Introduction to Radio Interferometry

Megan Ansdell

With help from Alison Peck, Jim Braatz, Ashley Bemis, Sabrina Stierwalt

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Very Long Baseline Array

Introduction to Radio Interferometry

- □ Quick background on radio astronomy
- □ Radio interferometry: how does it work?
- \Box (u,v) visibilities & aperture synthesis
- □ Turning visibilities into images
- □ Brief note on calibration
- □ Useful radio interferometry references

Radio astronomy: (sub-)mm to cm wavelengths

Radio astronomy uses heterodyne receivers

Heterodyne receivers down-convert observed signals to lower frequencies by mixing them with artificially created **Local Oscillator [LO]** signal

The output can then be amplified and analyzed more easily (e.g., by the correlator) while retaining the original phase and amplitude information

Long wavelengths mean no glass mirrors

Introduction to Radio Interferometry

- **W**Quick background on radio astronomy
- □ Radio interferometry: how does it work?
- \Box (u,v) visibilities & aperture synthesis
- □ Turning visibilities into images
- □ Brief note on calibration
- □ Useful radio interferometry references

Interferometry lets us achieve high angular resolution at radio wavelengths

Angular resolution for most telescopes is ~ λ/D

D is the diameter of the telescope and λ is the wavelength of observation

For the Hubble Space Telescope:

 $\lambda \sim 1 \,\mu m \& D \sim 2.4 m \rightarrow resolution \sim 0.13$ "

2km dishes would be needed for HST resolution at $\lambda \sim I mm$

Instead, we use arrays of smaller dishes to achieve high angular resolution at radio frequencies

This is interferometry!

Radio interferometers measure interference patterns between pairs of antennas

An **interferometer** measures the interference pattern produced by multiple apertures, much like a two-slit experiment

In radio astronomy, the apertures are the individual radio **antennas** and the signals are multiplied (not added)

Radio interferometers measure interference patterns between pairs of antennas

Signal arrives at each antenna at a different time (due to different travel lengths) depending on the location of the antenna in the array

> The down-converted signals from each antenna are then combined using **correlators**, where the time delay is measured and corrected using software

Radio interferometry is complicated

Signals **going out** to antennas control pointing/tracking, receiver tuning, timing reference, etc.

Need accurate clocks to precisely measure arrival times

Band 10 wavelength error = 1 picosecond & need << wavelength timing precision Each antenna has on-board clock with high sampling rates

Radio interferometry is complicated

JRA(

Signals **going out** to antennas control pointing/tracking, receiver tuning, timing reference, etc.

Astronomical signals coming **back** are sent to correlator (total array = 600 GB/s to process)

A radio interferometer in action...

Introduction to Radio Interferometry

- **W**Quick background on radio astronomy
- Radio interferometry: how does it work?
- \Box (u,v) visibilities & aperture synthesis
- □ Turning visibilities into images
- □ Brief note on calibration
- □ Useful radio interferometry references

Fourier transforms [FT] allow us to translate interference pattern measured at telescope into radio brightness on the sky

What is the complex visibility V(u,v)?

Real component = **amplitude**

<u>Brightness</u> of a certain frequency component

Imaginary component = **phase**

<u>Where that frequency component is located</u>

What is the complex visibility V(u,v)?

Real component = **amplitude** <u>Brightness</u> of a certain frequency component Imaginary component = **phase** <u>Where</u> that component is located

Very Extended SMA configuration

NRAC

Problem of (u,v) plane sampling

What happens if our (u,v) coverage is not complete?

Problem of (u,v) plane sampling

What happens if our (u,v) coverage is not complete?

Sampling (u,v) plane = "aperture synthesis"

Sample V(u,v) at a enough (u,v) points using distributed small antennas to synthesize large antenna of size (u_{max},v_{max})

For **N** antennas, we get N(N-I) samples at each observation Fill out the rest of the (u,v) plane using 1) Earth's rotation and 2) physically reconfiguring antennas

Aperture synthesis example: MI00

ALMA 12m shows smaller spatial scales (denser, clumpier emission) ACA 7m data shows larger spatial scales (diffuse, extended emission)

To get both — you need a combined image!

Beware: more arrays adds time to your proposal & affects available scheduling!

Aperture synthesis example: short spacings

You can miss (big!) things if the (u,v) plane is insufficiently sampled (not always a bad thing!)

Introduction to Radio Interferometry

- **W**Quick background on radio astronomy
- Radio interferometry: how does it work?
- (u,v) visibilities & aperture synthesis
- □ Turning visibilities into images
- □ Brief note on calibration
- □ Useful radio interferometry references

Maximum Recoverable Scale What's the biggest structure you can see?

 $\mathrm{MRS} = \lambda / B_{\mathrm{min}}$

Maximum Recoverable Scale What's the biggest structure you can see?

 $\mathrm{MRS} = \lambda / B_{\mathrm{min}}$

Maximum Recoverable Scale What's the biggest structure you can see?

 $\mathrm{MRS} = \lambda/B_{\mathrm{min}}$

Need to make sure the AR & MRS are sufficient for your science, and that your object will fit in the FOV!

Interferometers act as **spatial filters**

Spatial scales > smallest baseline cannot be imaged

Spatial scales < largest baseline cannot be resolved

	Band	3	4	5	6	7	8	9	10
	Frequency (GHz)	100	150	185	230	345	460	650	870
Configuration									
7-m	θ_{res} (arcsec)	12.5	8.35	6.77	5.45	3.63	2.72	1.93	1.44
	θ_{MRS} (arcsec)	66.7	44.5	36.1	29.0	19.3	14.5	10.3	7.67
C43-1	θ_{res} (arcsec)	3.38	2.25	1.83	1.47	0.98	0.735	0.52	0.389
	θ_{MRS} (arcsec)	28.5	19.0	15.4	12.4	8.25	6.19	4.38	3.27
C43-2	θ_{res} (arcsec)	2.3	1.53	1.24	0.999	0.666	0.499	0.353	0.264
	θ_{MRS} (arcsec)	22.6	15.0	12.2	9.81	6.54	4.9	3.47	2.59
C43-3	θ_{res} (arcsec)	1.42	0.943	0.765	0.615	0.41	0.308	0.218	0.163
	θ_{MRS} (arcsec)	16.2	10.8	8.73	7.02	4.68	3.51	2.48	1.86
C43-4	θ_{res} (arcsec)	0.918	0.612	0.496	0.399	0.266	0.2	0.141	0.106
	θ_{MRS} (arcsec)	11.2	7.5	6.08	4.89	3.26	2.44	1.73	1.29
C43-5	θ_{res} (arcsec)	0.545	0.363	0.295	0.237	0.158	0.118	0.0838	0.0626
	θ_{MRS} (arcsec)	6.7	4.47	3.62	2.91	1.94	1.46	1.03	0.77
C43-6	θ_{res} (arcsec)	0.306	0.204	0.165	0.133	0.0887	0.0665	0.0471	0.0352
	θ_{MRS} (arcsec)	4.11	2.74	2.22	1.78	1.19	0.892	0.632	0.472
C43-7	θ_{res} (arcsec)	0.211	0.141	0.114	0.0917	0.0612	0.0459	0.0325	0.0243
	θ_{MRS} (arcsec)	2.58	1.72	1.4	1.12	0.749	0.562	0.398	0.297
C43-8	θ_{res} (arcsec)	0.096	0.064	0.0519	0.0417	0.0278	-	-	-
	θ_{MRS} (arcsec)	1.42	0.947	0.768	0.618	0.412	-	-	-
C43-9	θ_{res} (arcsec)	0.057	0.038	0.0308	0.0248	0.0165	-	-	-
	θ_{MRS} (arcsec)	0.814	0.543	0.44	0.354	0.236	-	-	-
C43-10	θ_{res} (arcsec)	0.042	0.028	0.0227	0.0183	0.0122	-	-	-
	θ_{MRS} (arcsec)	0.496	0.331	0.268	0.216	0.144	-	-	-

Table 7.1: Resolution (θ_{res}) and maximum recoverable scale (θ_{MRS}) for the 7-m Array and 12-m Array configurations available during Cycle 7 as a function of a representative frequency in a band. The value of θ_{MRS} is computed using the 5th percentile baseline (L05) from Table 7.2 and Equation 7.7. The value of θ_{res} is the mean size of the interferometric beam obtained through simulation with CASA, using Briggs (u, v) plane weighting with robust=0.5. The computations were done for a source at zenith; for sources transiting at lower elevations, the North-South angular measures will increase proportional to $1/\sin(\text{ELEVATION})$.

Observed ("dirty") images are the true sky brightness convolved with the interferometer's PSF ("dirty beam")

B(u,v)

Observed ("dirty") images are the true sky brightness convolved with the interferometer's PSF ("dirty beam")

Observed ("dirty") images are the true sky brightness convolved with the interferometer's PSF ("dirty beam")

Fringe pattern with 2 antennas (I baseline)

Fringe pattern with 3 antennas (3 baselines)

Fringe pattern with 4 antennas (6 baselines)

Fringe pattern with 8 antennas (28 baselines)

Fringe pattern with 16 antennas (compact)

Fringe pattern with 16 antennas (extended)

Fringe pattern with 32 antennas (instantaneous)

Fringe pattern with 32 antennas (8 hours)

Introduction to Radio Interferometry

WQuick background on radio astronomy

Radio interferometry: how does it work?

 $\mathbf{V}(\mathbf{u},\mathbf{v})$ visibilities & aperture synthesis

Turning visibilities into images

□ Brief note on calibration

□ Useful radio interferometry references

Brief note on calibration

Interferometers measure visibilities (i.e., amplitude and phase of cross-correlated signals between pairs of antennas) whose variations in time and frequency due to the atmosphere/instrument need to be corrected for during post processing.

ALMA projects are divided into **Scheduling Blocks [SBs]**. Calibrators are observed before, after, and during each SB to correct for variations.

Brief note on calibration

Interferometers measure visibilities (i.e., amplitude and phase of cross-correlated signals between pairs of antennas) whose variations in time and frequency due to the atmosphere/instrument need to be corrected for during post processing.

ALMA projects are divided into **Scheduling Blocks [SBs]**. Calibrators are observed before, after, and during each SB to correct for variations.

Calibration requirements (handled by ALMA OT):

Gain/Phase calibrator

Bright quasar near science target

Solves for atmospheric and instrumental variations with time

Bandpass calibrator Bright quasar

Fixes frequency-dependent variations from instrument

Flux calibrator

Solar system object or quasar

Scale relative amplitudes to absolute values

Introduction to Radio Interferometry

WQuick background on radio astronomy

Radio interferometry: how does it work?

 $\mathbf{V}(\mathbf{u},\mathbf{v})$ visibilities & aperture synthesis

Turning visibilities into images

Brief note on calibration

□ Useful radio interferometry references

Useful Radio Interferometry References

Thompson, A.R., Moran, J.M., Swensen, G.W. 2017 "Interferometry and Synthesis in Radio Astronomy", 3rd edition (Springer) <u>http://www.springer.com/us/book/9783319444291</u>

Perley, R.A., Schwab, F.R., Bridle, A.H. eds. 1989 ASP Conf. Series 6 "Synthesis Imaging in Radio Astronomy" (San Francisco: ASP) www.aoc.nrao.edu/events/synthesis

IRAM Interferometry School proceedings www.iram.fr/IRAMFR/IS/IS2008/archive.html

