

Protoplanetary disks with ALMA Álvaro Ribas - ESO/ALMA Fellow

ALMA Community Day

Santiago, Chile, March 20th 2019

ALMA is a revolution in planet formation studies

DSHARP collaboration

Continuum:

- Dust mass, grain properties
- Dust grain growth, migration, traps
- Indirect detection of (proto)planets

Gas lines:

- Gas and stellar masses
- Disk temperature and density structure
- Disk chemistry
- Location of snow-lines
- Indirect detection of (proto)planets

Continuum observations of protoplanetary disk trace **thermal emission** from **mm/cm-sized grains**

ALMA partnership et al. 2015

Dust radial migration

Dust grains orbit at keplerian velocity
Gas orbits at sub-keplerian velocity

mm/cm grains slow down and migrate inward

Disk radii depend on wavelength, gas and dust radii are usually very different.

A solution to radial migration: dust traps

Dust particles move toward pressure maxima in the disk

Oph IRS-48

van der Marel et al. 2013

A solution to radial migration: dust traps

Rings and gaps can stop dust migration and aid grain growth

Huang et al. 2018

Gas kinematics: disk rotation

¹³CO(3-2) line

Oth-moment: total intensity

1st-moment: velocity field

HD 100546 Walsh et al. 2017

4

Gas and stellar masses, disk structure

150

100

z [AU]

With this type of data (+ models), you can derive...

- stellar mass
- disk gas mass
- gas density profile
- disk temperature structure

GW Ori Czekala et al. 2018

T[K]

Location of snow-lines

Qi et al. 2013

Extremely rich chemistry, organic molecules

Finding (proto)planets

Isella et al. 2018

Extra slides

Before and after protoplanetry disks

When do disks form? **Class 0 disks**, size, rotation

Fomalhaut MacGregor et al. 2017

Disk dust masses

Mstar vs Mdust

Mdust vs Macc

Ansdell et al. 2016

Manara et al. 2016

Complex chemistry in protoplanetary disks

Misaligned inner disks

Finding planets: gas

