What's New in ALMA Cycle 7?

Megan Ansdell UC Berkeley

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Very Long Baseline Array

- Overview of ALMA capabilities
- New capabilities in Cycle 7
- Observing strategies for Cycle 7
- Sources of support

Outline

ALMA: The Atacama Large (sub-)Millimeter Array

66 reconfigurable, high-precision 12m antennas Array configurations of 150m – 16km baselines 10 observing bands at 0.32mm – 8.5mm Site at 16,500ft elevation, -23° latitude Imaging + spectroscopy

10–100x higher sensitivity & resolution

- Collecting area → sensitivity
- Longest baseline \rightarrow resolution
- No. of baselines \rightarrow image fidelity

ALMA: Main Array, Compact Array, Total Power Array

ALMA Main Array: 50x12m antennas <=16 km apart

Compact Array (ACA): 12x7m antennas, closely spaced

Total Power (TP) Array: 4x12m antennas, acting as one

Chajnantor - 5000m 0.5 & 1.3mm pwv 0.8 **B10** 0.6 ue1.0.4 0.2 200 400 600 800 Frequency (GHz)

[see Appendix A of ALMA Proposers' Guide: https://almascience.nrao.edu/documents-and-tools]

	Main Array	ACA	ТР
Number of Antennas	43(50)	10(12)	3(4)
Available time (hours)	4300*	3750**	3750

Band	3	4	5	6	7	8	9	
Wavelength (mm)	3.I	2.1	I.6	Ι.3	0.87	0.74	0.44	0.3
Frequency (GHz)	100	150	183	230	345	460	650	87
Max. Baseline (km)	16	16	16	16	16	3.6	3.6	3.0
Max. Resolution (")	0.042	0.028	0.021	0.018	0.028	0.046	0.033	0.02

ALMA Cycle 7 Capabilities

*includes DDT, Cycle 6 carry-over/resubmissions **750 hr available in supplemental call

ALMA has been since Cycle 5 in "steady state" operations

[see Appendix A of ALMA Proposers' Guide: https://almascience.nrao.edu/documents-and-tools]

- **Continuum:** Main Array + ACA for all bands
- **Spectral Lines:** Main Array + ACA for all bands, TP for bands 3–8
 - **Single-field:** Main Array + ACA for all bands
 - **Mosaics:** Main Array + ACA for bands 3–9
 - **Polarization:**

ALMA Cycle 7 Capabilities

Single-pointing, on-axis, full polarization for continuum & spectroscopy for Main Array for bands 3-7 (min. circular polarization = 1.8% of peak flux)

Solar Observations: Band 7 continuum available in compact configurations

Data Rates: largely relaxed from previous cycles

- **Long Baselines*:** Now available in Band 7 as standard mode (if phase calibrator < 5°)
- **Spectral Scan Mode:** Now 25% faster and considered "standard" observing mode

*No long baselines in Cycle 8! Request them now in Cycle 7, or wait until Cycle 9 and beyond

Standard vs. Non-Standard Modes

What does "non-standard" mean?

No guarantee that observations can be reduced with the standard pipeline (but still possible / testing) ~20% of time in Cycle 7 will go to non-standard modes (requires additional observatory resources)

What is considered non-standard in Cycle 7?

- Band 9 & 10 observations (difficult to calibrate)
- All polarization observations
- Bandwidth switching projects
- Solar observations (only Bands 3, 6, 7)
- Astrometric observations (requires special calibrators)

• Band 7 observations with baselines > 5 km if calibrator $> 5^{\circ}$ from science target (OT will tell you)

Timeline for ALMA Cycle 7

Date	Milestone
19 March 2019 (15:00 UT)	Release of Cycle 7 Call for Propos
17 April 2019 (15:00 UT)	Proposal submission deadline 8/
End of July 2019	Announcement of the outcome of
05 September 2019	Deadline for submission of Phase 2
October 2019	Start of ALMA Cycle 7 Science Ob
September 2020	End of ALMA Cycle 7

sals, Observing Tool (OT), support documents

AM PST, no exceptions for late submissions!

the Proposal Review Process **No science re-reviews / re-grades!**

2 by Pls Late P2s are automatically downgraded!

oservations

Factors affecting scheduling your observations:

- Weather (due to yearly / daily cycles)
- Requested angular resolution (due to array configuration schedule)
- Requested frequency (due to dependence of atmosphere on freq.)

Some combinations of **LST + configurations** unavailable for nighttime observing

bad weather in Feb. used for maintenance

NRAO

Start date	Configuration	Longest baseline	LST for best observing conditions
2019 October 1	C43-4	0.78 km	~ 22—10 h
2019 October 20	C43-3	0.50 km	~ 23—11 h
2019 November 10	C43-2	0.31 km	~ 1—13 h
2019 November 30	C43-1	0.16 km	~ 2—14 h
2019 December 20	C43-2	0.31 km	~ 4—15 h
2020 January 10	C43-3	0.50 km	~ 5—17 h
2020 February 1		No observations due to mainten	ance
2020 March 1	C43-4	0.78 km	~ 8—21 h
2020 March 20	C43-5	1.4 km	~ 9—23 h
2020 April 20	C43-6	2.5 km	~ 11—1 h
2020 May 20	C43-7	3.6 km	~ 13—3 h
2020 June 20	C43-8	8.5 km	~ 15—5 h
2020 July 11	C43-9	13.9 km	~16—6 h
2020 July 30	C43-10	16.2 km	~17—7 h
2020 August 20	C43-9	13.9 km	~19—8 h
2020 September 10	C43-8	8.5 km	~20—9 h

atmosphere stable (2 hrs after sunset; 4 hr after sunrise); B9+B10 priority

> proposals outside LST range greatly reduce chances of **observation!** [excl. Band 3]

long baselines scheduled during good weather this cycle [no long baselines in Cycle 8!]

probability of observation depends on available time for given LST + configuration

Band 3 & 4 are easy all year round

NRAO

percentage of time that atmosphere is dry enough to obtain good observations in given band

Acceptance rate does NOT depend on time request (out to ~30 hours)

Proposal Science Case

[https://almascience.nrao.edu/proposing/7m-array-supplemental-call]

- stand-alone ACA call for 750 hours (standard modes only; no time constraints) What:
- ~5 months after main call (see next slide for details) When:
- maximize science output of ACA by allowing more timely science Why:
- all accepted supplemental proposals will be given "C" priority Where:

ACA Supplemental Call

ACA Supplemental Call proposals will be peer reviewed through a "distributed review system"

Timeline for ALMA Cycle 7 Supplemental Call

Date	Milestone
03 September 2019	Call for Proposals and Supple
01 October 2019	Deadline to submit Supplem
15 October 2019	Proposals released to review
22 October 2019	Deadline for reviewer to rep
12 November 2019	Deadline to submit reviews a
Early December 2020	Notification emails sent to P
January 2020	Successful Supplemental Call

emental Call submission server opened

nental Call proposals

vers

port conflicts of interest on proposal review assignments

and ranks

ls

proposals enter the observing queue

Resources During Cycle 7 Proposal Process

ALMA Help Desk 24/7 support week leading up to proposal deadline [https://help.almascience.org/]

Documentation

ALMA Primer, Proposer's Guide, Technical Handbook [https://almascience.nrao.edu/documents-and-tools]

ALMA Ambassador Contact me: ansdell@berkeley.edu

