Sgr A* and Its Activity

Farhad Yusef-Zadeh Northwestern University

• Sgr A*

- 1 Overview: Mass and SED
- 2 Time Variability
 - o Plasma Expansion Model
 - o Jet Model
- 3 Structural Details near Sgr A*
 - o The mini-cavity
 - o Blobs
 - Continuous Linear Feature (1pc)
 - Jet Outflow?
 - 4 Large Scale Streamers (15pc)
 - Starburst Driven Outflow?

Spectral Energy Distribution

- Variable and Quiescent Components
- SED peaks in Submm
- Quiescent: Radio/ Submm (optically thick)
- Variable: IR/X-rays (optically thin)
- Underluminous:

 $\nu L_{\nu} \approx 100 \, \mathrm{L}_{\odot}$

$$L_{\rm bol} = \epsilon \dot{M} c^2 = 1.5 \times 10^7 \frac{\epsilon}{0.1} \left(\frac{\dot{M}}{10^{-5} \,{
m M}_{\odot} \,{
m yr}^{-1}}
ight) \, {
m L}_{\odot}$$

- The Steady Component: Two classes of Models
 - Accretion flow
 - Jet outflows
 - Degeneracy

The Variable Component: Cross-Correlation

- Variability on Even Horizon length scale
- VLA Observations 43 and 22 GHz: Feb 2005, BnA array
- The cross correlation peaks:
 - 20-40 minute time delay led by 43GHz peak

Expanding Blob of Explain Synchrotron Light Curves

٠

٠

٠

٠

- B=11G
- Initial radius=2.2 R_s
- P=1

Jet Model Fitting of Light Curves

- Time Dependent Jet Model (Maitra, Markoff and Falcke 2009)
- But. there is no evidence for a Jet on a VLBI scale
- Degeneracy again
- Is there a large scale Jet?

ESO PR Photo 23a/02 (9 October 2002)

- Ionized mini-spiral structure (Sgr A West)
- A couple of light years across
- 2cm Continuum
- Young and evolved stellar clusters

Min-cavity: Morphology & Kinematics

- Radio observations at 3.6cm
- Chain of blobs
- Cavity of ~2" diameter
- Ridge of emission
- Kinematically disturbed
- Low L/C ratio

Mini-cavity: Shocked gas

- Fell and Felll emission from the mini-cavity
- Bow-shock structure
- High Felll/ratio
- Shocks to enhance Fe abundance
- Photoionized by UV photons

Mini-Cavity: Hot Gas

- X-ray Emission from the mini-cavity
- Hot million degree gas
- Shocked gas with v~1000 km/s
- Lx ~10³⁴ ergs/s

Mini-cavity and Blobs: Origin and Formation

- Morphology
- Kinematically disturbed
- Expanding bubble
- Thermal
- High L/C ratio in RRL
- High Fe abundance
- Low 12micron/2cm
- X-rays
- High Fell/2cm
- Focused Winds vs, Jet outflow from Sgr A*?

Mini-cavity and Blobs: Origin and Formation

- Morphology
- Kinematically disturbed
- Expanding bubble
- Thermal
- High L/C ratio in RRL
- High Fe abundance
- Low 12micron/2cm
- X-rays
- High Fell/2cm
- Focussed Winds vs, Jet outflow from Sgr A*?

3.6cm Continuum: Blobs of Emission

INNAME: 3CMA NE A2.JETSOK.1

2cm Continuum: Blobs of Emission

1.3cm Continuum: Blobs of Emission

SGUUSE IPOL 14958.650 MHZ

INNAME" SGUU98+6. JETAX 2

1.3cm Continuum: Blobs of Emission

Radio Images

Linear Polarization

- Few to 20% polarization at 3.6cm
- Total intensity

• Polarized Intensity

Relativistic or Sub-relativistic Jet Outflow?

- Highly collimated Jet
- Has to be fast not be bent by tidal effects
- Dynamically young (~100 years)
- Enough ram pressure to punch through 10⁴cm⁻³
- $L_{kinetic} \sim 10^{38} \text{ erg/s}$
- $L_{mini-cavity} \sim 10^{34} \text{ erg/s}$

Radio X-ray

Relativistic or Sub-relativistic Jet Outflow?

Large Scale Streamers

• Radio Continuum Image 90(R), 20(G) and 6B) cm

Large Scale Streamers

- 6cm Continuum image (B)
- X-rays 1.4-4 keV (R)
- $Lx \sim 10^{36} \text{ ergs/s}$

II. NGC 4258: Mega Maser Disk

- Application: Engulfing Cloud
- Keplerian dominated regime
- M_{disk} < 1-15% M_{bh}
- Thin disk: h/r <2% (NGC 4258)

Conclusions

1. Preliminary Measurements: Outflow from Sgr A*

- Accretion disk
- □ Orientation of clockwise stellar disk
- □ Interaction with the mini-cavity
- □ Support the jet mode

2. Streamers: Thermal X-rays and Nothermal radio Emission

- □ Mixture: Hot, warmd and cold phases
- □ Collimation by the 2pc molecular ring

Linear Polarization

- Few % polarization at 6cm
- Total intensity image

Polarized Intensity image

Large Scale Streamers

III. Molecular Ring Orbiting Sgr A*

- Kinematics: rotation with v~110 km/s
- Velocity dispersion ~27 km/s; Disturbed motion
- 26 dense cores
- size ~ 0.25 pc
- Tidal Stability?
 - Virialized mass
 - Optically thick HCN(1-0) line
 - Optically thin HCN(1-0) line
- Mass ~ 5.5, 7.9, 0.6 $\times 10^5$ M_{solar}
- density ~ 3.8, 5, 0.1 x10⁷ cm⁻³

1.3cm Free-free emission HCN (1-0) emission