008)

- Heinemann & Olbert (1978), Hartmann & MacGregor (1982), Shu, Lizano, Ruden, Najita (1988), Shu et al. (1994)
- Cold limit of ideal, axisymmetric, steady MHD:

$$\nabla \cdot (A \nabla \psi) + \frac{1}{A} \left(\frac{J}{\varpi^2} - 1 \right) \frac{J'}{\varpi^2} + \frac{2\beta\beta' V_{\text{eff}}}{(\beta^2 - \varpi^2 A_1)^2} = 0,$$

$$\frac{\varpi^2}{2} A^2 |\nabla \psi|^2 + \frac{\varpi^2}{2} \left(\frac{J}{\varpi^2} - 1 \right)^2 + \frac{\varpi^4 V_{\text{eff}} A^2}{(\beta^2 - \varpi^2 A_1)^2} = H(\psi) = 0,$$

$$A = \frac{\beta^2 \rho - 1}{\varpi^2 \rho}. \text{ Elliptic from X to F, hyperbolic afterward.}$$

$$A = \frac{\beta^2 \rho - 1}{\varpi^2 \rho}. \text{ Elliptic from X to F, hyperbolic afterward.}$$

$$S = \iint \left[\frac{A}{2} |\nabla \psi|^2 - \frac{1}{2A} \left(\frac{J}{\varpi^2} - 1 \right)^2 + \frac{V_{\text{eff}}}{\beta^2 - \varpi^2 A} \right] \varpi d \varpi d z.$$

Example: inverse loading $\beta = \frac{3}{2} \overline{\beta} (1 - \psi)^{-1/3}, \text{ fast}$

$$\overline{\beta} = 1, 2, 3 \ (\overline{J}_w = 2.64, 4.36, 6.20; f_w = \frac{1}{3} \text{ for } \overline{\beta} = 1.21).$$

$$\overline{S} = \frac{1}{3} \text{ for } \overline{\beta} = 1.21).$$

Difficulties of Jet-Rotation Predictions for Fast, Lightly Loaded, Disk Winds

Rotation of jets best tested in edge-on systems. Compare with HH211 (Lee et al. 2007). Similar situation in HH212 (Lee et al. 2008).

Synthetic Image of Pure X-wind (Shang, Glassgold, Shu, Lizano 2002)

Predictions for Position-Velocity Diagram

Coexistence Fast Jet & Slow Wide-Angle Wind in Cepheus A HW2: Torrelles et al. (2011)

Slow rotating wide-angle wind = photoevaporative MHD disk flow?

Disk Truncation & Funnel Flows

- Ram pressure balance: Ghosh & Lamb (1978)
- Angular momentum balance:
 - Funnel vs. disk viscosity Cameron & Campbell (1993)
 - Funnel vs. X-wind
 Ostriker & Shu (1995);
 Johns-Krull & Gafford (2002);
 Mohanty & Shu (2008)
- Concept of trapped flux for any multipole superposition:

$$F_{h}\overline{B}_{h} = \overline{\beta}f^{1/2} \left(\frac{GM_{*}\dot{M}_{d}^{2}}{R_{*}^{5}}\right)^{1/4} \left(\frac{R_{X}}{R_{*}}\right)^{3/4}$$

with $\overline{\beta} = 1.21$ for f = 1/3 (Cai et al. 2008).

Donati et al. (2006, 2008)

160 G

180 G

Oph

BP Tau

Funnel Flows and X-winds Appear Simultaneously in Theory and in Simulations where $\eta \ll v$ Shu, Najita, Ostriker, Shang (1995) Shu, Lizano, Galli, Cai (2007)

Note "puffed rim", that gives larger " $R_{dust.}$ " CAIs launched from inner ring (Shu, Shang, Lee 1996). This main explain O-isotope anomalies of SS (Clayton 1973; McKeegan 2011).

Needed extension: account of interstellar field trapped in disk.

Romanova, Long, Kulkarni, Kurosawa, Ustyugova, Koldoba, Lovelace (2007)

688

Transient FU Orionis Outbursts Konigl, Romanova, Lovelace (2011)

Similarities to "steady" models (Shu et al. 1988, 2008): diffusivities and spatial/temporal extent of outburst.

Difference: Star not equilibrium rotator but drives "magnetic bubble or tower" (Draine 1983, Lynden-Bell 1996).

Asymptotically in time (toward end of outburst), star is spun up and magnetic tower becomes X-wind.

Conclusions

- Trapping of interstellar flux in SF plus MRI viscous/resistive diffusion automatically produces **B** configuration conducive to disk wind.
- However, fields strong enough to fling gas to high velocity imply disks sufficiently sub-Keplerian as to make thermal loading difficult.
- Observations favor YSO jets originating from a small range of disk radii, as in X-winds, but the slow (rotating) component in some observed outflows may come from a magneto-centrifugally assisted photo-evaporative wind in outer disk.
- Transient outbursts (high states in disk accretion) can compress the stellar field and yield "magnetic towers." Spin-up of the central star then asymptotically yields X-winds.
- Thus, in different situations, realistic YSO outflows may be X-winds, magnetic towers, magneto-centrifugally assisted photo-evaporative winds, or swept up shells (not discussed).
- ALMA will provide much more stringent, exquisite tests.