(Video credit: NASA's Goddard Space Flight Center)

Evidence for Gamma-ray Jets in the Milky Way

Meng Su

Collaborators: Douglas P. Finkbeiner, Tracy R. Slatyer

Harvard University

Jet 2012, NRAO, Charlottesville 2012.03.04

Fermi Bubbles

Giant gamma-ray structure with sharp edges discovered using Large Area Telescope on board Fermi Gamma-ray Space Telescope

Appearing rise up & down from the Galactic center They are:

> 50 degrees high (~ 8.5 kpc)

> Well centered on longitude zero (close to latitude zero)

Imply ~TeV electron energy!

Su, Slatyer, & Finkbeiner (2010)

High energy gamma-rays are produced via interactions between cosmic-rays (CRs) and the interstellar medium (or the interstellar radiation field)

(from Tsunefumi Mizuno)

The Fermi-LAT 1.5 year maps

Su et al. (2010)

The Fermi-LAT three year maps

Su & Finkbeiner (2012)

3

Data minus Fermi diffuse emission model:

Subtracting the Fermi diffuse emission model reveals a faint bilobular structure in the inner Galaxy.

This is a complicated model - could the residual structure be an artifact?

Model contains ⁰ and bremsstrahlung from gas maps; IC from GALPROP; North Polar Spur feature from Haslam map.

Let's try something very simple and see how robust this is.

Simple disk model

Fermi Bubble from three year maps

low energy gamma-ray template (dust-subtracted) as the IC component. Su & Finkbeiner (2012)

The bubbles have Sharp edges!

Fermi Bubble

Now we can do a multilinear regression at each energy, including dust and simple templates for disk, Loop I, and the bubbles

> Does the edge have a harder spectrum than the interior? NO.

 \succ Is the north harder than the south? NO.

Bottom line: No matter how we do the fit, the bubbles have a harder spectrum (index ~ -2) than the other IC emission (index ~ -2.5).

The gamma-ray spectrum extends up to ~ 50 GeV or more, implying > ~ 100 GeV electrons.

> If it is CMB scattering, we have ~ 1 TeV electrons!

Compare with WMAP haze

The Fermi bubbles are clearly associated with WMAP haze

The same electron spectrum can easily make both!

Su et al. (2010)

ROSAT 1.5 keV

(Su et al. 2010).

(Su et al. 2010).

Sharp edge in X-ray too!

XMM-Newton observation

So far: there appear to be a pair of giant (50 degree high) gamma-ray bubbles at 1-5 GeV, and probably up to at least 50 GeV.

What are they?

Black hole "burp"
Superwind bubble?
Dark matter?

(Sylvain Veilleu's talk yesterday)

Mystery: How do we get TeV electrons 10 kpc off the disk in the last < Myr?

In situ acceleration. Shocks? Reconnection?

If they are formed quickly by AGN activity, then kinetic energy >> 10^{55} erg. Could do, but this would be an impressive event for our humble little BH.

Large starburst-produced bubble has a severe cooling time problem. The bubbles should be $\sim 10^7$ yr old, but cooling time for TeV (or even 100 GeV) electrons is much shorter

Cooling time is short!

Su et al. (2010)

Is there any large scale jet feature?

WMAP 23 GHz polarization

Magnetic field on bubbles

Rotation measure from the NRAO VLA Sky Survey

A. N. Taylor et al. (2009)

Signature of B-field compression

galaxy cluster MS 0735.6+7421 in Camelopardus

Perseus galaxy cluster

Take home message

Fermi Bubble

- Fermi -LAT reveal two giant gamma-ray bubbles
- The gamma-ray emission associated with these bubbles has a significantly harder spectrum $(dN/dE \sim E^2)$ with sharp edges
- The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; the edges of the bubbles also line up with features in the ROSAT X-ray maps at 1.5 2 keV.
- Faraday rotation measurement shows significant change on the edge of the bubbles, indicating the magnetic field structure or gas density variation.

- The Galactic gamma-ray bubbles which were most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ~10 Myr
- Dark matter annihilation/decay seems unlikely to generate all the features of the bubbles
- Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

Promising Future

O Continue observation of Fermi

- XMM-Newton data coming soon with other X-ray observations including Chandra and Suzaku
- The eROSITA and Planck experiments will provide improved measurements in X-rays and microwaves, respectively, associated with the Fermi bubbles
- Radio observations and magnetic field structure of the bubbles

Thank You for Your Attention!

(Video credit: NASA's Goddard Space Flight Center)

500-900 GeV electrons scattering CMB roll off at the right (low) energy.

It is easy to get bumps and wiggles in the wrong places...

Two arguments for CMB scattering:

➤ 1. The bubble intensity is ~flat with latitude, while starlight density is falling.

 \geq 2. The shape of the IC spectrum.

500-900 GeV electrons scattering CMB roll off at the right (low) energy. (But see Crocker & Aharonian 2010)

Together these imply that the Fermi bubbles are Mainly ~TeV electrons scattering the CMB. (Note that the WMAP haze is produced by ~10 GeV electrons.)

Now, how about X-rays?

Any Substructure of the bubbles?

Fermi 1 < E < 5 GeV 90 North bubble Loop I . 45 North arc 0 Donut -45 South bubble -90 1 T. - 1 90 -90 180 0 -18

Fermi 1 < E < 5 GeV

To understand the data...

Full physical model:

Pro: uses everything we know to fit data.Con: only used what we put in the model

Provides the most secure interpretation of the data

Template analysis

Pro: the templates work pretty well; may reveal new emission mechanisms. Simple.

Con: must assess fit residuals carefully, because fit is never perfect

Good for finding the unexpected!

(Bland-Hawthorn and Cohen 2003)

X-ray reflection nebulae in the GC.

There are indications of previous GC activity from X-ray echoes and time variability of reflected X-ray lines (Sgr B1 and B2, Sgr C, and M0.11-0.11) They are likely due to reflected X-rays from previous activity of Sgr A* with high luminosity ~300 yr ago.

1, Thermal wind from the central cluster of massive young stars

2, Steady outflows from Sgr A*

3, Repeated episodicoutbursts (jets) from SgrA* (Markoff 2010)

(Markoff 2010)

Is there jet in GC?

However, detailed examinations of the GCL have shown that the gas shell is deep into the disk, and do not support a jet origin for that structure (Law 2010).

Kelvin-Helmholtz instabilities

Guo & Mathews (arXiv:1103.0055)

