
Simulations and Imaging in CASA

Download latest version of CASA here

https://casa.nrao.edu/casa_obtaining.shtml

Veronica Allen

Written by Kristina Nyland

Outline

- CASA overview
- Simulation guidelines
- CASA simulation example

Outline

- CASA overview
- Simulation guidelines
- CASA simulation example

What is CASA?

Online info: https://casaguides.nrao.edu

Welcome to CASA Guides

CASA I (Common Astronomy Software Applications) is a comprehensive software package to calibrate, image, and analyze radio astronomical data from interferometers (such as ALMA I and VLA I) as well as single dish telescopes. This wiki provides tutorials for reducing data in CASA.

CASA is your go-to tool for simulations, calibration, imaging, and analysis with a friendly iPython interface CASA Tutorials

Getting Started in CASA

https://casaguides.nrao.edu/index.php/Getting_Started_in_CASA

[abaft:~ knyland\$ casa ==> ================================		1		
The start-up time of CASA may vary depending on whether the shared libraries are cached or not.			CASA command	
IPython 5.4.0 An enhanced Interactive Python. CASA 5.4.0-68 Common Astronomy Software Appl The import of casa items did not complete. Pleas e the CASA version you are using. > CrashReporter initialized. Enter doc('start') for help getting started with	e notify Todd Hunter and ind	clud	line prompt	
Using matplotlib backend: TkAgg		Log Messages (:/Use	ers/knyland/casa-20190318-181619.log)	
CASA <1>:	🔒 🔒 🚔 📈 💭 Sea	earch Message:	Filter: Time	T C
	Time Priority 2019-03-18 18:16:23 INFO 2019-03-18 18:16:23 INFO	Origin Message ::casa ::casa CASA Ver	rsion 5.4.0-68	
Logger window				
	Insert Message:		🕂 🖌 🥑 🗆 Lock scroll	

Pay attention to the logger window! Most tasks write important info to this window. All logger messages are also saved into a file labeled 'casapy.log' in the working directory

Working with Tasks

List available tasks tasklist()

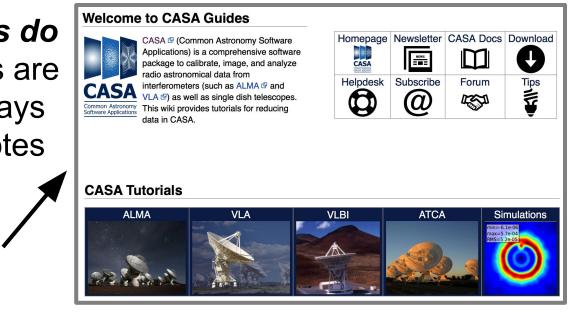
Get help info on a task help(tclean)

Load default task params default(tclean)

Review inputs inp

Run task

go


Restore previous params tget(tclean)

[CASA <15>: default(tcl	lean)		
[CASA <16>: inp				
> inp()				
<pre># tclean :: Radio</pre>	Int		Image R	
vis	=		#	Name of input visibility fi
selectdata	=	True	#	Enable data selection param
field	=		#	field(s) to select
spw	=		#	<pre>spw(s)/channels to select</pre>
timerange	=		#	Range of time to select fro
uvrange	=		#	Select data within uvrange
antenna	=		#	Select data based on antenn
scan	=		#	Scan number range
observation	=		#	Observation ID range
intent	=		#	Scan Intent(s)
datacolumn		'corrected'	#	Data column to image(data,c
imagename	=	11	#	Pre-name of output images
imsize	=	[100]	#	Number of pixels
cell	=		#	Cell size
phasecenter	=		#	Phase center of the image
stokes	=	'I'	#	Stokes Planes to make
projection	=	'SIN'	#	·····
startmodel	=		#	Name of starting model imag
specmode	=	'mfs'	#	Spectral definition mode (m
reffreq	=		#	Reference frequency
gridder	=	'standard'	#	Gridding options (standard,
vptable	=		#	Name of Voltage Pattern tab
pblimit	=	0.2	#	>PB gain level at which to
deconvolver	=	'hogbom'	#	Minor cycle algorithm (hogb
restoration	=	True	#	Do restoration steps (or no
restoringbeam	=	[]	#	Restoring beam shape to use
pbcor	=	False	#	Apply PB correction on the
outlierfile	=	1.1	#	Name of outlier-field image
weighting	=	'natural'	#	Weighting scheme (natural,u
uvtaper	=	[]	#	uv-taper on outer baselines
niter	=	0	#	Maximum number of iteration
usemask	=	'user'	#	Type of mask(s) for deconvo
mask	=	11	#	Mask (a list of image name(
pbmask	Ŧ	0.0	#	primary beam mask
restart	=	True	#	True : Re-use existing imag
savemodel	=	'none'	#	
calcres	=	True	#	•
calcpsf	=	True	#	Calculate PSF
parallel	=	False	#	Run major cycles in paralle
CASA <17>:				

Some CASA Words of Wisdom

CASA is a powerful tool, but it remains under active development . . .

- **Bugs do exist** in CASA when in doubt contact the helpdesk
- Some aspects of pipeline heuristics may be *dependent on the* observing date and CASA version used to produce the data products – always check documentation
- Task names and inputs do change as new features are enabled/improved – always review CASA release notes
- CASA has many online resources – use them!

Outline

- CASA overview
- Simulation guidelines
- CASA simulation example

General Simulation Guidelines

- Simulations are *not required* for ALMA proposals, but they may strengthen proposals in some cases
- If performed, simulations should appear in the Science Justification (and optionally in the technical justification)
- The Helpdesk provides assistance with simulations if needed!

Simulations may help justify observations of:

- Sources with complex, extended morphologies: To demonstrate the need for specific configs, combinations of configs, or array components (12m-array, ACA, TP)
- Low-elevation sources: To verifiy adequate uv-coverage, check synthesized beam shape, etc.
- Distant analog to a given source model: To ensure angular resolution is sufficient

Steps for Simulating Observations

- Use the ALMA sensitivity calculator to determine the necessary observing time for your science goals
- Generate simulated visibilities using the 'simobserve' task in CASA (takes FITS input)
- Image, analyze, and evaluate the resulting visibilities

Requires trial and error - repeat for different antenna configurations, observing times, etc.

Sensitivity Calculator

https://almascience.nrao.edu/tools/proposing/sensitivity-calc ulator

Source DEC -											
		Declination	00:00:00						*		
		Polarisation	Dual 🗘								
Frequency -		Observing Frequency	345						GHz 🔻		
requency		Bandwidth per Polarization	7.500000					(GHz 🔻		
		Water Vapour	Automatic Choice 0.913mm (3rd Octile)		Manual Choice						
		Column Density									
Bandwidth -		Trx, tau, Tsky	75 K, 0.158, 39.538 K								
		Tsys	157.027 K						D 1		
.5 GHz default									Pick	an	ar
	Individual Parameters										
		12 m Array		_	7 m Array	-	-	Total Power Array			
PWV /		12 m Array		*	7 m Array	-		Total Power Array			•
PWV /	Individual Parameters		v 2	✓ arcsec ▼	10	✓ arc			~	arcse	•
	Individual Parameters Number of Antennas	43		arcsec 🔻	10	✓ arc	✓ sec ▼	3		arcse	✓ c ▼
automatically	Individual Parameters Number of Antennas Resolution	43		arcsec 🔻	0		✓ sec ▼	3 16.9 4.85010668201959		mJ	✓ c ▼
	Individual Parameters Number of Antennas Resolution Sensitivity (rms)	43 0 197.675590924778	322 🗸	arcsec 🔻 uJy 🔻	10 0 2.4826852653365648 Unknown	•	✓ sec ▼ (3 16.9 4.85010668201959 0.174	~	mJ	✓ c ▼ y ▼
automatically	Individual Parameters Number of Antennas Resolution Sensitivity (rms) Equivalent to	43 0 197.675590924778 Unknown	322 🗸	arcsec ▼ uJy ▼ K ▼	10 0 2.4826852653365648 Unknown	•	sec V nJy V KV s V	3 16.9 4.85010668201959 0.174	~	mJ mł	✓ c ▼ y ▼
automatically	Individual Parameters Number of Antennas Resolution Sensitivity (rms) Equivalent to	43 0 197.675590924778 Unknown	322 🗸	arcsec ▼ uJy ▼ K ▼	10 0 2.4826852653365648 Unknown 60	· ·	✓ sec ▼ nJy ▼ K ▼ s ▼ tic	3 16.9 4.85010668201959 0.174	~	mJ mł	✓ c ▼ y ▼

Either enter a sensitivity (rms) and calculate integration time or enter an integration time and calculate sensitivity

Outline

- CASA overview
- Simulation guidelines
- CASA simulation example

Simulations in CASA

CASA can take an input model image, smooth it, change its location/resolution, and create a mock dataset + images

Important tasks/tools for simulations:

- SIMOBSERVE
- SIMALMA
- SIMANALYZE
- SIMULATOR TOOLKIT

- PLOTMS
- TCLEAN
- VIEWER (CARTA)
- EXPORTFITS

WARNING: Do not use predicted sensitivity from simulated images for proposals – use values calculated in the OT or Sensitivity Calculator

Simulations Examples on CASA Guides

Online info: https://casaguides.nrao.edu

Welcome to CASA Guides

CASA I (Common Astronomy Software Applications) is a comprehensive software package to calibrate, image, and analyze radio astronomical data from interferometers (such as ALMA I and VLA I) as well as single dish telescopes. This wiki provides tutorials for reducing data in CASA.

Simulation tutorials

CASA Tutorials

Simulations in CASA

Tutorials

A detailed overview of how to simulate data in CASA is given in the "Simulation" 🗗 pages of the CASA Docs 🗗 documentation. The following tutorials provide additional examples:

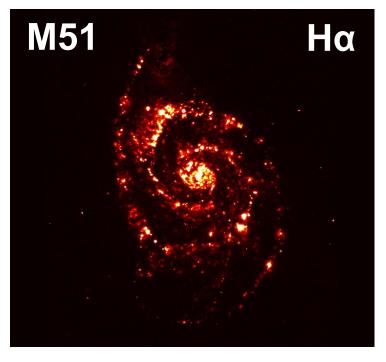
- F3	
Simulating ngVLA Data (CASA 5.4) This tutorial shows how to create simulated data for the next generation Very Large Array (ngVLA) either by using simobserve or the sm toolkit. Additionally, it shows how to estimate the scaling parameter for adding thermal noise using the sm.setnoise function and the simplenoise parameter.	
Simalma (CASA 5.4)	A DAVA A DAVA DAVA DAVA DAVA DAVA DAVA
This tutorial demonstrates how to use simalma , a task that simplifies simulations that include the main 12-m array plus the ACA. Like the previous guide, this one is of particular interest to those wishing to explore multi-component ALMA observations.	
ACA Simulation (CASA 5.4)	e and a second s
A tutorial for simulating ALMA observations that use multiple configurations or use the 12-meter array in combination with the ALMA Compact Array. This tutorial demonstrates combining data from each ALMA component "by hand". This guide is of particular interest to those wishing to explore using the 12-m array in combination with the ACA, and those interested in combining data from multiple 12-m array configurations.	
Simulation Guide Component Lists (CASA 5.4)	
Tutorial for simulating data based on multiple sources (using both a FITS image and a component list). If you are interested in simulating from a list of simple sources (point, Gaussian, disk), rather than or in addition to a sky model image, then read the considerations here.	
Protoplanetary Disk Simulation (CASA 5.4)	min=-6.1e-06 max=5.7e-04
A sky model with a lightly annotated script that simulates a protoplanetary disk. Uses a theoretical model of dust continuum from Sebastian Wolff, scaled to the distance of a nearby star. This is another fairly generic simulation - if you're short on time, you probably don't need to go through this one and the New Users guide, but it can be useful to go through multiple examples.	RM5=5.20.05
Protoplanetary Disk Simulation - VLA (CASA 5.4)	#34ml branchill hands
This tutorial explains the steps for simulating VLA observations using the same protoplanetary disk sky model that was used for the analogous ALMA tutorial. Observational and analysis parameters are changed step by step and the results are compared to the VLA exposure calculator.	
Advanced: Corrupting Simulated Data (Simulator Tool)	
simobserve 🗟 calls methods in the simulator 🗟 tool. For advanced CASA users, the 'simulator 🗟' tool has methods that can add to simulated data: phase delay variations, gain fluctuations and drift, cross-polarization, and bandpass and pointing errors. 'simulator 🗟' also has more flexibility than simobserve 🗟 in adding thermal noise. The tutorial linked from this page describes the simulation of data using the task interface only. To learn more about the 'simulator 🗟' tool, see the CASA Toolkit Reference Manual 🗟. An examples of	

advanced techniques for corrupting a simulated MeasurementSet can be found in this CASA Guide on Corrupting Simulated Data (Simulator Tool).

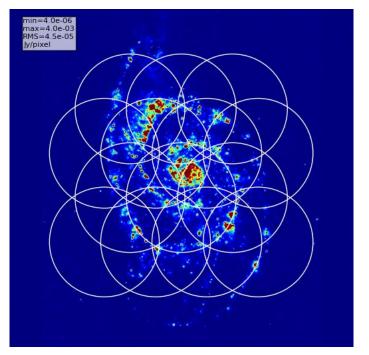
Simulations in CASA

Tutorials

A detailed overview of how to simulate data in CASA is given in the "Simulation" 🗗 pages of the CASA Docs 🗗 documentation. The following tutorials provide additional examples:


Simulating ngVLA Data (CASA 5.4) This tutorial shows how to create simulated data for the next generation Very Large Array (ngVLA) either by using simobserve or the sm toolkit. Additionally, it shows how to estimate the scaling parameter for adding thermal noise using the sm.setnoise function and the simplenoise parameter.	
Simalma (CASA 5.4)	
This tutorial demonstrates how to use simalma , a task that simplifies simulations that include the main 12-m array plus the ACA. Like the previous guide, this one is of particular interest to those wishing to explore multi-component ALMA observations.	
ACA Simulation (CASA 5.4)	NO ARA, NO IN ANALYSIS ANALYSIS A STATE OF A
A tutorial for simulating ALMA observations that use multiple configurations or use the 12-meter array in combination with the ALMA Compact Array. This tutorial demonstrates combining data from each ALMA component "by hand". This guide is of particular interest to those wishing to explore using the 12-m array in combination with the ACA, and those interested in combining data from multiple 12-m array configurations.	
Simulation Guide Component Lists (CASA 5.4)	
Tutorial for simulating data based on multiple sources (using both a FITS image and a component list). If you are interested in simulating from a list of simple sources (point, Gaussian, disk), rather than or in addition to a sky model image, then read the considerations here.	
Protoplanetary Disk Simulation (CASA 5.4) A sky model with a lightly annotated script that simulates a protoplanetary disk. Uses a theoretical model of dust continuum from Sebastian Wolff, scaled to the distance of a nearby star. This is another fairly generic simulation - if you're short on time, you probably don't need to go through this one and the New Users guide, but it can be useful to go through multiple examples.	min=:6.1e-06 max=5.7e-04 RMS=5.2e-05
Protoplanetary Disk Simulation - VLA (CASA 5.4)	Altern haustonen
This tutorial explains the steps for simulating VLA observations using the same protoplanetary disk sky model that was used for the analogous ALMA tutorial. Observational and analysis parameters are changed step by step and the results are compared to the VLA exposure calculator.	
Advanced: Corrupting Simulated Data (Simulator Tool)	
simobserve 🗟 calls methods in the simulator 🗟 tool. For advanced CASA users, the 'simulator 🗟' tool has methods that can add to simulated data: phase delay variations, gain fluctuations and drift, cross-polarization, and bandpass and pointing errors. 'simulator 🗟' also has more flexibility than simobserve 🗟 in adding thermal noise. The tutorial linked from this page describes the simulation of data using the task interface only. To learn more about the 'simulator 🗟' tool, see the CASA Toolkit Reference Manual 🗟. An examples of	

advanced techniques for corrupting a simulated MeasurementSet can be found in this CASA Guide on Corrupting Simulated Data (Simulator Tool).


Simulations in CASA: M51

https://casaguides.nrao.edu/index.php/ACA_Simulation_(CASA_5.4) curl https://casaguides.nrao.edu/images/3/3f/M51ha.fits.txt -f -o M51ha.fits

Input sky model

Model + pointings

Mosaicking + combining multiple configs/array elements

Notes on Mosaicking/Multiple Configs

- Mosaics combine multiple pointings into a single image
 - □ If your target does not fit within 1/3 of the primary beam width, mosaicking may be necessary
 - **Beware of bug** in CASA 5.4.0 mosaicking update!
- **Rule of thumb** for multi-config imaging with ALMA: Aim for relative observing times that yield similar S/N ratios

Use the OT/sensitivity calculator, simulations
 Beware of flux bias during multi-configuration imaging and analysis (see Jorsater & van Moorsel 1995)

 Multi-configuration projects are processed and delivered separately, but *PI's are responsible for combining these products together* (e.g., using feathering)

Notes on Mosaicking/Multiple Configs

Table A-2 from the Cycle 7 Proposer's Guide

Most Extended configuration	Allowed Compact configuration pairings	Extended 12- m Array Multiplier	Multiplier if compact 12- m Array needed	Multiplier if 7- m Array needed	Multiplier if TP Array needed and allowed	simobserve
7-m Array	ТР			1	1.7	example
C43-1	7-m Array & TP	1		7.0	11.9	
C43-2	7-m Array & TP	1		4.7	7.9	
C43-3	7-m Array & TP	1		2.4	4.1	
C43-4	C43-1 & 7-m Array & TP	1	0.34	2.4	4.0	
C43-5	C43-2 & 7-m Array & TP	1	0.26	1.2	2.1	
C43-6	C43-3 & 7-m Array & TP	1	0.25	0.6	1.0	
C43-7	C43-4	1	0.23			
C43-8	C43-5	1	0.22			
C43-9	C43-6	1	0.21			
C43-10	-	1				

Observing time ratios for allowed combinations of configurations and arrays in Cycle 7 (see Chapter 7 of the Technical Handbook)

Simobserve

[CASA <5>: inp		
> inp()		
<pre># simobserve ::</pre>	ibility simulation task	
project	<pre>= 'm51c' # root prefix for output file names</pre>	
skymodel	<pre>= 'M51ha.fits' # model image to observe</pre>	
inbright	<pre>= '0.004' # scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"</pre>	
indirection	= 'J2000 23h59m59.96s -34d59m59.50s' # set new direction e.g. "J2000 19h00m00 -40d00m00"	
incell	= '0.1arcsec'	
incenter	<pre>= '330.076GHz' # set new frequency of center channel e.g. "89GHz" (required even for 2D model)</pre>	į
inwidth	= '50MHz' # set new channel width e.g. "10MHz" (required even for 2D model)	
-		

- **project:** Name of folder for simulation output
- **skymodel:** Input FITS image for simulations
- **inbright**: Peak brightness assumes Jy/pixel units
- indirection: Sky coordinates of map center
- **incell**: Spatial pixel size (include units)
- **incenter:** Central observing frequency
- **inwidth:** Channel width (set to 7.5 GHz for continuum)

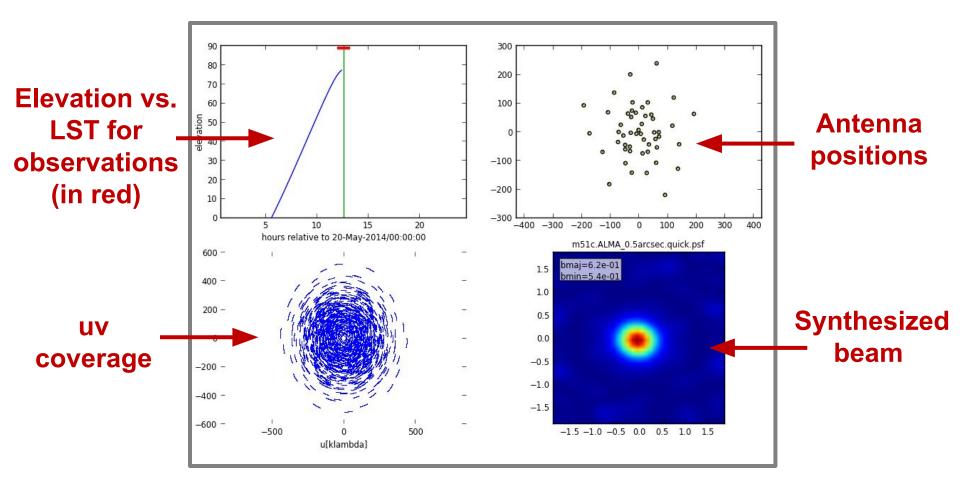
Simobserve

complist	=		#	componentlist to observe
setpointings	=	True		
integration	=	'10s'	#	integration (sampling) time
direction	=	11	#	"J2000 19h00m00 -40d00m00" or "" to center on model
mapsize	=	'larcmin'	#	angular size of map or "" to cover model
maptype	=	'hex'	#	hexagonal, square (raster), ALMA, etc
pointingspaci	ing =	'9arcsec'	# #	<pre>spacing in between pointings or "0.25PB" or "" for ALMA default INT=lambda/D/sqrt(3), SD=lambda/D/3</pre>

- setpointings: Calculate mosaic pointing positions; if False, ptgfile parameter must be set (see "help")
- **integration:** Sampling time interval
- **direction:** Mosaic center direction (defaults to input image center). Can also be a list of pointings.
- mapsize: Angular size of map. Defaults to model image size
- maptype: Sets pattern for mosaic if not specified elsewhere
- **pointingspacing:** Spacing in between pointings for mosaic (leave unset for automatic pointing spacing determination)

Simobserve

obsmode	=	'int'	#	observation mode to simulate [int(interferometer) sd(singledish) ""(none)]
antennalist	-	'ALMA;0.5arcsec'	#	interferometer antenna position file
refdate		2014/05/21	#	date of observation - not critical unless concatting simulations
hourangle		'transit'	#	hour angle of observation center e.g. "-3:00:00", "5h", "-4.5" (a number without units will be interpreted as hours), or "transit"
totaltime	=	'3600s'	#	total time of observation or number of repetitions
caldirection	=	11		pt source calibrator [experimental]
calflux	=	'1Jy'		
outframe	=	'LSRK'	#	spectral frame of MS to create
thermalnoise	=	'tsys-atm'	#	add thermal noise: [tsys-atm tsys-manual ""]
user_pwv	=	0.5	#	Precipitable Water Vapor in mm
tground	-	269.0	#	ambient temperature
seed	=	11111	#	random number seed
leakage	=	0.0	#	cross polarization (interferometer only)
graphics	=	'both'	#	display graphics at each stage to [screen file both none]
verbose	=	False		and the second
overwrite	=	True	#	overwrite files starting with \$project


- obsmode: "int" for interferometers or "sd" for singledish
- antennalist: Antenna configuration file ("alma.cycle6.3.cfg") or angular resolution ("ALMA; 0.5arcsec")
- **refdate:** Date of simulated observation (e.g. "yyyy/mm/dd")
- hourangle: hour angle of observation (HA = LST RA; sources transit at HA = 0); impacts source elevation
- totaltime: Total on-source observing time

Note on Antenna Configs in CASA

mydir = os.getenv('CASAPATH').split()[0]+'/data/alma/simmos/' os.system('ls ' + mydir)

[CASA <17>: mydir = os.gete	env(' <mark>CASAPATH</mark> ').split()[0]+'/dat	a/alma/simmos/'	
[CASA <18>: os.system('ls	' + mydir)		
WSRT.cfg	alma.cycle4.2.cfg	alma.out11.cfg	atca_ew214.cfg
aca.all.cfg	alma.cycle4.3.cfg	alma.out12.cfg	atca_ew352.cfg
aca.cycle1.cfg	alma.cycle4.4.cfg	alma.out13.cfg	atca_ew367.cfg
aca.cycle2.i.cfg	alma.cycle4.5.cfg	alma.out14.cfg	atca_h168.cfg
aca.cycle2.ns.cfg	alma.cycle4.6.cfg	alma.out15.cfg	atca_h214.cfg
aca.cycle3.cfg	alma.cycle4.7.cfg	alma.out16.cfg	atca_h75.cfg
aca.cycle4.cfg	alma.cycle4.8.cfg	alma.out17.cfg	atca_ns214.cfg
aca.cycle5.cfg	alma.cycle4.9.cfg	alma.out18.cfg	carma.a.cfg
aca.cycle6.cfg	alma.cycle5.1.cfg	alma.out19.cfg	carma.b.cfg
aca.i.cfg	alma.cycle5.10.cfg	alma.out20.cfg	carma.c.cfg
aca.ns.cfg	alma.cycle5.2.cfg	alma.out21.cfg	carma.d.cfg
aca.tp.cfg	alma.cycle5.3.cfg	alma.out22.cfg	carma.e.cfg
aca_cycle1.cfg	alma.cycle5.4.cfg	alma.out23.cfg	meerkat.cfg
alma.all.cfg	alma.cycle5.5.cfg	alma.out24.cfg	ngvla-core-revB.cfg
alma.cycle0.compact.cfg	alma.cycle5.6.cfg	alma.out25.cfg	ngvla-gb-vlba-revB.cfg
alma.cycle0.extended.cfg	alma.cycle5.7.cfg	alma.out26.cfg	ngvla-plains-revB.cfg
alma.cycle1.1.cfg	alma.cycle5.8.cfg	alma.out27.cfg	ngvla-revB.cfg
alma.cycle1.2.cfg	alma.cycle5.9.cfg	alma.out28.cfg	ngvla-sba-revB.cfg
alma.cycle1.3.cfg	alma.cycle6.1.cfg	alma_cycle1_1.cfg	pdbi-a.cfg
alma.cycle1.4.cfg	alma.cycle6.10.cfg	alma_cycle1_2.cfg	pdbi-b.cfg
alma.cycle1.5.cfg	alma.cycle6.2.cfg	alma_cycle1_3.cfg	pdbi-c.cfg
alma.cycle1.6.cfg	alma.cycle6.3.cfg	alma_cycle1_4.cfg	pdbi-d.cfg
alma.cycle2.1.cfg	alma.cycle6.4.cfg	alma_cycle1_5.cfg	<pre>sma.compact.cfg</pre>
alma.cycle2.2.cfg	alma.cycle6.5.cfg	alma_cycle1_6.cfg	<pre>sma.compact.n.cfg</pre>
alma.cycle2.3.cfg	alma.cycle6.6.cfg	atca_1.5a.cfg	<pre>sma.extended.cfg</pre>
alma.cycle2.4.cfg	alma.cycle6.7.cfg	atca_1.5b.cfg	<pre>sma.subcompact.cfg</pre>
alma.cycle2.5.cfg	alma.cycle6.8.cfg	atca_1.5c.cfg	<pre>sma.vextended.cfg</pre>
alma.cycle2.6.cfg	alma.cycle6.9.cfg	atca_1.5d.cfg	viewer.last
alma.cycle2.7.cfg	alma.out01.cfg	atca_122c.cfg	vla.a.cfg
alma.cycle3.1.cfg	alma.out02.cfg	atca_6a.cfg	vla.b.cfg
alma.cycle3.2.cfg	alma.out03.cfg	atca_6b.cfg	vla.bna.cfg
alma.cycle3.3.cfg	alma.out04.cfg	atca_6c.cfg	vla.c.cfg
alma.cycle3.4.cfg	alma.out05.cfg	atca_6d.cfg	vla.cnb.cfg
alma.cycle3.5.cfg	alma.out06.cfg	atca_750a.cfg	vla.d.cfg
alma.cycle3.6.cfg	alma.out07.cfg	atca_750b.cfg	vla.dnc.cfg
alma.cycle3.7.cfg	alma.out08.cfg	atca_750c.cfg	vlba.cfg
alma.cycle3.8.cfg	alma.out09.cfg	atca_750d.cfg	
alma.cycle4.1.cfg	alma.out10.cfg	atca_all.cfg	

Output from Simobserve

Output from Simobserve

[CASA <22>: ls m51c.ALMA_0.5arcsec.ms/ m51c.ALMA_0.5arcsec.noisy.ms/ m51c.ALMA_0.5arcsec.observe.png m51c.ALMA_0.5arcsec.ptg.txt m51c.ALMA_0.5arcsec.quick.psf/

m51c.ALMA_0.5arcsec.simobserve.last m51c.ALMA_0.5arcsec.skymodel/ m51c.ALMA_0.5arcsec.skymodel.flat/ m51c.ALMA_0.5arcsec.skymodel.png

Don't forget to check the log – useful info is printed there!

observe::::	Position: [1761.87, -4307.63, -1977.71]
bserve::::+	Epoch: 56798::00:00:00.0000
bserve::::+	Epoch: 56797::12:38:05.3948
bserve::::+	LAST of rise= 16:52:10.61
observe::::	LAST of set= 07:09:16.22
observe::::	UTC of rise= 2014/05/19/05:35:55
bserve::::+	UTC of set= 2014/05/19/19:50:41
ephemeris::	peak=20-May-2014/12:38:05
er::open()	Opening MeasurementSet /Users/knyland/Desktop/outreach/ALMA_ambassadors/si
imobserve::	using default model cell {'value': 0.1, 'unit': 'arcsec'} for PSF calculat
fineimage()	Defining image properties:nx=128 ny=128 cellx='0.1arcsec' celly='0.1arcsec
fineimage()	phaseCenter='field-0 ' mStart='Radialvelocity: 0' qStep='0 '' mFreqStart=
matepsfs()	Calculating approximate PSFs using full sky equation
TMachine()	Performing interferometric gridding
eApproxPSFs	bmaj: 0.620481", bmin: 0.536341", bpa: 80.227 deg

Adding 7m + TP ACA Simulations

There will be additional time to try the ACA simobserve commands after this talk

tget(simobserve)		
integration	=	"10s"
mapsize	=	"larcmin"
maptype	=	"hex"
pointingspacing	=	
obsmode	=	"int"
refdate	=	"2012/12/02" # NOTE: change the date from 12m array sims
antennalist	=	"aca.i.cfg"
totaltime	=	"2.4h"
simobserve()		

7m array

TP

```
tget(simobserve)
integration
                   = "10s"
mapsize
                   = "1.3arcmin"
maptype
                   = "square"
obsmode
                   = "sd"
sdantlist
                   = "aca.tp.cfg"
sdant
                   = 0
refdate
                   = "2012/12/01" # NOTE: change the date from 7m and 12m array sims
totaltime
                   = "4.1h"
simobserve()
```

NOTE: When simulating observations that combine multiple configs/arrays, be sure to change the refdate parameter in simobserve

Analyzing the Output of Simobserve

Use **simanalyze** in CASA, which creates images using **clean** –*OR*–

Use **tclean** to image the resulting visibilities

Another approach to ALMA simulations is the **simalma** task:

https://casaguides.nrao.edu/index.php/Simalma

But, **simobserve** is more generalized and has more features and flexibility - best for complex simulations

Simanalyze Inputs

project	=	'sim'	#	root prefix for output file names
image	=	True	#	<pre>(re)image \$project.*.ms to \$project.image</pre>
vis	=	'default'	#	Measurement Set(s) to image
modelimage	=	11	#	lower resolution prior image to use in clean e.g. existing total power
imsize	=	0	#	output image size in pixels (x,y) or 0 to match model
imdirection	=		#	set output image direction, (otherwise center on the model)
cell	=	1.1	#	cell size with units e.g. "10arcsec" or "" to equal model
interactive	=	False	#	interactive clean? (make sure to set niter>0 also)
niter	=	0	#	maximum number of iterations (0 for dirty image)
threshold	=	'0.1mJy'	#	flux level (+units) to stop cleaning
weighting	=	'natural'	#	weighting to apply to visibilities. briggs will use robust=0.5
mask	=	[]	#	Cleanbox(es), mask image(s), region(s), or a level
outertaper	=	[]	#	uv-taper on outer baselines in uv-plane
pbcor	=	True	#	
stokes	=	'I'	#	The second s
featherimage	=	11	#	image (e.g. total power) to feather with new image

- **project:** Name of same folder from simobserve run(s)
- vis: Output corrupted (noisy) dataset from simobserve
- **featherimage:** single-dish or TP map to combine with interferometric image using the 'feathering' technique

Additional params imsize, imdirection, cell, interactive, niter, threshold, weighting, mask, outertaper – same as in **tclean**

Simanalyze Inputs

analyze	=	True	#	(only first 6 selected outputs will be displayed)
showuv	=	True	#	display uv coverage
showpsf	=	True	#	display synthesized (dirty) beam (ignored in single dish simulation)
showmodel	=	True	#	display sky model at original resolution
showconvolved	=	False	#	display sky model convolved with output clean beam
showclean	=	True	#	display the synthesized image
showresidual	=	False	#	display the clean residual image (ignored in single dish simulation)
showdifference	=	True	# #	display difference between output cleaned image and input model sky clean beam
showfidelity	=	True	#	display fidelity (see help)
graphics	=	'both'	#	display graphics at each stage to [screen file both none]
verbose	=	False		
overwrite	=	True	#	overwrite files starting with <pre>\$project</pre>
dryrun	=	False	#	only print information [experimental; only for interfermetric data]
logfile	=	1.1		

- analyze: Set to True to open options for diagnostic plots
 - showuv = True
 - showpsf = False
 - showmodel = True
 - showconvolved = True
 - showclean = True
 - showresidual = False
 - showdifference = True
 - showfidelity = True

fidelity image measures how well the simulated output matches the convolved input model

Running Simanalyze

3.6

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

-20

m51c.aca.i.noisy.feather.fidelity

0.0120 m51c.aca.i.skymodel.flat.regrid.co

in=2.7e-03

 $max = 6.2e \pm 0.0$

RMS=4 8e-02

40 20

60 0.0000

0.0105

0.0090

0 0075

0.0060

0.0045-20

0.003040

0.0015

0.3

0.0

-0 3

-0.6

-1.5

20

-20 -0.9

Simanalyze is first run on the simulated ACA 7m + TP noisy datasets and creates a feathered ACA image

Next, simanalyze is run on the noisy simulated 12m array dataset using the feathered ACA image from the last run as a starting model

m51c.aca.i.skymodel.flat.regrid

m51c.aca.i.noisv.feather.diff

min=-1 7e+00

max=1.2e+00

RMS=1.4e-01

40

20

-20

-40

40

20 ly/hean

-40

3.6

3.0

24

18

1.2 -20

0.6

0.0

-0.6

60 40 20

40

30

20

10

0 10 10

-20

-30

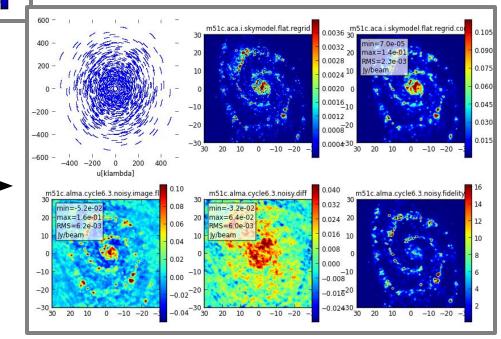
-40

-20

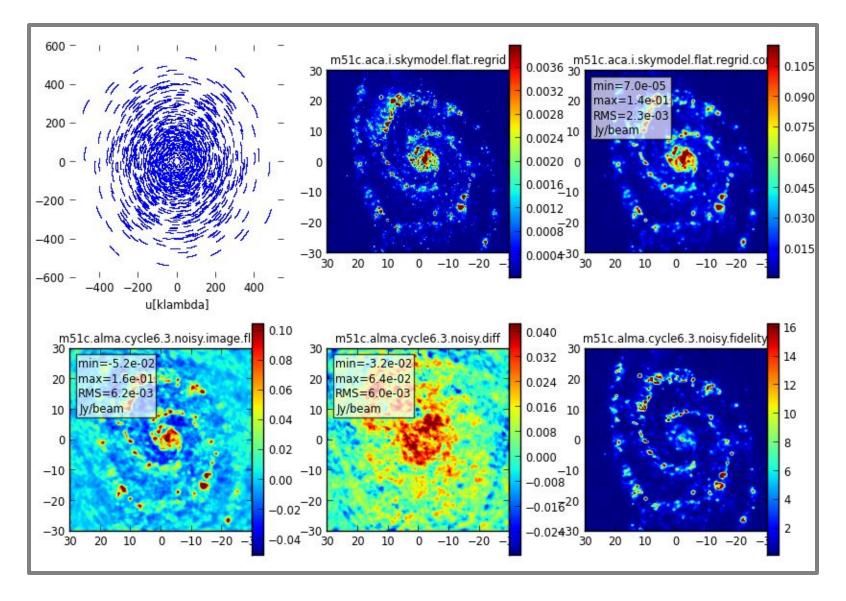
-40

-60

-30 -20


RMS=1 9e-01

20


0 -20

10 20

-10u[klambda] m51c.aca.i.noisy.feather.image.fla

Simanalyze Output

www.nrao.edu science.nrao.edu

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Additional Slides

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Basic imaging guidelines

Intro to Tclean

- Imaging capabilities of clean have been refactored and improved in tclean in the current version of CASA
- The ALMA pipeline now uses tclean instead of clean for imaging
- Major syntax changes are summarized here: https://casaguides.nrao.e du/index.php/TCLEAN_an d_ALMA
- WARNING: Avoid killing tclean/clean using CTRL+C
 this may corrupt your dataset

# tc vis	lean ::	Radio	Int	erferometric
	tdata		=	True
	field		-	
	spw		=	
	timeran	qe	=	11
	uvrange		=	11
	antenna		=	
	scan		=	11
	observa	tion	=	11
	intent		=	11
datac	olumn		=	'corrected'
image	name		=	11
imsiz	e		=	[100]
cell			=	['larcsec']
	center		=	
stoke			=	'I'
	ction		=	'SIN'
	model		=	1
specm	reffreq		-	'mfs'
gridd	er		=	'standard'
	vptable		-	1 I
	pblimit		=	0.2
decon	volver		=	'hogbom'
resto	ration		=	True
	restori	ngbeam	=	[]
	pbcor		=	False
	erfile		=	
weigh			=	'natural'
	uvtaper		=	[]
niter			=	0
usema			=	'user'
	mask pbmask		=	0.0
resta	rt		=	True
	odel		_	'none'
savem				True
calcr	es		=	I rue
and a state of the state of the			=	True

Visibility Weighting

	Robust/Uniform	Natural	Taper
Resolution	higher	medium	lower
Sidelobes	lower	higher	depends
Point source sensitivity	lower	maximum	lower
Extended source sensitivity	lower	medium	higher

Natural

Uniform

Robust=0

Dirty beam

CLEAN

image

Multiplying the uv distribution, S(u,v), by a weighting function, W(u,v), changes the resolution, sensitivity, and sidelobe levels of the dirty beam

Recommended starting point: **briggs** weighting with **robust = 0.5**

<pre># tclean ::</pre>	Radio Int	erferometric	Image F	Reconstruction
vis	=	1.1	#	Name of input visibility file(s)
selectdata	=	False	#	Enable data selection parameters
datacolumn	=	'corrected'	#	Data column to image(data,corrected
imagename	=	11	#	Pre-name of output images
imsize	=	[100]	#	Number of pixels
cell	=	['larcsec']	#	Cell size
phasecenter	=	11	#	Phase center of the image
stokes	=	'I'	#	Stokes Planes to make
projection	=	'SIN'	#	Coordinate projection (SIN, HPX)
startmodel	=		#	Name of starting model image

- **vis:** input uv dataset (MS file)
- imagename: root name of output images
- **imsize:** size of image in pixels if possible, image the full widath at half-power of the primary beam ($\sim \lambda/D$)
- **cell:** angular size of each pixel in arcsec need 5-8 pixels across the synthesized beam ($\sim \lambda/B_{max}$)
- **phasecenter:** image center typically only set for mosaics
- startmodel: (optional) initial clean model; useful to set this to TP image for ALMA 12m-array + TP observations

<pre># tclean ::</pre>	Radio Interferometric	Image Reconstruction
vis	=	<pre># Name of input visibility file(s)</pre>
selectdata	= False	# Enable data selection parameters
datacolumn	= 'corrected'	<pre># Data column to image(data,correct</pre>
imagename	= '''	<pre># Pre-name of output images</pre>
imsize	= [100]	<pre># Number of pixels</pre>
cell	= ['larcsec']	# Cell size
phasecenter	= '''	# Phase center of the image
stokes	= 'I'	<pre># Stokes Planes to make</pre>
projection	= 'SIN'	<pre># Coordinate projection (SIN, HPX)</pre>
startmodel	= !!	<pre># Name of starting model image</pre>

Use **selectdata = True**

to specify field, spw, etc. to be imaged – important when data includes multiple targets/calibrators

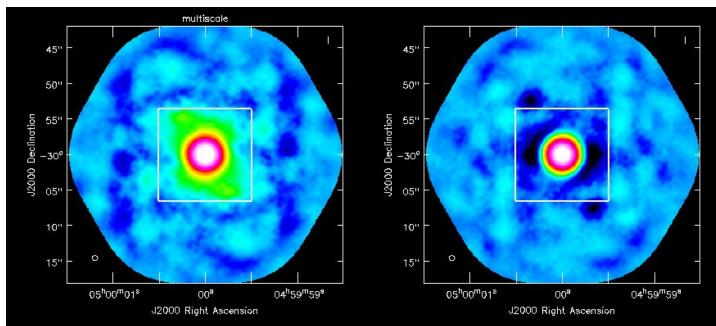
selectdata	=	True
field	=	
spw	=	
timerange	=	11
uvrange	=	1.1
antenna	=	
scan	=	
observation	=	11
intent	=	

specmode	=	'mfs'	#	Spectral definition mode
			#	(mfs,cube,cubedata)
reffreq	=		#	Reference frequency
gridder	= 1	standard'	#	Gridding options (standard, wproject,
			#	widefield, mosaic, awproject)
vptable	=		#	Name of Voltage Pattern table
pblimit	=	0.2	#	<pre>>PB gain level at which to cut off</pre>
			#	normalizations
deconvolver	=	'hogbom'	#	Minor cycle algorithm (hogbom,clark,m
			#	ultiscale,mtmfs,mem,clarkstokes)

- specmode: use 'mfs' for continuum images and 'channel/velocity/frequency' for spectral line imaging*
- gridder: 'standard' and 'mosaic' most common for ALMA
- deconvolver: algorithm for reconstructing the sky brightness from the dirty image and the PSF ("deconvolution")

*For line imaging, you will also need to set the dimensions of the cube, rest frequency, velocity frame, and Doppler definition

			#	definitions
weighting	=	'natural'	#	Weighting scheme
			#	(natural, uniform, briggs)
uvtaper	=	[]	#	uv-taper on outer baselines in uv-
			#	plane
niter	=	100	#	Maximum number of iterations
gain	=	0.1	#	Loop gain
threshold	=	0.0	#	Stopping threshold
cycleniter	=	-1	#	Maximum number of minor-cycle
			#	iterations
cyclefactor	=	1.0	#	Scaling on PSF sidelobe level to
			#	compute the minor-cycle stopping
			#	threshold.
minpsffraction	=	0.05	#	PSF fraction that marks the max depth
			#	of cleaning in the minor cycle
maxpsffraction	=	0.8	#	PSF fraction that marks the minimum
			#	depth of cleaning in the minor cycle
interactive	=	True	#	Modify masks and parameters at
incer decive		Huc	#	runtime


- weighting: natural, uniform or robust
- uvtaper: apply Gaussian uv taper to visibilities (helpful for imaging extended/diffuse emission)
- threshold: flux stopping criterion
- interactive: run clean interactively or non-interactively

40

Multiscale

Uses extended clean components to better match emission scales unlike hogbom or clark, which use delta functions

multi-scale

"classic" scale

Suggested (trial) parameter setting is scales = [0,5,15]: (1) point source, (2) the size of the synthesized beam, and (3) 3-5 times the synthesized beam

usemask	-	'user'		Type of mask(s) for deconvolution: user, pb, or auto-multithresh
mask	=	11	#	Mask (a list of image name(s) or region file(s) or region string(s)
pbmask	=	0.0	#	primary beam mask
restart	=	True	#	True : Re-use existing images. False : Increment imagename
savemodel	= 'mo	odelcolumn'	#	Options to save model visibilities (none, virtual, modelcolumn)
calcres	=	True	#	Calculate initial residual image
calcpsf	=	True	#	Calculate PSF
parallel	=	False	#	Run major cycles in parallel

- usemask: type of clean mask 'user' or 'auto-multithresh' useful for ALMA)
- restart: If 'tclean' is started again with same image name, it will try to continue deconvolution from where it left off. Make sure this is what you want. If not, set a new imagename or move/delete existing image files.
- savemodel: controls how CASA stores deconvolution model
 set savemodel = 'modelcolumn' during self calibration
- parallel: implements parallel processing; requires launching CASA with 'mpicasa'

Notes on Mosaicking/Multiple Configs

θ_{res} (arcsec)	θ_{LAS} (arcsec)	Array combination	Time ratios	Total Time
0.042	< 0.496	C43-10	1	$1.0 imes \Delta_{extended}$
0.042	> 0.496	-	-	-
0.057	< 0.814	C43-9	1	$1.0 \times \Delta_{extended}$
0.057	0.814-4.11	C43-9 + C43-6	1: 0.21	$1.21 \times \Delta_{extended}$
0.057	> 4.11	=	- 1	-
0.096	< 1.42	C43-8	1	$1.0 imes \Delta_{extended}$
0.096	1.42-6.7	C43-8 + C43-5	1: 0.22	$1.22 \times \Delta_{extended}$
0.096	> 6.7		-	-
0.211	< 2.58	C43-7	1	$1.0 \times \Delta_{extended}$
0.211	2.58-11.2	C43-7 + C43-4	1: 0.23	$1.23 \times \Delta_{extended}$
0.211	> 11.2		-	-
0.306	< 4.11	C43-6	1	$1.0 \times \Delta_{extended}$
0.306	4.11-16.2	C43-6 + C43-3	1: 0.25	$1.25 \times \Delta_{extended}$
0.306	16.2-66.7	C43-6 + C43-3 + 7-m	1: 0.25: 0.6	$1.8 \times \Delta_{extended}$
0.306	> 66.7	C43-6 + C43-3 + 7-m + TP	1: 0.25: 0.6: 1.0	$2.3 \times \Delta_{extended}$
0.545	< 6.7	C43-5	1	$1.0 \times \Delta_{extended}$
0.545	6.7-22.6	C43-5 + C43-2	1:0.26	$1.26 \times \Delta_{extended}$
0.545	22.6-66.7	C43-5 + C43-2 + 7-m	1: 0.26: 1.21	$2.5 imes \Delta_{extended}$
0.545	> 66.7	C43-5 + C43-2 + 7-m + TP	1: 0.26: 1.21: 2.1	$3.3 \times \Delta_{extended}$
0.918	< 11.2	C43-4	1	$1.0 \times \Delta_{extended}$
0.918	11.2-28.5	C43-4 + C43-1	1:0.34	$1.3 \times \Delta_{extended}$
0.918	28.5-66.7	C43-4 + C43-1 + 7-m	1: 0.34: 2.4	$3.7 \times \Delta_{extended}$
0.918	> 66.7	C43-4 + C43-1 + 7-m + TP	1: 0.34: 2.4: 4.0	$5.3 \times \Delta_{extended}$
1.42	< 16.2	C43-3	1	$1.0 imes \Delta_{extended}$
1.42	16.2-66.7	C43-3 + 7-m	1:2.4	$3.4 \times \Delta_{extended}$
1.42	> 66.7	C43-3 + 7-m + TP	1: 2.4: 4.1	$5.1 \times \Delta_{extended}$
2.3	< 22.6	C43-2	1	$1.0 imes \Delta_{extended}$
2.3	22.6-66.7	C43-2 + 7-m	1:4.7	$5.7 \times \Delta_{extended}$
2.3	> 66.7	C43-2 + 7-m + TP	1:4.7:7.9	$8.9 imes \Delta_{extended}$
3.38	< 28.5	C43-1	1	$1.0 \times \Delta_{extended}$
3.38	28.5-66.7	C43-1 + 7-m	1:7	$8.0 \times \Delta_{extended}$
3.38	> 66.7	C43-1 + 7-m + TP	1:7:11.9	$12.9 imes \Delta_{extended}$
12.5	< 66.7	7-m	1	$1.0 \times \Delta_{extended}$
12.5	> 66.7	7-m + TP	1: 1.7	$2.7 \times \Delta_{extended}$

Table 7.4 from theCycle 7 TechnicalHandbook

Guidelines on time ratios, angular scales for different array and config combinations

Note total time < sum of the individual times b/c TP and 7m Array observations are run in parallel

ALMA Bands

Band	Wavelength	Frequency
	(mm)	(GHz)
1	8,6 – 6	35 – 50
2	4,6 - 3,3	65 – 90
3	3,6 – 2,6	84 – 116
4	2,4 – 1,8	125 – 163
5	1,8 – 1,4	163 – 211
6	1,4 – 1,1	211 – 275
7	1,1 – 0,8	275 – 373
8	0,8 – 0,6	385 – 500
9	0,5 – 0,4	602 – 720
10	0,4 - 0,3	787 – 950

Cycle 8 Configurations

	Band	3	4	5	6	7	8	9	10
	Frequency (GHz)	100	150	185	230	345	460	650	870
Config.									
7-m	θ_{res} (arcsec)	12.5	8.35	6.77	5.45	3.63	2.72	1.93	1.44
	θ_{MRS} (arcsec)	66.7	44.5	36.1	29.0	19.3	14.5	10.3	7.67
C-1	θ_{res} (arcsec)	3.38	2.25	1.83	1.47	0.98	0.735	0.52	0.389
	θ_{MRS} (arcsec)	28.5	19.0	15.4	12.4	8.25	6.19	4.38	3.27
C-2	θ_{res} (arcsec)	2.30	1.53	1.24	0.999	0.666	0.499	0.353	0.264
	θ_{MRS} (arcsec)	22.6	15.0	12.2	9.81	6.54	4.9	3.47	2.59
C-3	θ_{res} (arcsec)	1.42	0.943	0.765	0.615	0.41	0.308	0.218	0.163
	θ_{MRS} (arcsec)	16.2	10.8	8.73	7.02	4.68	3.51	2.48	1.86
C-4	θ_{res} (arcsec)	0.918	0.612	0.496	0.399	0.266	0.2	0.141	0.106
	θ_{MRS} (arcsec)	11.2	7.5	6.08	4.89	3.26	2.44	1.73	1.29
C-5	θ_{res} (arcsec)	0.545	0.363	0.295	0.237	0.158	0.118	0.0838	0.0626
	θ_{MRS} (arcsec)	6.7	4.47	3.62	2.91	1.94	1.46	1.03	0.77
C-6	θ_{res} (arcsec)	0.306	0.204	0.165	0.133	0.0887	0.0665	0.0471	0.0352
	θ_{MRS} (arcsec)	4.11	2.74	2.22	1.78	1.19	0.892	0.632	0.472
C-7	θ_{res} (arcsec)	0.211	0.141	0.114	0.0917	0.0612	0.0459	0.0325	0.0243
	θ_{MRS} (arcsec)	2.58	1.72	1.4	1.12	0.749	0.562	0.398	0.297
C-8	θ_{res} (arcsec)	0.096	0.064	0.0519	0.0417	0.0278	-	-	-
	θ_{MRS} (arcsec)	1.42	0.947	0.768	0.618	0.412	-	-	-
C-9	θ_{res} (arcsec)	0.057	0.038	0.0308	0.0248	0.0165	-	-	-
	θ_{MRS} (arcsec)	0.814	0.543	0.44	0.354	0.236	-	-	-
C-10	θ_{res} (arcsec)	0.042	0.028	0.0227	0.0183	0.0122	-	-	-
	θ_{MRS} (arcsec)	0.496	0.331	0.268	0.216	0.144	-	-	-