ALMA Observing Tool hands on session

How to turn that great idea into an ALMA proposal...

Veronica Allen Author: Harvey Liszt

Associated Universities.inc. Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Very Long Baseline Array

ALMA Cycle 8 Planning

https://almascience.nrao.edu/news/cycle-8-pre-announcement

19 December 2019	Cycle 8 pre-announcement
17 March 2020	Release of the ALMA Cycle 8 Call for Proposals and Observing Tool, and opening of archive for proposal submission
15 April 2020	Proposal submission deadline Now no earlier than 19 May 2020
End of July 2020	Results of the proposal review sent to proposers
9 September 2020	Deadline for phase 2 submission by PIs or designees
15 September 2020	Release of ACA Supplemental Call for Proposals
30 September 2020	End of Cycle 7 observations
1 October 2020	Start of Cycle 8 observations
8 October 2020	Supplemental Call deadline

Configurations

- The configuration schedule strongly influences when an object will be observed
- Some combinations of object
 LST + desired angular resolution may not allow night observing

Start date	Configuration	Longest baseline	LST for best observing conditions
2020 October 1	C-8	8.5 km	~ 22—10 h
2020 October 20	C-7	3.6 km	~ 23—11 h
2020 November 10	C-6	2.5 km	~ 1—13 h
2020 December 1	C-5	1.4 km	~ 2—14 h
2020 December 20	C-4	0.78 km	~ 4—15 h
2021 January 10	C-3	0.50 km	~ 5—17 h
2021 February 1		No observations due to mair	itenance
2021 March 1	C-1	0.16 km	~ 8—21 h
2021 March 26	C-2	0.31 km	~ 9—23 h
2021 April 20	C-3	0.50 km	~ 11—0 h
2021 May 10	C-4	0.78 km	~ 12—2 h
2021 May 31	C-5	1.4 km	~ 13—4 h
2021 June 23	C-6	2.5 km	~15—6 h
2021 July 28	C-5	1.4 km	~17—7 h
2021 August 18	C-4	0.78 km	~19—8 h
2021 September 10	C-3	0.50 km	~20—9 h

Cycle 8 Capabilities - I

- Antennas: At least 43 antennas in the 12-m Array, ten 7-m antennas (for short baselines) and three 12-m antennas (for single dish spectral line mapping) in the ACA
- **Receiver bands:** 3, 4, 5, 6, 7, 8, 9, 10
 - (wavelengths 3.1, 2.1, 1.5, 1.3, 0.87, 0.74, 0.44, 0.35 mm)
- Baselines:
 - Long baseline configurations 9,10 will not be visited!
 - Max baselines 3.7 km (Bands 8-10), 8.5 km for (Bands 3-7)
- Spectral line, continuum, and mosaic observations:
 - Spectral line and continuum observations with the 12-m and 7-m Arrays in all bands
 - Single field interferometry (all bands) and mosaics (Bands 3
 - 9) with both the 12-m and 7-m arrays
 - Single dish (total power) spectral line in Bands 3 8

Cycle 8 Capabilities - II

Polarization

- Single pointing, on-axis, full linear or circular polarization for continuum and full spectral resolution observations in Bands 3-7 on the 12-m Array
- Linear polarization on-axis imaging in continuum and full spectral resolution modes at the level of 0.1% (3 sigma) fractional polarization with the very brightest calibrators, and 0.2% (3 sigma) level for a typical observation
- Minimum detectable degree of circular polarization 1.8% of the peak flux for continuum and full spectral resolution spectral line observing
- Mosaicking of continuum linear polarization observations in Bands 3 to 7 NEW!

New for Cycle 8 - I:

In Cycle 8, the following opportunities will be available to Proposers for the first time:

- Solar observations in Band 5
- VLBI observations of faint science targets (correlated flux density <500 mJy within an unresolved core on ALMA) on ALMA baselines up to 1 km.
 - In "passive phasing" mode, with a known bright phase calibrator within 5°
- HF Band 9 and 10 observing with the standalone 7-m Array
- Mosaicking of linear polarization continuum in Bands 3 to 7
- Spectral scans with the 7-m array including standalone ACA
- No observing mode is described as "non-standard"

New for Cycle 8 - II:

 The whole-proposal .pdf and printable summary generated by the OT will not show PI or co-I names

Casting Light on Chameleon's Dark CO

ABSTRACT

In Cycle 4 proposal 2016.1.00714.S we searched for HCO+ absorption against 13 QSO-phase calibrators seen toward the Chameleon cloud complex, where the H I - H2 transition has been extensively studied in H I, CO, dust optical depth, extinction, and gamma-ray emission. The results were delivered in 2017 March. Although CO emission is seen in one or two directions, HCO+ absorption was present in all directions but one where the QSO flux was very low. Here we propose to observe 2.6mm 12CO absorption along six of the Chameleon sightlines (two clusters of three sources), to determine whether the CO is dark due to low CO column density or low number density and weak rotational excitation. The 5sigma upper limits on N(CO) derived from this work will be 10 times below those that would be inferred from the upper limits on CO emission alone.

SCIENCE CATEGORY:	ISM, star formation	and astrochemis	try								
ESTIMATED 12-M TIME:	2.0 h	ESTIMATED 7-M TIME:)	0.0 h		ES T	TIMATE P TIME	D		0.0 h	
DUPLICATE OBSERVATION JUSTIFICATION:											
	REPRE	SENTATIVE SCIE	NCE	GOALS (UP TO F	IRST	0)					
SCI	ENCE GOAL			POSITI	ON		BAND	ANG.RE	ES.(*)	LAS.(")	ACA?
Chameleon's dark CO viewed	in 2.6 mm J=1-0 abs	orption cluster 1	ICRS	11:36:02.0970,	-68:27	7:05.810	3	1.600 - 0	0.100	0.000	Ν
Chameleon's dark CO viewed	in 2.6 mm J=1-0 abs	orption cluster 2	ICRS	09:42:42.7520,	-77:31	L:11.840	3	1.600 - 0	0.100	0.000	N
Total # Science Goals : 2											
SCHEDULING TIME C	ONSTRAINTS	NONE		TIME ES	TIMAT	ES OVERF	RIDDEN	?		No	

New for Cycle 8 - NOTE:

The 150-hour limit for Standalone ACA Large Programs has been changed such that it now only applies to the 7-m time i.e. the TP time is not counted.

				X
Project - Observing Tool for ALMA, version Cycle2Test2				Demostry 4
Edit View Tool Search Help				Perspective 1
■ ● ← ■ ← ■ ← ■ ← ■ ← ■ ← ■ ← ■ ← ■ ← ■				
ject Structure	Editors			
roposal Program	Spectral Spatial P	roject		
ubmitted Proposal C금 Project	Principal Investigator		?	
← 🗃 Proposal				
			Select Pl	
	Main Project Information			
A alaan alata Eram hara y			?	
A clean slate. From here, y	ou can:	riority		
 Start a new proposal 		e None Assigned		
Add blank Science Goals	s (SG)			
 Load templates with exa 	mnle SG			
Eodd templates with exa		Istory Log		
		Description	Grab and move	tipled
			bars up/down to	resize
	j			
IVIEW				
Contextual Help)	Phase I	: Science Proposal	
arrowheads 1. Please ensure you and your co-Is are re	egistered with the <u>ALMA</u>	New Create	Validate L Submit	
minimize, <u>Science Portal</u>		Science Science Proposal Goals	e Science Science Proposal Proposal	
• Selecting File > New Proposal				
• Clicking on the 1 icon in the toolba	ır	Click on the overview steps	to view the contextual help	
• Or clicking on this <u>link</u>		Importing Templa	ate Need View More Phase 2	
 Click on the proposal tree node and fields 	complete the relevant	Exporting	Help? Steps	/
LICIUS.				
LICIUS.				

Contextual Help

- Please ensure you and your co-Is are registered with the <u>ALMA</u> <u>Science Portal</u>
- 2. Create a new proposal by either:
 - Selecting File > New Proposal
 - Clicking on the
 icon in the toolbar
 - Or clicking on this link
- Click on the proposal tree node and complete the relevant fields.

INIVAU

Perspective 1

	ALMA Observing Tool (Cycle6(UserTest)) - Casting Light on Chameleon's Dark CO	
e <u>E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp		Perspective 1
oject Structure	S Editors	
Proposal Program	Spectral Spatial Field Setup	
Casting Light on Chameleon's Dark CO Casting Light on Chameleon's Dark CO Casting Light on Chameleon's Dark CO Proposal Calibration Setup Calibration Setup Control and Performance	Source Name J1136-6827-0.4 Choose a Solar System Object? Name of object Source Coordinates System RA 11:36:02.0970 Dec -68:27:05.810 Source Radial Velocity 0.000 Km/s Isrk Z 0.000000000 Doc Dec	Resolve
Technical Justification	Target Type Individual Pointing(s) 1 Rectangular Field Expected Source Properties Peak Continuum Flux Density per Synthesized Beam 1.00000 Jy Continuum Linear Polarization 4.0 per cent Continuum Circular Polarization 0.0 per cent Peak Line Flux Density per Synthesized Beam 0.10000 Jy Line Width 3.5 km/s Line Linear Polarization 0.0 per cent Under Linear Polarization 0.0 per cent Line Width 3.5 km/s Line Linear Polarization 0.0 per cent Ode is where you lar Polarization Percentage 2.0 per cent	2
provide source o other basic prop more field sourc	oordinates and erties for one or es/pointings RA [arcsec] Dec [arcsec] -0.00000 24.00000 -12.00000 20000.00000 Add Delete Reset Import Export	3
	Add Source Load from File Export to File Clone Source Delete Source Delete All Sour	ces 🗸

Perspective 1

File Edit View Tool Search Help O 2 **Project Structure** Editors Proposal Program Spectral Spatial Field Setup Input source details and mapping info or use the Visual Editor on the spatial tab. 📍 📄 Project You must choose between checking 1 Rectangular Field on all sources or none. Proposal Check 1 Rectangular Field on the first source before adding others to put rectangular mosaics around multiple sources. P Planned Observing - ScienceGoal (Copy of 34 Sources aJ0426+2327-210-0.54 aJ0439+3045-154-0.87 General aJ0231+1322-790-0.12 aJ0242+1742-168-0.08 Field Setup

4.7

. Q

aJ0445+0715-305-0.12 aJ0510+1800-2990-0.33 aJ0329+2756-195-0.20 aJ0356+2903-151-0.21 J0502+1338i-600-0.56 aJ0203+1134-151-0.14 aJ0209+1352-413-0.09 aJ0213+1820-161-0.13 Spectral Setup J0437+2940i-224-0.98 J0438+3004i-478-0.95 J0440+1437i-326-0.68 J0449+1121i-887-0.50 Calibration Setup J0427+0457i-233-0.33 10437+2037i-245-0.53 J0431+1731i-213-0.46 J0433+0521i-2178-0.30 J0403+2600i-327-0.20 J0406+0637i-330-0.28 J0407+0742i-990-0.26 J0426+0518i-372-0.29 Control and Performance J0357+2319s-170-0.18 J0357+2319i-160-0.18 J0400+0550i-217-0.27 J0401+0413i-550-0.34 Technical Justification J0325+2224i-400-0.21 J0329+3510i-254-0.27 J0334+0800i-331-0.39 J0336+3218i-1050-0.73 J0211+1051i-547-0.14 J0252+1718i-342-0.22 Source ? -J0211+1051i-547-0.14 All sources having a common spectral setup and observing pattern (single pointings or rectangular mosaic) ? should be put in the same Science Goal no matter how far apart they are per cent 0.0 ~ V

Hands-on Tutorial

Two practice scenarios

Milky Way: Line detection for chemical characterization in Orion KL Background: The chemical composition of gas surrounding young stars gives some indication of physical conditions. Additionally, the deuterium fraction of a system can be used to determine the age of that system. We will use ALMA to detect multiple lines of CH₃CN and CH₃OH to determine the properties of this region and better understand star formation.

Extragalactic: Continuum and CO mapping of NGC 4797

Background: Minor mergers are an important process in galaxy evolution. Whilst major mergers often enhance star formation, minor mergers have been shown to suppress star-formation (Davis et al. 2015). We will use ALMA to determine the underlying physical cause of this intriguing effect.

Scenario I: ISM & Astrochemistry

- Science goal: determine the chemical composition and deuterium fraction of star-forming region Orion KL.
- Method: high-resolution mapping of the area to trace variations in composition and D/H for CH₃CN and CH₃OH

- Orion KL is a common object, so press Resolve to input the coordinates. Always check that these are accurate for your object.
- Display your source and the field of view using Image Query
 For Orion KL, 2MASS works well
- Continuum flux density estimated from SED or existing continuum observations
- Line flux for the weakest line you aim to detect spectral modeling helps in estimating this

Spectral Spatial Field Setup

Spatial Image	Orion kl	
	Source	2 -
	Source Name Orion kl	Resolve
	Choose a Solar System Object? 🗌 Name of object Unspecified 💌	
	Source CoordinatesSystemICRSSexagesimal display?Parallax0.00000masICRSRA05:35:14.1600 DecPM RA0.00000mas/yrICRS <td></td>	
	Source Radial Velocity 5.000 km/s 🔻 Isrk 🔻 z 0.000016678 Doppler Type RADIO 💌	
×	Target Type	
	Expected Source Properties	
	Deale Continuum Elem Densite and Contentional Deam 200,000000	? –
	Peak Continuum Flux Density per Synthesized Beam 300.00000 mjy V	
	Continuum Linear Polarization 0.0 per cent	
	Peak Line Flux Density per Synthesized Beam 0.10000 Jy	
	Line Width 5.00000 km/s 🔻	
① ③ □	Line Linear Polarization 0.0 per cent	
05:35:23.385, -05:20:09.72 ([2000)	Line Circular Polarization 0.0 per cent	
Image Filename an/.jsky3/cache/jsky219782974819604364.fits	Field Center Coordinates	
FOV Parameters	Coord Type 🖲 Relative 🔾 Absolute	
? -	Offset Unit arcsec	
Antenna Diameter	#Pointings 1	
Antenna Beamsize (HPBW) 21.119 arcsec	RA [arcsec] Dec [arcsec]	
Show Antenna Beamsize	0.00000 0.00000	
Image Query		
Image server ZMASS-H via skyview @ NASA/GSFC	Add Delete Reset Import Export	
Image Size(arcmin) 10.0 Query	Add Derete Reset import Export	
	Add Source Load from File Export to File Clone Source Delete Source Delete All Sour	ces

l ⊕o≅occoo

Spectral setup

- Our main science goal involves detecting multiple transitions of CH₃CN, CH₂DCN, CH₃OH, and CH₂DOH so the spectral windows are set accordingly.
- Use "Select Lines to Overlay" to set spectral windows covering multiple lines.
- There are 2 basebands per side band but you can subdivide them into as many as 4 spectral windows each

Correlator

 Your spectral windows are organized into basebands which are set to be 4 GHz wide at ± 4GHz from the Local Oscillator frequency. This is mostly automatic in the OT but you can move the LO.

Dividing basebands

- The single spectral window used for CH3OH does not cover the higher energy lines so we need another smaller spectral window
- Add a spectral window centered on the CH3OH v=1 transition at 289.399655 GHz
- Select a correlator mode to match the others and ensure that the other spectral window in this baseband is ¹/₂
- How wide are the spectral windows now?

Spectra	Line					2
Baseba	nd-1					
Fractio	Centre Freq (rest,lsrk)	Centre Freq (sky,bar)	Transition	Bandwidth, Resolution (smoothed)	Spec Avg.	Representative Window
1(Full)	275.72000 GHz	275.69880 GHz	CH3CN,CH2DOH	468.750 MHz(510 km/s), 282.227 kHz(0.307 km/s)	2	۲
Add	spectral window c	entred on a spect	ral line Ad	d spectral window manually Delete Show image spectral window	WS	
Baseba	nd-2					~
1(Full)	277.60000 GHz	277.57866 GHz	CH2DCN	468.750 MHz(506 km/s), 282.227 kHz(0.305 km/s)	2	0
Add	spectral window c	entred on a spect	ral line Ad	d spectral window manually Delete Show image spectral window	WS	
Baseba	ind-3	1	1			
1/2	289.39966 GHz	289.37741 GHz	CH3OH v t=1	234.375 MHz(243 km/s), 282.227 kHz(0.292 km/s)	2	<u> </u>
1/2	290.18469 GHz	290.16238 GHZ	CH30H v t=0	234.375 MHz(242 km/s), 282.227 kHz(0.292 km/s)	2	
Add	spectral window c	entred on a spect	ral line Ad	d spectral window manually Delete Show image spectral window	WS	
Baseba	nd-4					
1/2	288.92000 GHz	288.89779 GHz	CH2DOH	234.375 MHz(243 km/s), 282.227 kHz(0.293 km/s)	2	0
1/2	287.56000 GHz	287.53789 GHz	CH2DOH	234.375 MHz(244 km/s), 282.227 kHz(0.294 km/s)	2	0
Add	spectral window c	entred on a spect	ral line Ad	d spectral window manually Delete Show image spectral window	WS	

Control and Performance

- Setting the desired angular resolution and largest angular structure automatically decides the needed configurations
- Desired sensitivity should give you at least a 3-sigma detection of the line flux density in Field setup
- Our setup includes a full array and an ACA configuration
- An ACA configuration adds ~4x the 12m-array time

Total and Calibration Times

Science Goal	12-m (1)	12-m	n (2)	12-m (1+2)	ACA 7	-m	ACA	ТР	Overal	1	Non-standard Mode
	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	
Science Goal	1.04 h	23.63 min	» -	-	1.04 h	23.63 min	4.85 h	1.84 h	-	-	5.89 h	2.23 h	No
Overall	1.04 h	23.63 min	-	-	1.04 h	23.63 min	4.85 h	1.84 h	-	-	5.89 h	2.23 h	

Don't be greedy

patial

Control and Performance

 If you ask for high spatial resolution, crazy sensitivity, and multiple configurations, your observation will last hundreds of years...

Estimated Time Note: The time in brackets is that required to Operational requirements often mean that the especially for mosaics. Please see the User Ma Input Parameters Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	x reach the sensitivity. actual observed time is longer, anual for more details. 0.01044 mJy 0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Note: The time in brackets is that required to Operational requirements often mean that the especially for mosaics. Please see the User Ma Input Parameters Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	reach the sensitivity. actual observed time is longer, anual for more details. 0.01044 mJy 0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Note: The time in brackets is that required to Operational requirements often mean that the especially for mosaics. Please see the User Ma Input Parameters Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	reach the sensitivity. e actual observed time is longer, anual for more details. 0.01044 mJy 0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Input Parameters Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	0.01044 mJy 0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Requested sensitivity Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	0.01044 mJy 0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Bandwidth used for sensitivity Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	0.488 MHz 340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Representative frequency (sky, first source) Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	340.65 GHz 0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Precipitable water vapour (all sources) Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	0.913mm (3rd Octile) 4052.51 d [4052.51 d] 10	
Time required for largest 12-m array Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	4052.51 d [4052.51 d] 10	
Time on source per pointing (first source) Total number of pointings (all sources) Number of tunings	4052.51 d [4052.51 d] 10	
Total number of pointings (all sources) Number of tunings	10	
Number of tunings	1	
in the second	1	
Total time on source	- 45910.78 d [45242.78 d]	
Total calibration time	31202 44 d	
Other overheads	6801.60 d	
Total time for 1 SB execution	1.55 h	0.488281 MH
Number of SB executions	1302992	
Total time to complete SB	83914.81 d	
Calibration Breakdown per SB execution		
3 x Pointing	36 00 s	
1 x SidebandRatio	1.58 min	
1 x Amplitude	2.50 min	
1 x Bandpass	10.00 min	
8 x Phase	4.00 min	
4 x Phase reference check source	2.00 min	
10 x Atmospheric	6.67 min	
Calibration overheads	7.13 min	
Additional Arrays		
Number of additional 12-m configurations	1	
Time required for additional 12-m	41957.41 d	
Estimated total time for science goa	d 125872.22 d	
	Total time on source Total calibration time Other overheads Total time for 1 SB execution Number of SB executions Total time to complete SB Calibration Breakdown per SB execution 3 x Pointing 1 x SidebandRatio 1 x Amplitude 1 x Bandpass 8 x Phase 4 x Phase reference check source 10 x Atmospheric Calibration overheads Additional Arrays Number of additional 12-m configurations Time required for additional 12-m Estimated total time for science goa	Number of tunings1Total time on source45910.78 d [45242.78 d]Total calibration time31202.44 dOther overheads6801.60 dTotal time for 1 SB execution1.55 hNumber of SB executions1302992Total time to complete SB83914.81 dCalibration Breakdown per SB execution3 x Pointing36.00 s1 x SidebandRatio1.58 min1 x Amplitude2.50 min1 x Bandpass10.00 min8 x Phase4.00 min4 x Phase reference check source2.00 min10 x Atmospheric6.67 minCalibration overheads7.13 minMumber of additional 12-m configurations1Time required for additional 12-m41957.41 dEstimated total time for science goal

Validate & submit

AgT Project - Observing Tool for ALMA, version	n Cycle2Te	t2	
New Proposal	₩-N		Perspective 1
D New DDT Proposal	Ж-D		
Open Project	•	Editors	
Open Project as New Proposal	•	Spectral Spatial Project	
🛅 Save	%− S	Principal Investigator	1
Save As		?	
Show ALMA Template Library		Select Pl	
Use Project as Template			
Malidate .	96-1	Main Project Information	
Submit Project	86-L	Project	
Submit Project		Assigned Priority	
Preferences		Project Code None Assigned	
Save Preferences			
Quit			
		Click here to make sure that your project can be validated by the OT. If it doesn't validate the archive will reject it.	
Overview			
		Contextual Help Phase I: Science Proposal	
 Please ensur <u>Science Por</u> Create a nev Selecting Clicking Or clickii Click on the fields. 	te you and tal w proposa g File > N on the ing on this propo	your co-Is are registered with the <u>ALMA</u> by either: ww Proposal icon in the toolbar <u>link</u> sal tree node and complete the relevant	

Scenario 2: Extragalactic

Two separate Science cases Science case 1: Gas

- Science goal: Study the gas velocity and distribution in a minor merger remnant (NGC 4797), to distinguish between dynamical suppression, gravitational heating and AGN/starburst feedback (van de Voort et al. 2018).
- Method: Spectral line observation of CO (1-0) at 10 km/s resolution. The CO gas traces molecular hydrogen gas and will be used to map the gas velocity and distribution.

Field Setup

Editors		
Spectral	Spatial	Field Setup

patial Image	NGC 4797	
	Source	? -
	Source Name NGC 4797	Resolve
	Choose a Solar System Object?	
	Source Coordinates ICRS Sexagesimal display? Parallax 0.00000 mas mas RA 12:54:55.1660 PM RA 0.00000 mas/yr mas/yr Dec 27:24:45.550 PM DEC 0.00000 mas/yr mas/yr	
	Source Radial Velocity 7740.024 km/s 💌 hel 💌 z 0.026160000 Doppler Type RELATIVISTIC 💌	
	Target Type 💿 Individual Pointing(s) 🔾 1 Rectangular Field	
	Expected Source Properties	a
€ C 1× 584, 623 0.0	Peak Continuum Flux Density per Synthesized Beam 0.30400 mJy v Continuum Linear Polarization 0.0 per cent Continuum Circular Polarization 0.0 per cent Peak Line Flux Density per Synthesized Beam 4.60000 mJy v Line Width 450.00000 km/s v Line Linear Polarization 0.0 per cent Line Circular Polarization 0.0 per cent	
nage Filename	Field Center Coordinates	? -
OV Parameters	Coord Type 🖲 Relative 🔾 Absolute	
Representative Frequency (Sky) 112.333 GHz	Offset Unit arcsec	
Antenna Diameter (1) 12m	#Pointings 1	
Show Antenna Beamsize	KA [arcsec] Dec [arcsec] 0.00000 0.00000	
mage Query		
Image Size(arcmin) 10.0 Query	Add Delete Reset Import Export	

Spectral Setup

			ALMA (Observing Tool (Cycle6(Ph	nase2)) - Project				
<u>File E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp									Perspective 3
	EBO								
Project Structure	Editors								
Proposal Program	Spectral Spati	ial Spectral Setup							
Unsubmitted Proposal	Visualisation								^
ዮ 🚔 Project									?
🕈 🖿 Proposal	In the table b	elow, it is possible to de nd is 2CHz wide and ca	efine up to 16 spectral window	s, 4 per baseband as long	as the total Fraction per	baseband is no more than 1.			
Planned Observing	Note that for	bands 3 to 8, it is not p	ossible to put 3 basebands in	one sideband and the four	th one in the other.				
General									
	Left/right clici	k to zoom in/out, grab	sliding bar to pan mentation only – actual setup di	etermined by the windows					
- C Spectral Setup	Hote: Moving	Lor here is for experim	inclution only actual setup a	cternined by the windows	Observed Freque	nev			
Calibration Setup	1	11,0000	, 111,5000	112,0000	112 5000	113,0000	113,5000	114,0000	114,5000
Control and Performance									
Technical Justification									
- ScienceCoal (NGC 4797 dust)									
— 🗋 General				i i i i i i i i i i i i i i i i i i i					
– 🗋 Field Setup									
— 🗋 Spectral Setup			S <u></u>	0	0 v=0 1-0				
– 🗋 Calibration Setup		,							
 Control and Performance 									-
— 🗋 Technical Justification									
		'114J0000'	' '114J5000' '	115,0000	115J5000 Rest Frequency	/ 116l0000 /	116/5000	117,0000	' 117J5000'
			Overlays:	Receiver Bands	✓ Transmission	🗹 DSB Image 🗹 Spectral I	ines Select Lines to Overlay		
			Water Vapour Column Der	nsity: Automatic Choice	O Manual Choice 5.186	mm (7th Octile)			
			Viewport:	Pan to Spectral Wine	dow Zoom to Band	Reset			
	Spectral Type								20
						Spectral Line			
				Spectral Tune		 Single Continuum 			
				Spectral Type					
						Spectral Scan			
				Produce image side	bands (Bands 9 and 10 d	only) 🗌			
				Polarization product	ts desired	🔾 XX 🖲 DUAL 🔾 FULL			
	Spectral Setup E	rrors							
	Spectral Line								
	-Baseband-1-								? -
	Fraction	Centre Freq (rest,hel)	Centre Freq (sky,hel)	Transition		Bandwidth, Resolution (smoothed)	Spec. Avg.	Representative Window
	1(Full)	115.27120 GHz	112.33258 GHz	CO v=0 1-0	1875.000 MHz(500	4 km/s), 1.129 MHz(3.013	km/s)	2	

Angular resolution and time estimate

(d) Y w Loo Sarch Leb (d) Y w Lo				ALMA Observing Tool (C	Cycle6(Phase2)) - Project		Ti	me Estimate		
Image: A provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configurations and into The provide a set of the observations. Including the regulared antenna configuration and into The provide a set of the observations. Including the regulared antenna configuration and into The provide a set of the observations. Including the regulared antenna configuration and into The provide a set of the observations. Including the regulared antenna configuration and into The provide a set of the observations. Including the regulared antenna configuration and into The provide a set of the observations. The observatins. The observations. The observations. The o	t <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp					Note: The t	ime in brackets is that re	quired to reach the conditi	uite c	
Sector Sector Control and Performance Control and Performan			?			Operationa is longer, e	l requirements often mea specially for mosaics. Ple	an that the actual observed ase see the User Manual fo	time or more	
Worker Specific State Specific Stat	tructure	litors				details.				
The second of the value of the value of the value of the value as spects of the observations, including the required interna configuration and near the value of	al Program S	spectral Spatial Control and P	Performance			Lunut Dava				
Operating	red Proposal roject Proposal Planned Observing ScienceGoal (NGC 4797 gas) General Field Setup Calibration Setup Calibration Setup Control and Performance Technical Justification ScienceGoal (NGC 4797 dust)	These parameters are used to co Control and Performance Configuration Information Antenna Beamsize (1.13 * λ / D Number of Antennas Longest baseline Synthesized beamsize	12m 51.837 arcsec 12m 43 ACA 7m configuration 0.049 km	7m 88.863 ar 7m 10 Most compact 12m 0.161 km	csec TP 3 configuration Most extended 12m con 16.197 km	Input Para gr Requested Bandwidth Representa Estimate Cluster 1 fig Source Name NGC 4797	meters sensitivity used for sensitivity titive frequency (sky, first d Total time for Science RA 12:54:55.1660	source) ence Goal Dec 27:24:45.550	0.924 10.00 112.: 1.15 Velocity 7740.024 km/s	00 mJy 00 km/s 33 GHz h
Pield step 0.009 km 0.015 km 0.256 km Testinde Comparation Communitations Calibration Step Calibration Step Calibration Step Desired Performance 12-m(1) 12-m(2)	- D General	Synthesized Dearnsize	15.401 alesee	5.004 arcsec	0.047 arcsec	1	Dessi	le Configuration Combin	ations	
Aximum recoverable scale 62.989 arcsec 30.980 arcsec 0.531 arcsec Ostind and Performance Desired Angular Resolution (Synthesized Beam) Single Range Any Standalone ACA 1.50000 arcsec Largest Angular Structure in source 2.00000 arcsec 920.00000 arcsec Prequency Width 10.00000 Bandwidth used for Sensitivity User Frequency Width 10.00000 1 Science goal integration time estimate Time Estimate 1 Override OTS sensitivity Yes No 1 Simultaneous 12-m and ACA observations time-constrained? Yes No 1 Simultaneous 12-m and ACA observations time-constrained? Yes No 1.5000 Simultaneous 12-m and ACA observations time-constrained? Yes No 1.5000 Simultaneous 12-m and ACA observations time-constrained? Yes No 1.55 h Calibration overheads 3.13 min 2.00 min	Field Setup	Shortest baseline	0.009 km	0.015 km	0.256 km	12 m (1)	12 m (2)			
Control and Performance Desired Argubar Resolution (Synthesized Beam) I Single Range Any Standalone ACA Iso000 I servee Input Parameters Desired Angubar Structure in source 2.00000 I greate Iso000 I greate Input Parameters Desired Statisticity per pointing 920.00000 I greate Iso0000 I greate Input Parameters Desired Statisticity per pointing 920.00000 I greate Input Parameters Input Parameters Desired Statisticity per pointing 920.00000 I greate Input Parameters Input Parameters Desired Statisticity per pointing 920.00000 I greate Input Parameters Input Parameters Override OT's sensitivity per pointing Issuer Frequency Width 10.00000 Frequency Width 10.00000 Science goal Integration time estimate Time Estimate Input Parameters Input Parameters Override OT's sensitivity-based Yes INO No Input Parameters Input Parameters Simultaneous L2-m and ACA observations Yes INO No Input Parameters Input Parameters Are the observations time-constrained? Yes INO Input Parameters Input Parameters Input Parameters 2 Xeoning 4.00 ninin Input Parameters Input	Collibration Setur	Maximum recoverable scale	62.989 arcsec	30.980 arcsec	0.531 arcsec	C43-3	None	No	No	
Calibration Breakdown per SB execution 2 x Pointing 4.00 min 1 x Amplitude/bandpass 5.00 min 5 x Phase 2.50 min 6 x Atmospheric 4.00 min Calibration overheads 3.13 min		Largest Angular Structure in : Desired sensitivity per pointi Bandwidth used for Sensitivit Science goal integration time Override OT's sensitivity-bas time estimate (must be justif Simultaneous 12-m and ACA	1.5000 source 2.00000 ng User estimate Time ied) Yes observations Yes	0 arcsec v 920.00000 uly Estimate No No	equivalent to 39.620 mK Frequency Width 10.00000	Input Paramete Precipitable wat Time required Total number of Number of tunin Total time on so Total calibration Other overhead: Total time for 1 Number of SB e; Total time to co	ers er vapour (all sources) for 12m (1) [C43-3] per pointing (first source f pointings (all sources) igs urce time s S& execution secutions mplete S&	5.186mm (7th Octile) 43.34 min [43.16 min] 1 43.34 min [43.16 min] 18.63 min 7.15 min 1.15 h 1 1.15 h	I	Ē
Calibration Breakdown per SB execution 2 x Pointing 4.00 min 1 x Amplitude/bandpass 5.00 min 5 x Phase 2.50 min 6 x Atmospheric 4.00 min Calibration overheads 3.13 min		Are the observations time-co	onstrained? U Yes	IND .		Caliburativ D	-luda una con con a con con			
1 x Amplitude/bandpass 5.00 min 5 x Phase 2.50 min 6 x Atmospheric 4.00 min Calibration overheads 3.13 min						2 x Pointing	action per 56 execution	4.00 min		-
5 x Phase2.50 min6 x Atmospheric4.00 minCalibration overheads3.13 min						1 x Amplitude/	bandpass	5.00 min		
6 x Atmospheric 4.00 min Calibration overheads 3.13 min						5 x Phase		2.50 min		
Calibration overheads 3.13 min						6 x Atmospheri	c	4.00 min		
						Calibration over	heads	3.13 min		
		7								•
Close								Close		

Science Case I Continuum

- Set the peak continuum flux sensitivity per synthesized beam to 0.304mJy/beam in the field setup (this was estimated from fitting a modified blackbody to fluxes at shorter wavelengths).
- Now add 3 spectral windows to record continuum in band 3.
 Use the lowest spectral resolution correlator mode, and use the full 7.5 GHz bandwidth.
- What is the continuum flux density S/N? (Hint use the Technical Justification tab).
- Change the largest angular structure to 20". What is the integration time now, and why is it longer?

NGC 4797 Science case 2

Science case 2: dust continuum

- Science goal: Map the dust continuum to look for extended dust emission, and to do radiative transfer modelling to reveal the sources of dust heating.
- Method: Image the dust continuum at high resolution to match the spatial resolution of existing optical data. The dust continuum will be brightest at high frequency (Band 9).

Setup second Science case

- Copy the science goal and give it a new name.
- Change the spectral setup to observe continuum in band 9. Note the mirror images of the spectral windows.
- Set the peak continuum flux to 0.89 mJy/beam and the peak line flux to zero.
- Set the desired angular resolution to 0.6" and the largest angular scale to 2.0".
- What is the desired sensitivity needed to reach a S/N of 5 for the continuum? (Hint, the integration time is 8.8 hours).

Spectral Spatial Spectral Setup

Editors

Each baseband is 2GHz wide and can be separately configured i.e. each spectral window can have a different bandwidth and resolution. Note that for bands 3 to 8, it is not possible to put 3 basebands in one sideband and the fourth one in the other. Left/right click to zoom in/out, grab sliding bar to pan Note: Moving LO1 here is for experimentation only - actual setup determined by the windows Observed Frequency 665,0000 670,0000 675,0000 680,0000 685,0000 655,0000 66010000 09 ontinuum Continuum 67510000 68510000 70510000 0000 68010000 69010000 695/0000 700/0000 Rest Frequency Overlays: ✓ Receiver Bands Water Vapour Column Density:
Automatic Choice
Manual Choice 0.472mm (1st Octile) Pan to Spectral Window Viewport: Zoom to Band Reset Spectral Type ? -Spectral Line Single Continuum Spectral Type Spectral Scan Produce image sidebands (Bands 9 and 10 only) Polarization products desired Spectral Setup Errors Single Continuum ? -9 [602.0-720.0 GHz] Ŧ **Receiver Band** Reset to Standard Frequency 679.00000 GHz 🔻 Sky Frequency Rest Frequency 696.762640 GHz Baseband-1

Mosaic

- We want to make a map of the dust a larger region than one pointing.
- In field setup, change to a rectangular field and make a 7"x7" mosaic. Use Nyquist spacing (the default) between the pointings.
 This is the spacing of samples on the sky needed to get good imaging of large-scale low surface brightness emission. Use the spatial image tool to help you visualize the pointing positions.
- How long is the integration time now?

spatial Field Setup	
	2 Source
	2 – Source Name NGC 4797 Resolve
	Choose a Solar System Object?
	Source Coordinates ICRS Sexagesimal display? Parallax 0.00000 mas mas RA 12:54:55.1660 PM RA 0.00000 mas/yr mas/yr Source Radial Velocity 7740.024 km/s hel z 0.026160000 Doppler Type RELATIVISTIC Target Type Individual Pointing(s) 1 Rectangular Field
	Expected Source Properties
Image: Constrained and the second	Peak Continuum Flux Density per Synthesized Beam 0.89000 mJy Continuum Linear Polarization 0.0 per cent Continuum Circular Polarization 0.0 per cent Peak Line Flux Density per Synthesized Beam 0.00000 mJy Line Width 0.00000 km/s Line Linear Polarization 0.0 per cent Line Circular Polarization 0.0 per cent
Image Filename 1/.jsky3/cache/jsky3134876705447496922.fit: FOV Parameters	Coords Type Relative Absolute
Representative Frequency (Sky) 682.000 GHz Antenna Diameter 12m Antenna Beamsize (HPRW) 8 538 arcsec 	Field Center Offset(Longitude) 0.00000 arcsec Coordinates
Show Antenna Beamsize	
Image Query	p length 7.00000 arcsec 💌
Image Server Digitized Sky (Version II) at ESO 🗸	q length 7.00000 arcsec ▼
Image Size(arcmin) 1.0 Query	Position Angle 0.00000 deg
	Spacing 0.51093 fraction of antenna beamsize 🔻 Reset to Nyquist
	#Pointings 12m Array 3 Export

Edito

[NRAO]

Don't be afraid to ask for directions

- The same cut and paste commands you use outside the OT for text also work inside it since Cycle 5
- Ctrl-Z global shortcut will expand out all succeeding items in the J-tree (try it, you'll see what we mean)
- Holding down ALT when making choices in dropdown lists will convert to the unit or type of the new choice
 - Otherwise, only the description changes, not value
- OT does galactic-celestial conversion automatically
 - Cannot convert in other ways, eg not FK5 J2000 to ICRS. FK5 J2000 now deprecated

 NEW In the J-tree: Holding down the alt key in combination with the up/down arrows will move from a node in one SG to the same node in the adjacent SG (try it when you have more than one SG)

Science Highlights - Possible Disk Truncation in Ophiuchus Brown Dwarfs

The sensitivity, resolution and the wavelength coverage of ALMA makes it an ideal tool for studying the properties of the cold outer disks of young stars and low mass objects. Such observations can aid us in understanding the formation of their central objects and their likelihood of ultimately hosting planets. In a recent Astronomy & Astrophysics paper, Dr. Testi and his collaborators made use of ALMA Band 7 to observe an unbiased sample of spectroscopically confirmed Ophiuchus brown dwarfs with infrared excesses.

www.almascience.org ALMA Science Portal @ NRAO

I could use a hand...

Have no fear, the ALMA Helpdesk is here...

Extra OT slides

Crafting mosaics

T Project - Observing Tool for ALMA, v	ersion Cycle2Test2	
<u>File Edit View Tool Search Hel</u>	p	Perspective 1
1 1 4 🛋 🕞 🔛		
Project Structure Proposal Proposal Project Proposal Project Proposal Project Proposal Project Proposal Planned Observing Planned Observing Planned Observing Central ScienceGoal (Crp General Field Setup Calibration Set Control and Pe Technical Justi when you click on this node you will	Editors Spetral Spatial Fiel Set	The Spatial tab gives a graphical visualization of the Field Setup. PM RA 0.000 PM DEC 0.000 Source Radial Velocity 2794.200 km/s Pel 2 0.009364291 Target Type Individual Pointing(s) I Rectangular Field Expected Source Properties Peak Continuum Flux Density per Beam 0.17400 Jy Continuum Polarization Percentage 0.0 Peak Line Flux Density per Beam 0.00000 Jy Line Width 0.00000 km/s
Template library. Turn the keys o× Template library. Turn the keys o× Proposal Planned Observing ScienceGoal (B ScienceGoal (B Sci	Image Image <td< td=""><td>Rectangle Select a background image from an online image server C C C C C C C C C C C C C</td></td<>	Rectangle Select a background image from an online image server C C C C C C C C C C C C C
Overview	Contextual Help	Phase I: Science Proposal

Crafting mosaics

Crafting mosaics

Contextual Help

Phase I: Science Proposal

The spectral setup tab

<u>File Edit View Tool Search Help</u>

ALMA Observing Tool (FEB2017) - Project

.

Perspective 1

	ALMA Observing Tool (FEB2017) - Project	
<u>File E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp		Perspective 1
Project Structure	g Editors	
Proposal Program	Spectral Spatial Spectral Setup	
Project Project Proposal	Spectral Line Baseband-1 Fraction Centre Freq (rest,Isrk) 1(Full) 98.70000 GHz 98.69607 GHz continuum 1875.000 MH Windows to get started!	Spec. Representative Avg. Window
Control and Performance Technical Justification	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral w	vindows
	Baseband-2 1/2 97.99517 GHz 97.99127 GHz I-C3H v=0 J=9 58.594 MHz(179 km/s), 70.557 kHz(0.216 km/s) 1/2 97.98095 GHz 97.97705 GHz CS v=0 2-1 58.594 MHz(179 km/s), 61.035 kHz(0.187 km/s)	
	Add spectral window centred on a spectral line Add spectral window manually Dilete Show image spectral window manually Baseband-3 Note: Spectral window centred on a spectral line Add spectral window manually Dilete Show image spectral window manually Dilete Show image spectral window manually 1/2 86.67076 GHz 86.66731 GHz HCO 1(0,1)-0(58.594 MHz(203 km/s), 61.035 Hz(0.211 km/s) (1/2 87.31690 GHz 87.31342 GHz CCH y=0 N=1 58.594 MHz(201 km/s), 61.035 Hz(0.210 km/s)	rindows 1 ○ 1 ○
	Add spectral window centred on a spectral line Add spectral window manually redeted Show image spectral w	vindows
This option line picker. added this v	will call up the spectral Spectral windows way retain line id and Add spectral windows	1 0 1 0
	Representative Frequency The representative frequency is used in conjunction with the sensitivity entered on the 'Control and Performance' page to est observing time and to set the size of the antenna beam shown in the 'Spatial Visual' editor. If the transition you are most interesting time and to set the size of the antenna beam shown in the 'Spatial Visual' editor. If the transition you are most interesting time and to set the size of the antenna beam shown in the 'Spatial Visual' editor.	timate the required rested in does

The spectral line picker has new filters

116

0

-

. .

Create spectral windows centred on spectral lines

Transition Filter

*					

- e.g. CO*2-1* or *oxide*
- Include description

Frequency Filters

Min 84 Max

Receiver/Back End Configuration

- All lines
- Potentially selectable lines
- Lines in defined spws
- G Filtering unobservable lines

Upper-state	Energy (K)	

Min	0 - N	lax	
IVIIII		Ian	

Molecule Filter / Environment

Show all atoms and molecules

Can'	't find	the ti	ransiti	on you	u're loo	oking fo	r in
the (offline	pool	? Find	more	in the	online	
Spla	talogu	le.					

Search Online

Reset Filters

J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() H3C4H 21() J-85499.3 H3CN v8=1 H3CN v8=1 H3OH v t=1 P85506 Pectral windo	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1 22(8,14)-22(6,16) ys in this baseband (maxim Transition △	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene UNIDENTIFIED Methyl Cyanide Methanol UNIDENTIFIED Ad um of four) Description	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278 85.500670 GHz 85.498648 85.501157 GHz 85.499135 85.506000 CHz 85.90278 dd to spectral window list Rest Frequence	2424.382 K 55.32 K 47.402 K 1239.893 K 1180.751 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ² 0.043 D ² 0.1 Sky Frequency	Offline Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() J-85499.3 H3CN v8=1 H3CN v8=1 H3OH v t=1 P85506	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1 22(8,14)-22(6,16)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene UNIDENTIFIED Methyl Cyanide Methanol UNIDENTIFIED Add Methanol UNIDENTIFIED	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278 85.500670 GHz 85.498648 85.501157 GHz 85.499135 85.501277 GHz 85.499135 85.502278 85.499135 85.50127 GHz 85.499135 85.502278 85.499135	2424.382 K 55.32 K 47.402 K 1239.893 K 1180.751 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ² 0.043 D ²	Offline Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() H3C4H 21() H3C4H 21() H3CH v8=1 J-85499.3 H3CN v8=1 H3CH v t=1 H3CH v t=1	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1 22(8,14)-22(6,16)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene UNIDENTIFIED Methyl Cyanide Methanol LINIDENTIFIED	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.500670 GHz 85.497278 85.501157 GHz 85.499135 85.501157 GHz 85.499135 85.502078 dd s5.50278 dd	2424.382 K 55.32 K 47.402 K 1239.893 K 1180.751 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ² 0.043 D ²	Offline Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() J-85499.3 H3CN v8=1 H3CN v8=1 H3CN v t=1 L85506	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1 22(8,14)-22(6,16)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene UNIDENTIFIED Methyl Cyanide Methanol	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278 85.500670 GHz 85.498648 85.501157 GHz 85.499135 85 506000 CHz 85.62078	2424.382 K 55.32 K 47.402 K 1239.893 K 1180.751 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ² 0.043 D ²	Offline Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() J-85499.3 H3CN v8=1 H3CN v8=1 H3OH v t=1	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1 22(8,14)-22(6,16)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene Methyl diacetylene UNIDENTIFIED Methyl Cyanide Methanol	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278 85.500670 GHz 85.498648 85.501157 GHz 85.499135	2424.382 K 55.32 K 47.402 K 1239.893 K 1180.751 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ² 0.043 D ²	Offline Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 H3CN v8= J J-85492.6 H3C4H 21() H3C4H 21() J-85499.3 H3CN v8=1	=65-65, K =2-0 -20(1) -20(0) =39-39, K =3-1	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene Methyl diacetylene UNIDENTIFIED Methyl Cyanide	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278 85.500670 GHz 85.498648	2424.382 K 55.32 K 47.402 K 1239.893 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1 0.15 D ²	Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 CH3CN v8= J J-85492.6 CH3C4H 21() CH3C4H 21() J-85499.3	=65-65, K =2-0 -20(1) -20(0)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene Methyl diacetylene UNIDENTIFIED	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144 85.499300 GHz 85.497278	2424.382 K 55.32 K 47.402 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ² -0.1	Offline Offline Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 J-85492.6 J-85492.6 CH3C4H 21(1) CH3C4H 21(1)	=65-65, K =2-0 -20(1) -20(0)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene Methyl diacetylene	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311 85.498166 GHz 85.496144	2424.382 K 55.32 K 47.402 K	0.22 0.675 D ² 0.18 58.628 D ² 0.1 58.699 D ²	Offline Offline Offline Offline Offline
J-85468.3 J-85486.6 CH3CN v8= , J J-85492.6 CH3C4H 21(1)	=65-65, K =2-0 -20(1)	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED Methyl diacetylene	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578 85.497333 GHz 85.495311	2424.382 K 55.32 K	0.22 0.675 D ² 0.18 58.628 D ²	Offline Offline Offline Offline
J-85468.3 J-85486.6 CH3CN v8= J J-85492.6	=65-65, K =2-0	UNIDENTIFIED Methyl Cyanide UNIDENTIFIED	85.486600 GHz 85.484578 85.489615 GHz 85.487593 85.492600 GHz 85.490578	2424.382 K	0.22 0.675 D ² 0.18	Offline Offline Offline Offline
J-85468.3 J-85486.6 CH3CN v8=. J	=65-65, K =2-0	UNIDENTIFIED Methyl Cyanide	85.486600 GHz 85.484578 85.489615 GHz 85.487593	2424.382 K	0.22 0.675 D ²	Offline Offline Offline
J-85468.3 J-85486.6		UNIDENTIFIED	85.486600 GHz 85.484578	2	0.22	Offline
J-85468.3						Offline
and the second		UNIDENTIFIED	85.468300 GHz 85.466279		1.84	-
H3CCH v=0 H3CCH v=0 H3CCH v=0	can	filter using	the tools at left	(see bel	ow)	Offline Offline
J-85396 TH3CCH v=0	Salact and a	r moro lino	e from a enlatal		end list you	Offline
CH3OH v t=1 1	14(10.4)-14(11.3)	Methanol	85.355421 GHz 85.353402	1156.266 K	5.135 D ²	Offline
ICS+ 2-1		Thioformylium	85.347869 GHz 85.345850	6.143 K	0.4 7.668 D ²	Offline
-HCCCH v=0	2(1,2)-1(0,1)	Cyclopropenylidene	85.338893 GHz 85.336875	6.445 K	3.1 52.945 D ²	Offline
C13CCH N=9	0-8, J=19/2-17/2, F1=17/	1,3-Butadiynyl radical	85.331936 GHz 85.329918	20.473 K	0.03 7.138 D ²	Offline
CC13CCH N=9	9-8, J=19/2-17/2, F1=19/	1,3-Butadiynyl radical	85.331935 GHz 85.329916	20.473 K	0.03 7.888 D ²	Offline
C13CCH N=9	0-8, J=19/2-17/2, F1=19/	1,3-Butadiynyl radical	85.331917 GHz 85.329898	20.473 K	0.03 7.12 D ²	Offline
C13CCH N=9	-8, J=19/2-17/2, F1=17/	1,3-Butadiynyl radical	85.331915 GHz 85.329897	20.474 K	0.03 6.372 D ²	Offline
12CO 50(6,44))-50(6,45)	Formaldehyde	85.310678 GHz 85.308661	4881.916 K	6.63 D ²	Offline
	=9-8, K = -13	Methyl Cyanide	85.267374 GHz 85.265357	585.474 K	0.001 D ²	Offline
H3CN v8=1 J	D(0,0) - D(1,0)	trans-Ethanol	85.265503 GHz 85.263486	17.483 K	0.25 5.343 D ²	Offline
-CH3CH2OH 6 CH3CN v8=1 J	E(0, E) = E(1, E)	Ethynyl	85.256952 GHz 85.254936	4.092 K	0.07 0.754 D ²	Offline
-CH3CH N=1-0 -CH3CH2OH 6 CH3CN v8=1 J	, J=3/2-1/2, F1=1-0, F=3					Cuturo

Remove spectral window(s)

00

Transition Filter		gs:						
* e.g. CO"2-1* or "oxide" Include description	Filter by name CH3NH2 4(1)A2-4(0)A1, F=5-5	sort, single-click subsequer Methylan Methylan	ine lists can be l	clicks will reverse	use filte	dv selected rs	columns.) latalog ffline ffline	
Frequency Filters	CH3NH2 4(1)A2-4(0)A1	Methylamine	86.074729 GHz 86.072693 .	25.405 K		7.29 D*	Offline	
ALMA Band	CH3NH2 4(1)A2-4(0)A1, F=4-4	Methylamine	86.075367 GHz 86.073331.	25.405 K		2.193 D ²	Offline	
	SO 32 v=0 2(2)-1(1)	Sulfur Monoxide	86.093950 GHz 86.091914 .	19.314 K	1.7	3.534 D ²	Offline	
1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9	Filter by receiv	er hand / fred	2 86.107150. 2 86.109483.	43.712 K 109.97 K		0.007 D ²	Offline Offline	
Sky Freewancy (CHz)		ci balla / lice	z 86.131163.		0.5		Offline	
Sky Frequency (GHZ)			z 86.145963 .		0.5		Offline	
	U-86151.6	UNIDENTIFIED	86.151600 GHz 86.149562 .		0.6		Offline	
	13CH3OH v t=1 5(3,3)-6(2,5)	Methanol	86.168150 GHz 86.166112 .	451.624 K	(0.162 D ²	Offline	
Min 84, Max 116,				23.345 K	1.6		Offline	
Passiver/Pack End Configuration	New! The Recei	ver/Back End	Configuration		0.9		Offline	
Receiver/Back End Configuration			· · · · · · · · · · · · · · · · · · ·		0.9	3	Offline	
All lines	Filters have bee	en revised.		. 1227.895 K		7.175 D*	Offline	
Potentially selectable lines	Detentially colo	otoblo – in cit	boroidaband	0.057.V	0.9	2 004 02	Offline	
	Potentially sele	clable = in ell	ner sideband	. 8.357 K		2.994 D*	Offline	
Unes in defined spws	-		,	. 8.357 K	0.20	3.709 D*	Offline	
Filtering unobservable lines		Discretivel ashees		8.357 K	0.28	23.651 D*	Offline	
	LH SOCHS 2(2,0)-2(1,1) AA		86.228720 GHZ 86.220081.	8.337 K	1.7	5.981 D	Offline	
Upper-state Energy (K)	U-ANZ 39 N			1775 220 K	1./	10 405 02	Offline	
	This proviously	used a clider	2 86 241330 .	1773.339 K	17.4	19.495 D	Offline	
	This previously	useu a siluei	2 86 246160		1.0		Offline	
and the second sec			2 86 252808		0.6	124 512 D	² Offline	
Molecule Filter / Environment	11_86250.7	UNIDENTIEIED	86 250700 CHz 86 257660	710.752 K	_0.12	124.3150	Offline	•
Show all atoms and molecules			Add to spectral window list					
	Spectral windows in this baseband	(maximum of four)						222
Can't find the transition you're looking for in the offline pool? Find more in the online	Transition A	Descripti	on Rest Freque	ncy 🛆	Sky F	Frequency		
Splatalogue.	our pseudo continuum		88.000000 GHz		87.997919 GHz			
Search Online								
Reset Filters								
			Remove spectral window(s)					

INIVIU

•••	ALMA Observing Tool (FEB2017) - Project	18
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp		Perspective 1
1 2 2 6 🖻 🗉 🗄 🗏 😫 6		
Project Structure	Editors	
Proposal Program	Spectral Spatial Spectral Setup	
Unsubmitted Proposal	Polarization products desired O XX	^
Project	Shartral Satur Errors	
Planned Observing	No suitable receiver band for the range :[0.0 GHz, 98.02251613655123 GHz]	
🔶 👰 ScienceGoal (Copy of Chameleon's da	Spectral Line	
- D General	Paraband 1	? -
- D Field Setup	Fraction Centre Freq Centre Freq Spec Renr	esentative
Spectral Setup	(rest,lsrk) (sky,bar) Transition Bandwidth, Resolution (smoothed)	indow
Control and Performance	1(Full) 0.00000 GHz 0.00000 GHzEnter Name 58.594 MHz. 30.518 kHz	
Technical Justification	58.594 MHZ, 50.510 MHZ	
	234.375 MHz, 122.070 kHz	
	468.750 MHz, 244.141 kHz	
	Add spectral window centred on a spectral line Add 937.500 MHz, 488.281 KHz	
	1875.000 MHz, 31.250 MHz	
Double click this field	CO 2 97.25517 GHz 97.99127 GHz I-C3H v=0 J=9 58.594 MHz, 70.557 kHz 2	
select handwidth &	1 2 97.98095 GHz 97.97705 GHz CS v=0 2-1 58.594 MHz, 61.035 kHz 1	
Select balluwidth &		
resolution from a		
drondown list	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows	
uropuowiriist		
	Baseband-3	
	1/2 86.67076 GHZ 86.66731 GHZ HCO 1(0,1)-0(58.594 MHZ, 61.035 KHZ 1 0	
	Add spectral window central on a spectral line Add spectral window manually Delate Shaw image spectral windows	
	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows	
	Baseband-4	
	1/2 88.63160 GHz 88.62807 GHz HCN v=0 J=1-0 58.594 MHz, 61.035 kHz 1	
	1/2 89.18853 GHz 89.18498 GHz HCO+ v=0 1−0 58.594 MHz, 61.035 kHz 1	
	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows	
• 7		

	ALMA Observing Tool (FEB2017) - Project	
<u>File Edit View Tool Search Help</u>		Perspective 1
Project Structure Proposal Program	Editors Spectral Spatial Spectral Setup	
Unsubmitted Proposal	Delate the second	
 Project Proposal Panned Observing ScienceGoal (Copy of Chameleon's da Ceneral Ceneral Field Setup 	Spectral Setup Errors No suitable receiver band for the range :[0.0 GHz, 98.02251613655123 G Spectral Line Baseband-1- Failing to rename a new spw brings a validation error	2-
- 🗋 Spectral Setup	Fraction Centre Freq Centre Freq Transition Bandwidth, Resolution (smoothed)	Spec. Representative Avg. Window
Calibration Setup Control and Performance Technical Justification	Iffull 0.00000 GHz 0.00000 GHz Inter Name 58.594 MHz, 38.518 kHz 117 58.594 MHz, 38.518 kHz 10.518 kHz 117.185 kHz 117 117.185 kHz 117.185 kHz 117.185 kHz 117 117.197 kHz 117.185 kHz 117.185 kHz 117 117.197 kHz 117.197 kHz 117.197 kHz 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 117.2 117.2 117.2 117 117.2 <	

[NRAO]

Full Continuum & Polarization

Eile Edit View Tool Search Help	ctive
Project Structure Editors	
Proposal Program Spectral Spectral Setup	
Project Image: Single Continuum	Ê
Produce image sidebands (Bands 9 and 10 only) - ScienceGoal (Copy of Chameleon's data - General Produce image sidebands (Bands 9 and 10 only) - General	
- 🗋 Field Setup	
Spectral Setup Single Continuum	
Calibration Setup Control Techn Standard single continuum setups, can be modified with justification Show image spectral windows Baseband-2 [tfull) 140.00000 GHz [140.00000 GHz [140.0000 GHz [140.0000 GHz [140.0000 GHz]] Show image spectral windows Baseband-2	
Show image spectral windows Baseband-3 1 (Full) 150.00000 GHz 150.00000 GHz Single Continuum 1875.000 MHz(3747 km/s), 62.500 MHz(124.914 km/s) 1 Show image spectral windows Show image spectral windows Baseband-4 1 (Full) 152.00000 GHz 152.00000 GHz Single Continuum 1875.000 MHz(3698 km/s), 62.500 MHz(123.270 km/s) 1	

INKAU

Full Continuum & Polarization

• Proposal Produce image sidebands (Bands 9 and 10 only) 🕂 💽 ScienceGoal (Copy of Chameleon's da ○ XX ○ DUAL ● FULL Calibration Setup Control 2 Techni **Full Polarization for Standard single** Bands 3 - 7 User can edit frequencies continuum setups, **Suggestion:** used for continuum can be modified wi polarization. Polarization Schedule blocks are 3+ justification If FULL is specified, an hours long to get parallactic angle expected polarization coverage and the rms noise may be percentage must be given much less than specified on the with the field setup tab ctrl&perf page **TECHNICAL JUSTIFICATION shows** the actual expected rms noise and various S/N ratios

INKAU

Automated spectral scan - I

Automate		ral sca	n - I	Δ	ΜΔ	
File Edit View Tool Search Help	•					Perspective 1
Proposal Program	Spectral Spatial Spe	ctral Setup				
Unsubmitted Proposal		· · ·			? -	
₽ ₽roject			Spectr	al Line		
Proposal		Spectral Ty	oe 🔷 Single	Continuum		
ScienceGoal (Copy			Spectr	al Scan 📉		
- General						
- 🗋 Field Setup		Polarization	products desired () XX ()	DUAL O FULL		
— 🗋 Spectral Setup	Spectral Setup Errors					
- 🗋 Calibration Setu	Spectral Scan					
Control and Perf						
- 🗋 Technical Justifi	Re	quested start frequency (sky)	95.0	GHz 👻 🔨 🔨	amated Spectr	
						ai
			107.0	GHZ Sca	n mode and tu	nings
New Cycle 7:	Spectral sca	n observina	has 95.8896 GHz - 1	108.0020 GHz		
been mede n	oro officient	hy joining of	95.0 GHz - 110.	.0 GHz		
been made n	nore enicient	by joining a				
calibrator tur	nings to lesse	en the numbe	er of d) 1875.000 MHz,	976.563 kHz		
antonna poin	otina calibrati	one	1	•		
	illing campiali	0115			5	
P 🖻			102.50000	GHz 🔽		
Planned Observing ScienceGoal (B3)						
← ② ScienceGoal (B7 =	The representative fr	equency defined in the obse	rved frame is used in conjun	nction with the sensitivity entered	on	
🗢 🍘 ScienceGoal (B7	the 'Control and Perf	formance' page to estimate the	ie required observing time a	ind to set the size of the antenna e mid-frequency of the achieved	beam shown in	
🗢 🧟 ScienceGoal (B9	subsequently set by	the user to any frequency wit	hin the achieved scan range	e mid nequency of the admeved.	scarrange but may be	
ScienceGoal (B3		Tuning (May 5)		SD///2 (CH2)	I I I I I I I I I I I I I I I I I I I	
ScienceGoal (B6		1	95.9375 GHz	97.8125 GHz		
ScienceGoal (B7		2	99.6875 GHz	101.5625 GHz		
🔶 🎡 ScienceGoal (B6		3	103.4375 GHz	105.3125 GHz		
ScienceGoal (B3		4	107.1675 GHZ	109.0025 GHZ		-

Automated spectral scan - II

23 An Project - Observing Tool for ALMA, version Cycle2Test2 File Edit View Tool Search Help Perspective 1 0 ~ 0 **Project Structure** Editors Program Proposal Spectral Setup Spectral Unsubmitted Proposal Visualisation ? Project Visual Representation Proposal ctral windows, 4 per baseband as long as the total Fraction per baseband is no more than 1. configured i.e. each spectral window can have a different bandwidth and resolution. ♀─ □ Planned Observing of the Spectral Scan put 3 basebands in one sideband and the fourth one in the other. ScienceGoal (Copy General Mode – Actual spectral tual setup determined by the windows Field Setup coverage vs. requested Spectral Setup Observed Frequency Calibration Setu coverage Control and Perf 83 **Technical Justifi**

'n . 1 85 00 110 00 95 00 90/00 11500 Template library. Turn the keys on... 🗙 **Rest Frequency** Y 👉 тетріасе погату. титі те ке Proposal Receiver Bands ✓ Transmission Overlay Lines 🗹 DSB Image Select Lines to Overlay Overlays: P I Planned Observing Spectral Scan: Requested Scan ✓ Tuning 1 ✓ Tuning 2 ✓ Tunina 3 ✓ Tuning 4 ScienceGoal (B3 ScienceGoal (B7 Water Vapour Column Density:
Automatic Choice
Manual Choice
1.262mm (4th Octile) ScienceGoal (B7 ScienceGoal (B9 Viewport: Pan to Line Zoom to Band Reset ScienceGoal (B3 ScienceGoal (B3 Spectral Type ? -ScienceGoal (B6 ScienceGoal (B7 Spectral Line ScienceGoal (B6 Spectral Type Single Continuum ScienceGoal (B3 Snectral Scan ScienceGoal (B6

4

0-

ò-

0-

0-

0-

òò-

0-

0-

Feedback

Bands 9&10 - sideband separation (90° Walsh)

ALMA Observing Tool (FEB2017) - Cycle 5 Kelvin Sensitivity Test

View Tool Search Help Perspective 1 File Edit EEO 2 2 5 2 Project Structure Editors Spatjal Spectral Setup Program Spectral Proposal Left/righ Only 1.875 GHz bandwidth, line or continuum allowed Note: Mo 🚞 Cycle 5 K Prop Ubserved Frequency 655,00 660100 675100 680100 685100 690100 670,00 665<u>1</u>00 Bands 9,10 have double sideband receivers but the sidebands can be separated using an additional anal at 680 GHz Signal at 680 GHz phase-switching des no 680100 685100 660100 670100 675100 6901001 655100 step, 90° Walsh Rest Frequency switching. This can 🖌 Transmission 🔽 DSB Image 📃 Spectral Lines Overlays: Receiver Bands Select Lines to Overlay be turned on solely Manual Choice 0.658mm (2nd Octile) Water Vapour Column Density: 🖲 Automatic Choice 🔾 See where lines in one to reject lines in the Pan to Spectral Wind Viewport: SB appear in the other image sideband, but New in Cycle 7! if checked once enabled, the pectral Type **ON by default** two SB may be Spectral Line stored separately. Single Continuum ctral Type Note that the noise Spectral Scan is not affected **Record both SB?** Produce image sidebands (Bands 9 and 10 only) 🗹 because only a Polarization products desired correlated signal Spectral Setup Errors can be separated. Spectral Line ? -Baseband-1 Centre Freq Spec Store Representativ Fraction Centre Freq Transition Bandwidth, Resolution (smoothed) (rest,lsrk) (sky,bar) Window Avg. Image 1(Full) 679.99934 GHz 680.00000 GHz Signal at 680 ... 1875.000 MHz(827 km/s), 1.129 MHz(0.498 km/s) 2 ~ 0

.

.

Only 1.875 GHz bandwidth, line or continuum allowed

SG Time Estimates

Close

0.01400 mJy

7.500 GHz

230.52 GHz

Ŧ

6.02 h

Single source time estimates

000	ALMA (Observing Tool (2015.8) - Debris Disk Structure arour	nd Nearby Sun-like Stars (2015. 😑 🔘	Time Estir	nate
<u>File Edit View Tool Search H</u> elp				Note: The time in brackets is that required	to reach the sensitivity
1 D 🖻 🖬 🗄 🗏 🗮 🗄				Operational requirements often mean that t	he actual observed time
Project Structure	6	Editors		is longer, especially for mosaics. Please see	the User Manual for more
Proposal Program	N.	Spectral Spatial Control and Performance		details.	
Debris Disk Structure around Nearby Sun-like S	tars			Input Parameters	
🕆 늘 Debris Disk Structure around Nearby Su	n- 🔺	These parameters are used to control various aspects	s of the observations, including the	Requested sensitivity	
e- 🔤 Science Plan		Control and Performance		Bandwidth used for sensitivity	
- ScienceGoal (HD 10647) - general	at			Representative frequency (sky, first source)	
Field Satur		Configuration Information		Estimated Total time for Science G	oal
- Spectral Setup		Antenna Beamsize (1.13 * λ / D) 12m 25.260	arcsec 7m 43.3		
- Control and Performan	Not	o that the OT calculate	s the number of		
- Technical Justification			s the number of	Input Parameters	
e 🗑 SG OUS (HD 10647)	ех	ecutions based on an	estimate of the	Precipitable water vapour (all sources)	1.796mm (5th Octile)
P C Group OUS		vincum duration of an C		Time required for C40-3	
P [] Member OUS (H	ma	ximum duration of an a	B. This means	Time on source per pointing (first source)	1.44 h [1.43 h]
Group 1	hat	adding a little bit of on-	-source time can	Total number of pointings (all sources)	1
- Group 2	inat			Number of tunings	1
	SOI	metimes make for a sig	Inificantly larger	Total time on source	1.44 h [1.43 h]
- O query	to	tal time if another ever	ution is implied	Total calibration time	49.50 min
- O querv	iU			Other overheads	14.30 min
				Total time for 1 SB execution	1.25 h
Cycle3 Template Library (read-only)	X	Largest Angular Strattare in Source		Number of SB executions	2
💡 🚘 Cycle3 Template Library		Desired sensitivity per pointing	0.00001	I otal time to complete SB	2.51 h
- 🔤 Science Plan	0000	concession of period		Calibration Breakdown per SP execution	n
		Bandwidth used for Sensitivity	AggregateBandWidth	3 x Pointing	36.00 s
				1 x SidebandRatio	1.58 min
		Science goal integration time estimate	Time Estimate	1 x Amplitude	2.50 min
	100			1 x Bandpass	5.00 min
		Override OT's sensitivity-based time estimate (must b	oe justified) 🔾 Yes 💿 No	6 x Phase	3.00 min
			<u></u>	2 x CheckSource	2.00 min
		Are the observations time-constrained?	Ves 🖲 No	7 x Atmospheric	4.67 min
				Calibration overheads	5.40 min
		A 7		Additional Amoun	
	0000	Validation Validation History Log		ACA 7-m time (t 12m x 1.40)	3 51 h
	1000			Total ACA time (max[t 7-m.t TP])	3.51 h
	1000	Description		commentation (marging compared)	
				Estimated total time for SB-1	6.02 h

for Science Goal 6.02 h (all sources) 1.796mm (5th Octile) ng (first source) 1.44 h [1.43 h] (all sources) 1 1 1.44 h [1.43 h] 49.50 min 14.30 min 1.25 h on 2 2.51 h er SB execution 36.00 s

8 Time Estimate

> 0.01400 mJy 7.500 GHz 230.52 GHz

> > -

•

5 X I Olitang	50.00 5
1 x SidebandRatio	1.58 min
1 x Amplitude	2.50 min
1 x Bandpass	5.00 min
6 x Phase	3.00 min
2 x CheckSource	2.00 min
7 x Atmospheric	4.67 min
Calibration overheads	5.40 min
Additional Arrays	
ACA 7-m time (t_12m x 1.40)	3.51 h
Total ACA time (max[t_7-m,t_TP])	3.51 h
Estimated total time for SR-1	6.02 h

Total and Calibration Times

Science Goal	12-1	12-m (1)		12-m (2)		12-m (1+2)		ACA 7-m		A TP	Overall		Non-standard Mode	
	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.		
At ar 1"	1.03 d	6.21 h	9.92 h	2.48 h	1.45 d	8.70 h	<u>_</u>	-	-	-	1.45 d	8.70 h	No	
Overall	1.03 d	6.21 h	9.92 h	2.48 h	1.45 d	8.70 h	-	-	-	-	1.45 d	8.70 h		
				·	ţ	Project S	umma	ary						

Total and Calibration Times

Science Goal	12-	m (1)	12-1	n (2)	12-m	(1+2)	ACA	7-m	ACA	A TP	Ove	erall	Non-standard Mode
	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	Tot.	Cal.	
At ar 3"	31.53 min	13.83 min	-	-	31.53 min	13.83 min	2.63 h	1.15 h	-	1	3.15 h	1.38 h	No
Overall	31.53 min	13.83 min	-	-	31.53 min	13.83 min	2.63 h	1.15 h	-	-	3.15 h	1.38 h	

Especially when using RANGE:

Rules are operating under the hood to choose among the possible configuration choices and they may be biased toward the low resolution end of a range because less 12m time is needed. *Variations in the range can cause disproportionately large differences in the required time*.

In the two cases only the upper end of a range changes, from 1" to 3"

Be careful that the OT is not making choices for you that you would not make for yourself. Before submitting with a range, narrow it and use the project time summary to examine the choices the OT is making

Time constrained observing

X An Project - Observing Tool for ALMA, version Cycle2Test2 Perspective 1 File Edit View Tool Search Help 0 \checkmark 님 **Project Structure** Editors Proposal Program Spectral Spatial Control and Performance 🔾 Yes 🖲 No Do you request complementary ACA Observations? Suggest Unsubmitted Proposal Project A file format is defined in the help to import a Proposal Time Estimate Planned Observi list of time constraints ScienceGoal General Field Setup Yes O No Are the observations time-constrained? Spectral Setup Calibration Setu Number of time windows specified : 1 Control and Perf End D Start Date/Time (UTC) (UTC) Technical Justifi 17 2013-10-02 13:18 2013-10-02 13 Please specify one or more suitable time windows for your observation October Your observation will be scheduled once during **Entering Time** 4 . 3 **Constrained observations** Template library. Turn the keys on .. Add Delet 🖝 гетрате погату. тотт те ке Proposal - Dates, Epochs or 728293031 1 2 P Planned Observing 3456789 ScienceGoal (B3 Monitoring ScienceGoal (B7 ò ScienceGoal (B7 ò-ScienceGoal (B9 appropriate justification ScienceGoal (B3 ò ScienceGoal (B3 0or additional information ScienceGoal (B6 ò-ScienceGoal (B7 ò-ScienceGoal (B6 ò-ScienceGoal (B3 . ScienceGoal (B6 4.7 Feedback Overview

Contextual Help

The sensitivity calculator is available separately in the OT (or on the web)

ALMA Observing Tool (FEB2017) - Chameleon's Dark Neutral Matter (2016.1.00714.S last submitted 2016-08-30 10:29:11)

Eile Edit Vew Tool Sarch Help	Tool (r EB2017) = Ghame	eon s Dark Neuo		.007 14.	o last subi	mitted 2010		50 10.28				Perspective 1
1 D 2 ALMA LO Configuration Tool		8										
Project Structur	s											
Proposal Program	ral Spatial Control ar	nd Performance										
S.BMITTED	a paramoners are used			Sens	itivity Calo	culator					imac	
Chameleon's Dark Neutral Matter Science Plan	e parameters are used	Common Paramete	ers								intes.	
 Science Flan Contro ScienceGoal (Chameleon's dark neutra 	ol and Performance	. 1	Dec		00:00:00	.000					2	
- 🗋 General	iguration Information	I	Polarization		Dual				•		•	
- 🗋 Field Setup	nna Beamsize (1.13 *)	(Observing Frequen	су	345.0000	0	GHz		-			
– 🗋 Spectral Setup 📃 📃		1	Bandwidth per Pola	rization	7.50000		GHz		-		_	
Calibration Setup	ber of Antennas	1	Water Vapour		Automa	atic Choice) Man	ual Choic	e			
Control and Performance			Column Density		0.913mm	(3rd Octile)					1	
- D Technical Justification	est haseline	17	Trx, tau, Tsky		75 K, 0.15	58, 39.538	κ.					
e 岡 Group OUS	est buschine		Tsys		157.027	(
P Member OUS (J1723-7713 Synthe	esized beamsize	ndividual Paramet	ers									
P ■ J1723-77_a_03_TM1[1 Shorte	est baseline		12m Array		7m Arra	iy		Total P	ower Arra	iy		
Group 1 : Calibrator	mum recoverable scale	Number of Antenna	0,00000	arccar	5 0745	5 270		16.0	1	2865.00		
P Ø 9 Targets	num recoverable scale N		0.00000	arcsec	3.9745		SEC V	10.9	20			
- O query Pointing Te Desir	red Performance S	ensitivity (rms)	0.00000	ujy ·	0.0000	0 ujy		0.000	00	ujy 🔻		
− ⊙ query Amplitude	Desired Angular Resolu	(equivalent to)	Unknown	K	0.0000	0 К		0.000	00	K 🔻		
- 🧿 query Phase (Pha	Ir	ntegration Time	60.00000	S 1	60.000	00 s	-	60.00	000	s 🔻		
- O query Bandpass					Integra	tion Time Un	it Opti	ion Auto	matic	-		
- O J1550-8258-40	Largest Angular Structu											
- O J1617-7717-16					1	Sensitivity Un	it Opti	ion Auto	matic	-		
- O J1733-7935-11	Desired sensitivity per		for former to person at your		Cali				-1			
e @ 9 Field Sources		Cd	iculate integration	Time	Calc	uiate sensiti	vity		lose			
Pointing Tem		• A valid sen	sitivity must be en	tered in o	rder to cale	culate an inte	gratio	n time.				
- 🗋 Pointing Tem	Bandwidth used for Ser						0				1	
- 🗋 Amplitude qu	Colonna and interretion											
- D Phase query	science goal integration											
- D Bandpass qu	Override OT's sensitivit											
Primary: J172 t	time estimate (must be											
Primary: J153	Are the observations tir											
Primary, 1173												
e @ 2 Instrument Setu												
B3 Pointing Se												
- ☐ HCN v=0 J= 1												

Tech Justification

MA Observing Tool (2014.6) - Observing Tool for ALMA Cycle3 Groundhog Day Test

[NRAO]

Tech Justification

When the time is ripe ... validate & submit

AgT Project - Observing Tool for ALMA, version	n Cycle2Test2		Note the eniffy r	and increal	
Net Proposal	36-N		note the spiny i	iew icons:	Perspective 1
D New DDT Proposal	¥-D ₪ ₪				
Open Project Open Project as New Proposal Save Save As	₩-5	Editors Spectral Spatial Principal Investigator	Project	2	
Show ALMA Template Library				Select PI	
Validate Submit Project	・ 光-L	- Main Project Informatio Project Assign	n	?	
Preferences Save Preferences		Project	Code None Assigned		
Ouit	1				
Overview		When you are your proposal click here to s proposal to th	satisfied that is complete, ubmit your e archive	Suggestion	
	Contextual H	lelp	Phase I: Sci	ence Proposal	
 Please ensur <u>Science Port</u> Create a new Selecting Clicking Or clicking Or clicking Click on the fields. 	te you and your co-Is are tal v proposal by either: the proposal by either: trile > New Proposal on the icon in the too ng on this link proposal tree node ar	e registered with the <u>ALMA</u> olbar nd complete the relevant	New Science Proposal Click on the overview steps to vi Importing And Exporting	Validate Science Proposal ew the contextual help Need More Help?	

Use preferences to customize

R 🔿 🗛 🦷 Prei	ferences			ΜΔ	i.
Appearance Colours Dialogs Conr	ection Advanced		Contraction (1)		ALMA
Tab Placement	Font Size	000		Drof	arancar
● top ○ bottom	Font Size 12	Appearance	Colours	Dialogs Conne	ection Advance
Mouse-over Tooltips Show for 4 secs. Preferred Editors Preferrably show Forms editors	Science Goal Summary View When looking at a Science Goal, show a summary table all its page editors Text Forms When putting the cursor into a form field, select it (for easy overwriting) don't select it (for easy inserting)	Colours General Clipb Error Warn Phase Phase	ooard ing e1 e2	Spectral Displ Baseba Spectra Averag Suppre Rest Fr	ay Ind al Window ing Region essed Windows requency
Perspective		DDT		Centre	Frequency
1 2		FOV FOV	1/3 HPBW	Catalog Sideba	i Lines nds nds(Unconfigured)
Look and Feel		i		Transn	nission Spectrum
Metal					
Cancel	Apply OK	Appearance Colour Wanted Dialogs	rs Dialogs	Preferences	ed
Connection to Project Repository Connection to Project Repository Location of Service https://ote.alma.cl/cycle-3 Connection to Project Repository Location of Service https://ote.alma.cl/cy Please note that changes to this setting will to a different https-service is not possible, If you need any of the above, talk to the co	ferences nection Advanced Search / Show Permissions / cle-3/	All Others) Add.Confirm Add.Confirm Close.DiscardCha Display field sourn Display field sourn Display offset coo Display offset coo Display sky coord Display velocity re Editor.Unexpected Exports.Overwrite Exporting to file. 1 Exporting to	nges ce name resoluti rdinates reference ference system dError rwrite existing fi rwrite existing fi rwrite file coordinates out gnoring unsupp mvalid coordinate roblem while w ot advised nvestigators nvestigators nvestigators nitProject filne at basebands ha : tor.OvenwriteFile	on information ce system change mess system change messa change message ile? of range orted coordinates es riting file ve been re-ordered	isage ige
		h	<u>C</u> ancel	<u>Apply</u> <u>O</u> K	

Advanced

<u>O</u>K Cancel Apply

For more info:

https://almascience.nrao.edu/

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC), and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction and operation of ALMA.

