Amelia Stutz UdeC Departamento de Astronomia

ALMA community day event, March 22nd, 2019

ALMA Science highlights Star cluster formation: Rosette and ALMA-IMF

"Cold collapse"-like scenarios

Evidence for a fundamentally different mode of cluster formation: Orion.

Stutz & Kainulainen (2015), Stutz & Gould (2016), Stutz (2018)

Slingshot: oscillating filament "ejects" stars

Protostars and stars

ALMA observations of the ISF: 3mm continuum

ALMA:

- sub-filaments on ridgeline
- protostars are on filaments
- disk stars are off filaments
- Kainulainen+2017:
 Confirmation of Slingshot
- Fragmentation properties (core spacings) not a stringent test of physical conditions

Kainulanen, Stutz et al. (2017)

Kinematics of gas, protostars, and stars

gas: ¹³CO(2-1) (Nishimura+2015)

velocity ridgeline: line with maximum CO emission as a function of Dec.

stars with disks: APOGEE near-IR spectroscopy

protostars: NH₃ (and HC₅N)

protostars — Spitzer & Herschel protostars from the Herschel Orion Protostar Survey (HOPS; **Furlan+2016, Stutz+2013**)

stars — Spitzer PMS stars with disks (from **Megeath+2012** catalog), so called "Class II Young Stellar Objects (YSOs)". Da Rio+2016 for APOGEE spectroscopy.

Gas velocities: "twistings and turnings" and ripped filaments

Gonzalez-Lobos et al. (in prep.)

Cluster formation: key open questions

Mass

Does cluster outcome depend on parent cloud mass (larger clusters from larger clouds?)? Does the IMF depend on cloud mass or other cloud characteristics? Do the roles of turbulence, B-fields, and "feedback" change with cloud mass / gravitational potential? Do more massive clouds have longer lifetimes?

Timescales

When is the IMF established? In the core phase?Is the IMF time-variant? Do high mass stars form first?What is the role of "feedback" in destroying clouds?What are the dynamical evolution timescales for the gas and forming stars?

How quickly does turbulence "disipate" at the bottom of dense gas potentials that are forming clusters?

Two ALMA programs:

- 1. The Rosette protocluster (P.I. Stutz)
- 2. ALMA-IMF Large Program (P.I. Motte)

The Rosette protocluster

The Rosette protocluster

Summary: measure the dense gas distribution and radial velocities (RV) in the Rosette young embedded protocluster (d=1.4 kpc).

Observed N₂H⁺ (I-0) ACA+TP in Band 3 (I mm) down to a physical resolution of ~ 0.084 pc (~ 18 kAU or 12.5") over an area of $1.7 \times 3.4 \text{ pc}^2$ (250" × 500").

Our proposed observations trace high N(H) regions. In combination with our multi-wavelength data-set, including APOGEE2-S near-IR spectroscopy of young stars, our goal is to use the N2H⁺ line emission in this embedded protocluster to ultimately distinguish between several radically different theoretical scenarios proposed to explain star cluster formation.

The Rosette Band 3 setups

				Frequency (TOPO)					
Real ID	Virtual ID	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	Transitions	
16	16	X428912546#ALMA_RB_03#BB_1#SW-01	FDM	93.131 GHz	93.162 GHz	93.194 GHz	62.500 MHz	N2Hv_0_J_1_0(ID=3925982)	
18	18	X428912546#ALMA_RB_03#BB_2#SW-01	FDM	91.968 GHz	91.999 GHz	92.030 GHz	62.500 MHz	h41alpha(ID=0)	
20	20	X428912546#ALMA_RB_03#BB_2#SW-02	FDM	90.937 GHz	90.968 GHz	91.000 GHz	62.500 MHz	HC3N_v_0_J_10_9F_11_10(ID=4095046)	
22	22	X428912546#ALMA_RB_03#BB_3#SW-01	FDM	102.473 GHz	102.536 GHz	102.598 GHz	125.000 MHz	CH3CCH_v_0_6_05_0_(ID=4192430)	
24	24	X428912546#ALMA_RB_03#BB_4#SW-01	TDM	103.988 GHz	104.988 GHz	105.988 GHz	2.000 GHz	cont(ID=0)	

The Rosette Band 3 Spectral setup

ditors											
Spectral	Spatial	Spectral Setup]								
Visualisat In the Each t Note t	tion table below baseband is hat for ban	v, it is possible to 2GHz wide and ds 3 to 8, it is no	define up to 16 can be separatel t possible to put	spectral windows, 4 per baseban y configured i.e. each spectral wir 3 basebands in one sideband and	d as long as the total ndow can have a diffe d the fourth one in the	Fraction per baseband is no more rent bandwidth and resolution. e other.	than 1.	[
Left/ri Note:	Left/right click to zoom in/out, grab sliding bar to pan Note: Moving LO1 here is for experimentation only – actual setup determined by the windows Observed Frequency										
	85,0000		9010000	9510000	100/000	105/0000		115/0000			
					~~~						
								~~~			
					101	1	<u> </u>				
				N2H+ v=0 l=1-0			N				
					1	cont		C170 J=1-0			
	HC3N v=0_=10-9, F=11-10 13CO v=0 1-0							-9/			
				h41alpha			NH2D 1(1,1)	0á-1(0,1)0s			
								/			
	85 0000		90,0000	95 0000	100.0000 Rest Frequency	105 0000	110,0000	115 0000			
		Overlay	/s:	✓ Receiver Bands	✓ Transmission	🖌 DSB Image 🔽 Spectral Lines	Select Lines to Overlay				
	Water Vaneur Column Density @ Automatic Chaice O Manual Chaice 5, 185 mm (7th Optila)										
	water vapour Column Density: Automatic Choice Manual Choice S.186mm (/th Octile)										
		Viewpo	ort:	Pan to Spectral Window	Zoom to Band	Reset					
Spectral	Turne										
spectral	гуре							?			
						Spectral Line					
				Spectral Type		Single Continuum					
						Snectral Scan					
						Spectral scan					
	Produce image sidebands (Bands 9 and 10 only)										

The Rosette Band 3 N2H+

ACA

TP

ALMA-IMF Large Program

ALMA-IMF Large Program

Aims: determine how young protocluster CMFs evolve both in time and as a function of parent cloud mass

ALMA-IMF will investigate the CMF evolution of **massive protoclusters with the 15 most massive pc^2 clouds at d < 6 kpc**. We will focus on

- I) investigating the distribution of 0.5-200 Msun cores at I~mm and 3~mm at the 2000~AU core size;
- 2) characterizing the core mass evolution through gas **inflows** toward individual cores and gas **outflows** driven by protostars; and
- 3) comparing massive protocluster CMFs to the IMF and determine which variables, such as inflows, outflows, or **forming filaments,** might be correlated with CMF evolution toward the IMF shape.

ALMA-IMF Large Program

I mm and 3 mm (bands 6 & 3) spectral bands, main lines:

¹²CO(2-1) and **N2H⁺(1-0) to measure gas** mass outflows and inflows, and

1³CS and N₂D⁺ to estimate core turbulence levels, the H41 α recombination line to identify HII regions, and CH₃OH, CH₃CN, and CH₃CCH to probe gas temperature.

Band3/TM1/continuum @ ~100 GHz

type:image display:mean field:G353.41 spw:25,27,29,31 iter:1

Band3/TM2/continuum @ ~100 GHz

0.32
0.28
0.24
0.20
0.16
0.12
0.08
0.04
0.00

Reference position:

Right Ascension: 17:30:26.28040000 Declination: -34.41.49.70500000 Stokes: I Frequency: 9.8679339251175e+10 Hz

Band3/TM1/N2H+(1-0)

type:image display:peak line int. (mom8) field:G353.41 spw:25 iter:1

Reference position:

Right Ascension: 17:30:26.28040000 Declination: -34.41.49.70500000 Frequency: 9.3178654e+10 Hz

Band3/TM2/N2H+(1-0)

Right Ascension: 17:30:26.28040000 Declination: -34.41.49.70500000 Frequency: 9.3178697e+10 Hz

B3/TP/N2H+(1-0)

ALMA-IMF Band 6 spectral setup

				Frequency (TOPO)				
Real ID	Virtual ID	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	Transitions
16	16	X96246849#ALMA_RB_06#BB_1#SW-01	FDM	216.106 GHz	216.231 GHz	216.356 GHz	250.000 MHz	DCO_3_2(ID=0)
18	18	X96246849#ALMA_RB_06#BB_1#SW-02	FDM	217.055 GHz	217.180 GHz	217.305 GHz	250.000 MHz	SiO5_4_DCN(ID=0)
20	20	X96246849#ALMA_RB_06#BB_2#SW-01	FDM	219.913 GHz	219.975 GHz	220.038 GHz	125.000 MHz	SO_HNCO(ID=0)
22	22	X96246849#ALMA_RB_06#BB_2#SW-02	FDM	218.135 GHz	218.260 GHz	218.385 GHz	250.000 MHz	H2C0218_2(ID=0)
24	24	X96246849#ALMA_RB_06#BB_2#SW-03	FDM	219.528 GHz	219.591 GHz	219.653 GHz	125.000 MHz	C18O2_1(ID=0)
26	26	X96246849#ALMA_RB_06#BB_3#SW-01	FDM	230.312 GHz	230.562 GHz	230.812 GHz	500.000 MHz	CO2_1(ID=0)
28	28	X96246849#ALMA_RB_06#BB_3#SW-02	FDM	231.062 GHz	231.312 GHz	231.562 GHz	500.000 MHz	13CS_N2D_(ID=0)
30	30	X96246849#ALMA_RB_06#BB_4#SW-01	FDM	231.476 GHz	232.476 GHz	233.476 GHz	2.000 GHz	continuum(ID=0)

B6/TM1/C18O(2-1)

B6/TP/C18O(2-1)

Total Power

RA

ALMA: Rosette and ALMA-IMF

Thank you!