An Introduction to the Cycle 7 ALMA Observing Tool

AKA: How to turn that great idea into an ALMA proposal!

Cassie Reuter

Authors: Harvey Liszt, Cassie Reuter

Example from: Kate Rowlands

Associated Universities.inc Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Very Long Baseline Array

ALMA Cycle 7 Planning

https://almascience.nrao.edu/news/alma-cycle-7-pre-announcement

19 March 2019 (15:00 UT)	Release of the ALMA Cycle 7 Call for Proposals and Observing Tool, and opening of archive for proposal submission
17 April 2019 (15:00 UT)	Proposal submission deadline
End of July 2019	Result of the proposal review sent to proposers
5 September 2019	Deadline for phase 2 submission by proposers
October 2019	Start of Cycle 7 observations
September 2020	End of Cycle 7 observations

Configuration plan

- The configuration schedule may determine when an object will be observed
- Consult Chapter 7 of Technical handbook for details and expected imaging properties!

Your favorite configuration might not be possible with favorite object, so check this before you submit!

Start date	Configuration	Longest baseline	LST for best observing conditions				
2019 October 1	C43-4	0.78 km	~ 22—10 h				
2019 October 20	C43-3	0.50 km	~ 23—11 h				
2019 November 10	C43-2	0.31 km	~ 1—13 h				
2019 November 30	C43-1	0.16 km	~ 2—14 h				
2019 December 20	C43-2	0.31 km	~ 4—15 h				
2020 January 10	C43-3	0.50 km	~ 5—17 h				
2020 February 1		No observations due to maintenance					
2020 March 1	C43-4	0.78 km	~ 8—21 h				
2020 March 20	C43-5	1.4 km	~ 9—23 h				
2020 April 20	C43-6	2.5 km	~ 11—1 h				
2020 May 20	C43-7	3.6 km	~ 13—3 h				
2020 June 20	C43-8	8.5 km	~ 15—5 h				
2020 July 11	C43-9	13.9 km	~16—6 h				
2020 July 30	C43-10	16.2 km	~17—7 h				
2020 August 20	C43-9	13.9 km	~19—8 h				
2020 September 10	C43-8	8.5 km	~20—9 h				

Documentation

- Call for Proposals
- ALMA Primer
- OT Guide
- ALMA Tech Handbook
- Helpdesk Knowledgebase

Observing with *ALMA* **A Primer for** *Early Science*

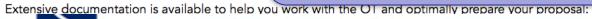
Downloading the ALMA OT

Þ.			a Large Millimeter/subm of our Cosmic Origins	nillimete	ar Array				1	NRAO	Associated Universities, Inc.	og in
0	About	Science	Proposing Observing	Data	Processing	Tools (Documentation	Help		Search	Site	Q

Observing Tool

The ALMA Observing Tool (OT) is a Java application used for the preparation and submission of ALMA Phase 1 (observing proposal) and Phase 2 (telescope runfiles for accepted proposals) materials. It is also used for preparing and submitting Director's Discretionary Time (DDT) proposals. The current *Cycle 6* release of the OT is configured for the present capabilities of ALMA as described in the Cycle 6 Call For Proposals. Note that in order to submit proposals you will have to register with the ALMA Science Portal beforehand.

Download & Installation


The OT will run on most common operating systems, as long as a **64-bit version of Java 8** is installed (see the troubleshooting page) you are experiencing Java problems). The ALMA OT is available in two flavours: Web Start and tarball.

The **Web Start** application is the recommended way of using the OT. It has the advantage that the OT is automatically downloaded and installed on your computer and it will also automatically detect and install updates. There are some issues with Web Start, particularly that it does not work with the Open JDK versions of Java such as the "Iced Tea" flavour common on many modern Linux installations. The Oracle variant of Java should therefore be installed instead. If this is not possible, then the tarball installation of the OT is available.

The **tarball** version must be installed manually a Webstart Tarball

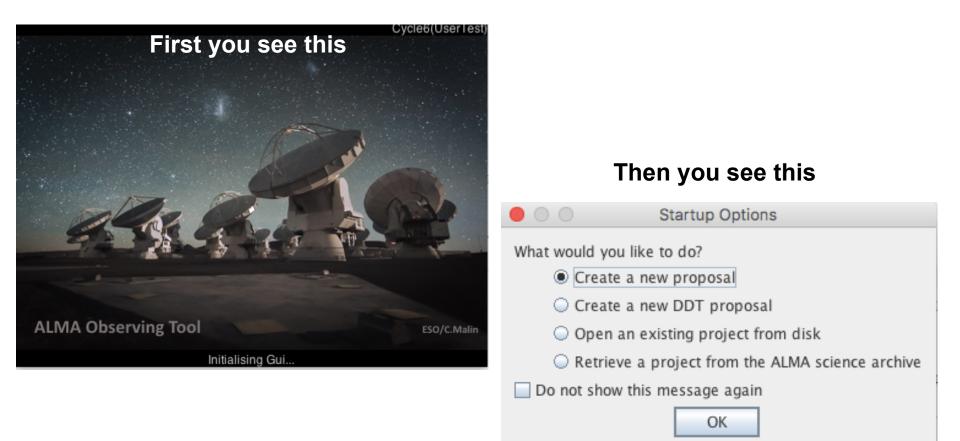
Using webstart is easier and has the advantage that it checks for and will download a newer version at startup

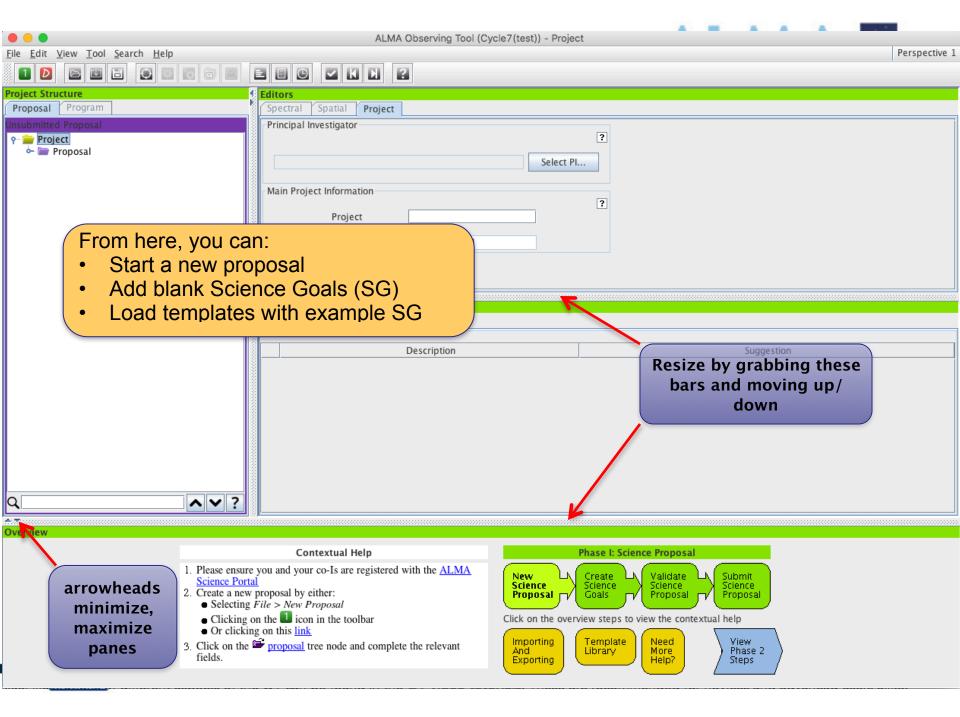
ation issues.

Documentation

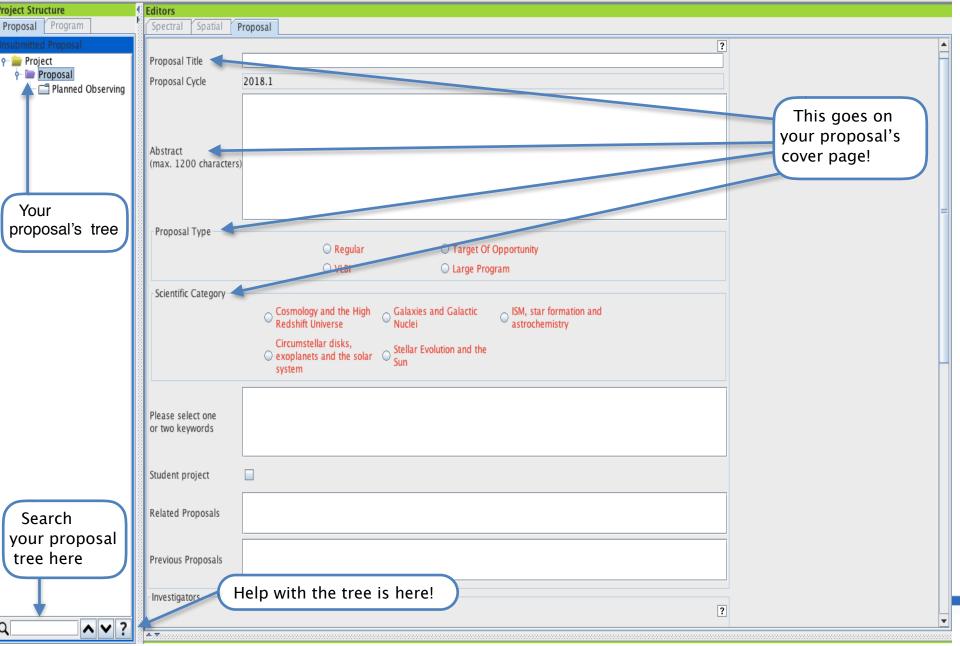
Proposal Checklist

Read relevant documentation (CfP, Guide, Primer, etc.) Create an ALMA account by registering at the Science Portal (almascience.org) ☑ Download the Observing Tool (OT) & related guides □ Prepare the Science Case □ Note the new capabilities for this cycle! Prepare Science Goals (sources, frequency & correlator) setup, integration times) within the OT □ Make use of the Helpdesk & the Knowledgebase


Open up your freshly downloaded OT



When the ALMA OT starts



ile <u>E</u>dit <u>V</u>iew <u>T</u>ool <u>S</u>earch <u>H</u>elp

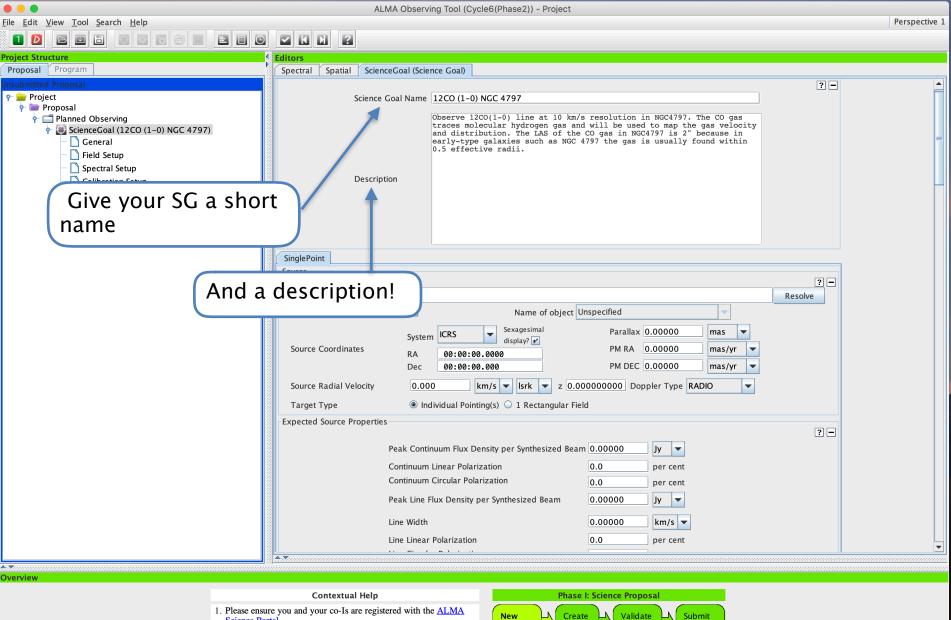
000	ALMA Observing Tool (Cycle3-RC2) - Really catchy title here	
<u>File E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp		Perspective 1
1 1 2 6 🚅 🛋 🗁 🔚		
Project Structure	g Editors	
Proposal Program	Spectral Spatial Proposal	
Unsubmitted Proposal	Cosmology and the High Redshift Universe Galaxies and Galactic Nuclei ISM, star formation and astrochemistry	_
P ➡ Really catchy title here Proposal		
Planned Observing	Circumstellar disks, circumstellar disks,	
	system	
	Lyman Alpha Emitters/Blobs (LAE/LAB)	
	Keywords Explored Calaxies (LBG)	=
	(max. 2 keywords) Starburst galaxies Sub-mm Galaxies (SMG)	
	High-z Active Galactic Nuclei (AGN)	•
	Student project	
	Related Proposals	
	Previous Proposals	
	Investigators	
	Select PI/Co-I's from	
	Type Select FI/CO-FS Hollin Science Case	e is a .pdf,
	PI Not se max 4 max 4	hages
$\bigcirc \bigcirc \bigcirc$		
	The .pdf mu	
Investigator search constraints	< 12pt	font
ALMA ID 👻 is hliszt		
	Find Investigators	
Full name Emai		
Harvey Liszt hliszt@nrao.ed	North American ALMA hliszt Select Pl Add Col Remove Col	Add from Proposal
		Add non ropositin
	Select PI Attach your Science	
	Case as a PDF	?
	Science Case (Mandatory, PDF, 4 pages max.)	Detach View

Science Case

- Must include:
 - Astronomical Importance
 - Estimated intensity, S/N, size of target sample (when appropriate)
- May include:
 - Figures
 - Tables
 - References
- Free-form PDF document
 - 12+ font, English only
 - 10% of text or less in font below 12pt
 - 20 MB file size
 - 4 pages total (6 for Large Projects)

Eile Edit View Tool Search Help	ALMA Observing Tool (C	Cycle7(test)) - Project	Perspective 1
		Cut Copy Paste New Science Goal Clone node Show Printable Summary of Generate a PDF of Whole Pr Display Project Time Summ	oposal
	(1) Left-click the "New Science Goal" button (2) Right-click and add blank Science Goals, o (3) Use options in the File menu	Expand all Collapse all Find previous	₩-Z
Q	Let's make a so Contextual Help 1. Please ensure you and your co-Is are registered with the ALMA Science Portal 2. Create a new proposal by either: • Selecting <i>File > New Proposal</i> • Clicking on the icon in the toolbar • Or clicking on this link 3. Click on the proposal tree node and complete the relevant fields.	Cience goal! Phase I: Science Proposal New Create Yalidate Science Proposal Science Proposal Cick on the overview steps to view the contextual help Importing Template Ubrary Need Help?	2

Example - mapping out CO(I-0)

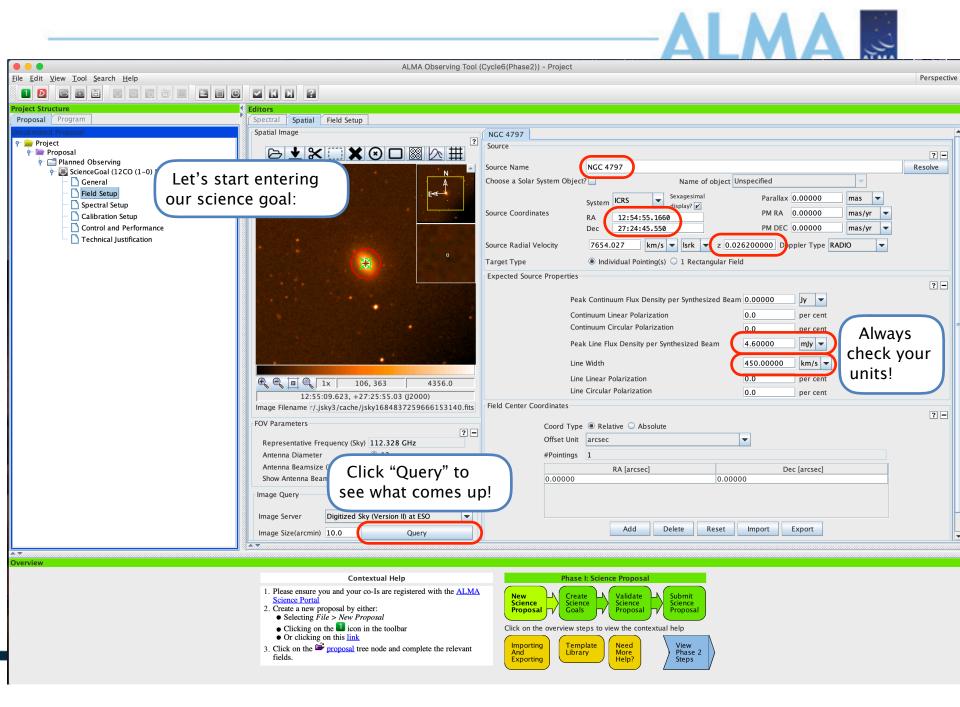

• Methodology – Using a single pointing, obtain a spectral line observation of the 12CO(1-0) line at 10 km/s resolution. The CO gas traces molecular hydrogen gas and will be used to map the gas velocity and distribution.

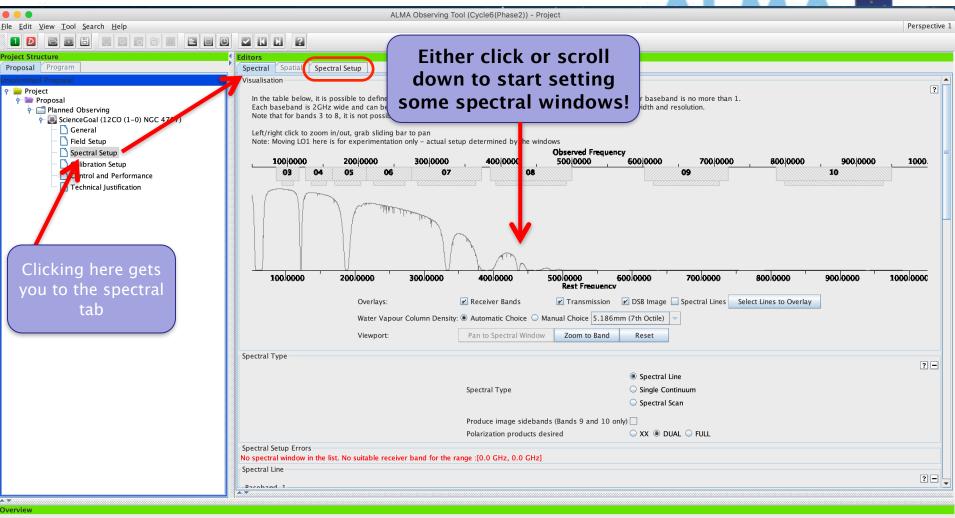
- Source NGC 4797
- RA, Dec = 12:54:55.166, +27:24:45.55
- z= 0.0262
- Requirements S/N=5 on the 12CO(1–0) line (rest frequency 115.271 GHz).
- Peak line flux of 4.60 mJy/beam.
- Desired sensitivity per pointing of 920 μ Jy/beam.
- Line width = 450 km/s.
- Dual polarization products.
- Correlator setup: band 3, 1875 MHz bandwidth, 1.129 kHz (3 km/s) resolution.

• Set the bandwidth used for sensitivity to 10 km/s because we will spectrally average to this channel width during data reduction.

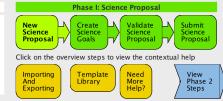
• Largest angular scale (LAS) = 2.0", resolution = 1.5". The LAS of the CO gas in NGC4797 is 2" because in early-type galaxies such as NGC 4797 the gas is usually found within 0.5 effective radii (Davis et al. 2013).

- Science Portal 2. Create a new proposal by either:
- Selecting *File > New Proposal*Clicking on the **1** icon in the toolbar
- Or clicking on this <u>link</u>
- Click on the proposal tree node and complete the relevant fields.

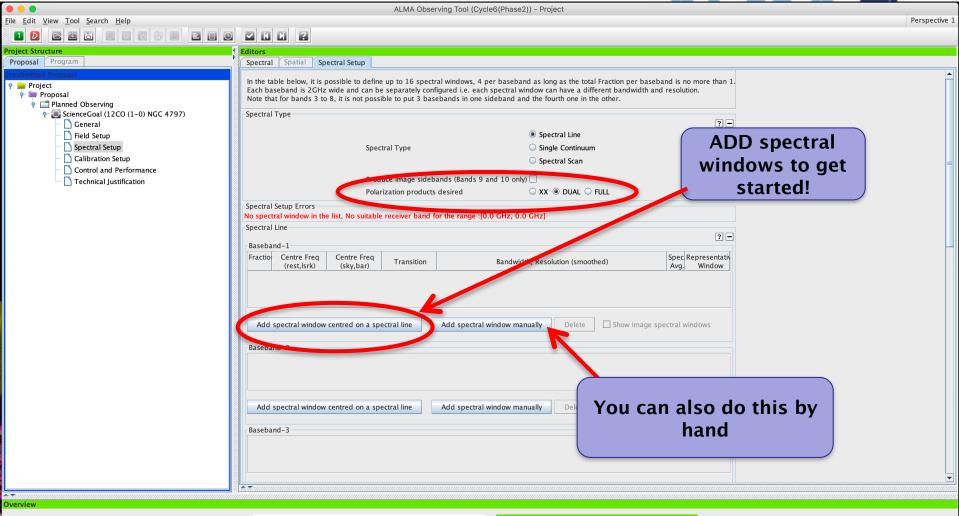



	ALMA Observing Tool	I (Cycle6(Phase2)) - Project	
Eile <u>E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp			Perspective
Project Structure Proposal Program	ditors		
	Spectral Spatial Field Setup		
P	?	Source	
e Proposal	$\boxdot \bigstar \And \blacksquare \And \blacksquare \blacksquare \boxtimes \bowtie \blacksquare$? -
🛉 🚍 Planned Observing 🛉 💽 ScienceGoal (12CO (1-0) NGC 4797)	N	Source Name NGC 4797	Resolve
- 🗋 General		Choose a Solar System Object? Name of object Unspecified	▼
Field Setup	E E	System ICRS Sexagesimal Parallax 0.00000	mas 💌
Calification Setup		Source Coordinates	mas/yr 🔻
Control and Performance		RA 12:54:55.1660 PM DEC 0.00000	mas/yr 💌
- 🔂 Tect nical Justification		Source Radial Velocity 7654.027 km/s Visrk Visrk Z 0.026200000 Doppler Type RA	
		Target Type Individual Pointing(s) 1 Rectangular Field	
		Expected Source Properties	? -
		Peak Continuum Flux Density per Synthesized Beam 0.00000	
		Continuum Linear Polarization 0.0 per cent	
		Continuum Circular Polarization 0.0 per cent	=
		Peak Line Flux Density per Synthesized Beam 4.60000 mJy 🗸	
		Line Width 450.00000 km/s 🔻	
	€	Line Linear Polarization 0.0 per cent	
	12:55:09.623, +27:25:55.03 (J2000)	Line Circular Polarization 0.0 per cent	
	Image Filename r/.jsky3/cache/jsky1684837259666153140.fits	Field Center Coordinates	? -
	FOV Parameters	Coord Type 🖲 Relative 🔾 Absolute	
	? -	Offset Unit arcsec	
The field setup not	le is where you	#Pointings 1	
-	_	RA [arcsec] Dec [arcsec]	
provide source co	ordinates and	0.00000 0.00000	
-			
other basic proper			
more field sources	Inointings	Add Delete Reset Import Export	
more nera sources			
Overview			
	Contextual Help	Phase I: Science Proposal	
	1. Please ensure you and your co-Is are registered with the <u>ALMA</u> <u>Science Portal</u>	A Science Validate Science Science	
	 2. Create a new proposal by either: Selecting <i>File > New Proposal</i> 	Proposal / Goals / Proposal	
	 Clicking on the 1 icon in the toolbar 	Click on the overview steps to view the contextual help	
	 Or clicking on this link Click on the proposal tree node and complete the relevant 	Importing Template Need View	
	3. Click on the proposal tree node and complete the relevant fields.	And Library Exporting Template Need View More Phase 2 Help? Steps	

	ALMA Observing Tool (Cycle6(Phase2)) - Project		
<u>File Edit View Tool Search H</u> elp				Perspective
Project Structure Proposal Program	Editors Spectral Spatial Field Setup			
	Spatial Image	NGC 4707		
ዮ 🚔 Project	?	Source		
Proposal				? -
ScienceGoal (12CO (1-0) NGC 4797)		Source Name NGC 4797		Resolve
General	enerally, enter source 📊	Choose a Solar System Object? 🔲	Name of object Unspecified	
Field Setup		System ICRS 💌	Sexagesimal Parallax 0.00000 mas	
- Calification Setup	operties here	Source Coordinates RA 12:54:55.16	PM PA 0.00000 mas/vr	
- Control and Performance		Dec 27:24:45.55		
Carl Tect nical Justification		Source Radial Velocity	c = lcek = - 0.036200000 Doppler Type RADIO 🔻	
			s) \bigcirc 1 Rectangular Field	
		Expected Source Properties		
				? -
		Used for	mosaicking!	
			er cent	
			per cent	
	sed to assess project	Peak Line Flux Density per S	Synthesized Beam 4.60000 mJy 🔽	
		Line Width	450.00000 km/s 🗸	
	ability!	Line Linear Polarization	0.0 per cent	
	🖏 🖏 💷 📞 1x 106,363 4356.0	Line Circular Polarization	0.0 per cent	
	12:55:09.623, +27:25:55.03 (J2000) Image Filename r/.jsky3/cache/jsky1684837259666153140.fits	Field Center Coordinates	per cent	
	FOV Parameters			? -
	? -	Coord Type 🖲 Relative 🔾 Absolut		
The field esture of		Offset Unit arcsec	•	
The field setup no	ode is where you	#Pointings 1		
provide source c	oordinates and	RA [arcsec]	Dec [arcsec]	
			1	
other basic prope	erties for one or			
	ESO T			
more field source	es/pointings	Add	Delete Reset Import Export	-
Overview				
	Contextual Help	Phase I: Science Proposal		
	1. Please ensure you and your co-Is are registered with the ALMA		Submit	
	Science Portal 2. Create a new proposal by either:	Science Science Science Proposal	Science Proposal	
	• Selecting File > New Proposal			
	 Clicking on the icon in the toolbar Or clicking on this link 	Click on the overview steps to view the contextu		
	3. Click on the <i>proposal</i> tree node and complete the relevant	Importing And Library More	View Phase 2	
1	fields.	Exporting Help?	Steps	



The spectral setup tab



Contextual Help

- 1. Please ensure you and your co-Is are registered with the <u>ALMA</u>
- Science Portal
- 2. Create a new proposal by either:
 Selecting *File > New Proposal*
 - Clicking on the licon in the toolbar
 - Or clicking on this link
- Click on the proposal tree node and complete the relevant fields.

- 1. Please ensure you and your co-Is are registered with the <u>ALMA</u> <u>Science Portal</u>
- 2. Create a new proposal by either:
- Selecting File > New Proposal
- Clicking on the 1 icon in the toolbar
- Or clicking on this link
- Click on the proposal tree node and complete the relevant fields.
- **Phase I: Science Proposal** New Create Validate Submit Science Science Science Science Proposal Goals Proposa Proposa Click on the overview steps to view the contextual help View Phase 2 Importing Template Need And Library More Exporting Steps

Use the spectral-line picker to find your lines

ansition Filter Transitions matching your filter settings: double-click column header for primary sort, single-click subsequent columns for secondary sorting. Single clicks will reverse sort order of already selected columns.) Transition - Description equency Filters Transition - Description Mile Indi CliCH N=1-0, 1=3 Ethymyl S2526932 CHz S5269352 CHz S526952 CHz <
C (2) C2) * Or 'oxade' Transition ^ Description Rest Freque Sky Frequency Upper-state Ene Lowas Inten Sj µ² Catalog c) (2) C2) * Or 'oxade' (13 CH № 1-0, 1=3/C-1/2, F1=1-0, F3 Etymyl 85.256952 CHz 85.254936 4.092 K 0.070 (754 0²) Offline equency Filters (13 CH № 1-0, 1=3/C-1/2, F1=1-0, F3 Etymyl 85.265937 585.474 K 0.001 D² Offline (13 CH № 1-0, 1=3/C-1/2, F1=17/ 1,3=8uad/ymyl radical 85.331915 CHz 85.30893 20.473 K 0.036 372 D² Offline (12 C13 CCH № 9-8,]=91/2-17/2, F1=19/ 1,3=8uad/ymyl radical 85.331915 CHz 85.329916 20.473 K 0.037 r.88 D² Offline (12 C13 CCH № 9-8,]=91/2-17/2, F1=19/ 1,3=8uad/ymyl radical 85.331915 CHz 85.329916 20.473 K 0.031 7.88 D² Offline (12 C13 CCH № 9-8,]=91/2-17/2, F1=19/ 1,3=8uad/ymyl radical 85.331915 CHz 85.330857 6.445 K 3.15 2.945 D² Offline (12 C13 CCH № 9-8,]=91/2-17/2, F1=19/ 1,3=8uad/ymyl radical 85.33893 CHz 85.336807 6.445 K 3.15 2.945 D² Offline (13 CH № 0) C14 C
C (2) C2) * Or 'oxade' Transition ^ Description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Catalog c) 1 clude description C13CH № 1-0, 1=3/C-1/2, F1=1-0, F=3 Etymyl 85.256952 CHz 85.254936 4.092 K 0.070.754 0 ¹² O'fline c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Catalog c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Catalog c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Catalog c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Catalog c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Sj µ² Orfline Gi Park c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Lovas Inten Si Park Catalog c) 1 clude description Rest Freque Sky Frequency Upper-state Enc Color Fist Park Orfline Orfline
1 Include description C13CH N=1-0, J=3/2-1/2, F1=1-0, F=3 Ethymyl B5.265932 GHz B5.26592 GHz B5.2765 GHz B5.277
Classifier
equency Filters CH3CW v8=1 J ==9.8, K = -13 Methyl Cyanide 85.267374 CH2 85.265357 58.474 K 0.001 D ² Offline H2CO 50(6,44)-50(6,45) Formaldrehyde 85.31067 CH2 85.30861 4881.916 K 6.63 D ² Offline L L L L L L L 6.63 D ² Offline L <
MA Band H2C0 506,44)-506,450 Formaldehyde 85.310678 CHz 85.308661 4881.916 k 6.63 D ² Offline L
CC13CCH N=9-8, j=19/2-17/2, F1=17/ 1,3-Butadiynyl radical 85.331915 GHz 85.329897 20.474 K 0.03 G.372 D ² Offline y Frequency GHz 1 1 1 3-Butadiynyl radical 85.331915 GHz 85.329898 20.473 K 0.03 G.372 D ² Offline y Frequency GHz 0.037 (12 D ²) 0/Fline 0.037 (12 D ²) Offline 0.037 (138 D ²) Offline CC13CCH N=9-8, j=19/2-17/2, F1=19/ 1,3-Butadiynyl radical 85.331935 GHz 85.329916 20.473 K 0.03 (138 D ²) Offline CC13CCH N=9-8, j=19/2-17/2, F1=17/ 1,3-Butadiynyl radical 85.331935 GHz 85.336875 6.445 K 3.152,945 D ²) Offline CC13CCH N=9-8, j=19/2-17/2, F1=17/ 1,3-Butadiynyl radical 85.345850 6.143 K 0.47,668 D ²) Offline CC13CCH N=9-8, j=19/2-17/2, F1=17/ 1,3-Butadiynyl radical 85.345850 6.143 K 0.47,668 D ²) Offline C13CCH N=0 Select one or more lines from a splatalogue-based list you Offline Offline Offline LH3CH V=0 UNIDENTIFIED 85.468300 GHz 85.484578 0.22 Offline
1 1
Clip Clip<
y Frequency (CH2) CC13CCH N=9-8, j=19/2-17/2, F1=17 1,3-Butadiynyl radical 85.331936 GHz 85.329918 20.473 K 0.03 7.138 D² Offline OP I + I + I + I + I + I + I + I + I + I +
V Englander (CH2) C-HCCCH v=0 2(1,2)-1(0,1) Cyclopropenylidene 85.338893 GH2 85.336875 6.445 K 3.1 52.945 D ² Offline In B3 Max 116 Thioformylium 85.337869 GH2 85.336875 6.445 K 3.1 52.945 D ² Offline In B3 Max 116 Thioformylium 85.355421 GH2 85.335802 1156.266 K 5.135 D ² Offline CH3CCH v=0 CH3CCH v=0 Can filter using the tools at left 5.135 D ² Offline Offline CH3CCH v=0 CH3CCH v=0 Ch3CCH v=0 Can filter using the tools at left Offline Offline Offline CH3CCH v=0 UNIDENTIFIED 85.46600 GH2 85.486600 GH2 85.487593 2424.382 K 0.675 D ² Offline UNIDENTIFIED 85.486615 GH2 85.495733 2424.382 K 0.675 D ² Offline U-85468.3 UNIDENTIFIED 85.49600 GH2 85.497578 0.18 0.675 D ² Offline U-85468.41 UNIDENTIFIED 85.498600 GH2 85.497578 0.18 0.675 D ² Offline U-85498.26
HCS+ 2-1 Thioformylium 85.347869 GHz 85.345850 6.143 K 0.47.668 D ² Offline Max 116 CH30H vt=1 14(10.4)-14(11.3) Methanol 85.355421 GHz 85.345850 6.143 K 0.47.668 D ² Offline ceiver/Back End Configuration OHIGE Select one or more lines from a splatalogue-based list you Offline Offline 0 All lines Potentially selectable lines CH3CCH v=0 CH3CCH v=0 Offline Offline 0 Hies in defined spws Filtering unobservable lines U=85486.3 UNIDENTIFIED 85.468300 GHz 85.46579 1.84 Offline 0 Hies in defined spws U=85486.3 UNIDENTIFIED 85.466279 1.84 Offline 0 Hiss in defined spws U=85486.3 UNIDENTIFIED 85.468300 GHz 85.487593 2424.382 K 0.675 D ² Offline 0 Hiss in defined spws U=85486.3 UNIDENTIFIED 85.492600 GHz 85.497333 2424.382 K 0.675 D ² Offline 0 Hiss in defined spws U=85486.3 UNIDENTIFIED 85.492000 GHz 85.49311 55.32 K 0.675 D ² Offline
Max 0 (H30H v t=1 14(10.4)=14(11.3) Methanol 85.355421 GH2 85.353402 1156.266 K 5.135 D ² Offline n 85 Max 116 0 0 All lines 0 0 All lines 0 0 All lines 0 <
Max 116 uceiver/Back End Configuration U-85396 All lines Select one or more lines from a splatalogue-based list you (Al3CCH v=0) Offline Offline Potentially selectable lines U-85468.3 UNIDENTIFIED 85.468300 GHz 85.466279 1.84 Offline U-85468.3 UNIDENTIFIED 85.468000 GHz 85.466279 0.22 Offline U-85468.4 UNIDENTIFIED 85.468000 GHz 85.468758 0.22 Offline U-85468.4 UNIDENTIFIED 85.486600 GHz 85.484578 0.22 Offline U-85492.6 UNIDENTIFIED 85.496015 GHz 85.4967333 2424.382 K 0.675 D ² U-85492.6 UNIDENTIFIED 85.49615 GHz 85.495731 55.32 K 58.628 D ² U-85492.6 UNIDENTIFIED 85.497333 GHz 85.495731 55.32 K 58.628 D ² Min 0 Max 0 0 0 85.499300 GHz 85.499300 GHz 85.49920 GHIne U-85499.3 UNIDENTIFIED 85.499300 GHz 85.498308 M 0.18 0.18 0.118 U-30(H) Max </td
ceiver/Back End Configuration CH3CCH v=0 Select one or more lines from a splatalogue-based list you Offline 0 All lines CH3CCH v=0 Can filter using the tools at left Offline 0 Historia defined spws CH3CCH v=0 Offline Offline 0 Historia defined spws Issteps Issteps Offline 0 Filtering unobservable lines UNIDENTIFIED 85.468300 GH2 85.466279 Issteps Offline 0 V=85486.6 UNIDENTIFIED 85.468300 GH2 85.466279 0.22 Offline 0 V=85486.6 UNIDENTIFIED 85.46800 GH2 85.486515 GH2 85.487593 2424.382 K 0.675 D ² Offline CH3CW 8= J = 65-65, K = 2-0 Methyl Cyanide 85.492600 GH2 85.490578 0.18 Offline CH3CW 8= J = 65-65, K = 2-0 Methyl diacetylene 85.497333 GH2 85.490578 0.18 Offline UNS492.6 UNIDENTIFIED 85.497333 GH2 85.490578 0.18 Offline CH3CW 8= J = 39-39, K = 3-1 Methyl diacetylene 85.497333 GH2 85.4991311 55.32 K 0.15 86.698 D ² Offline CH3CW 8= U
CH3 CCH V=0 Can filter using the tools at left Offline Optimized spws Offline Offline Filtering unobservable lines UNIDENTIFIED 85.468300 GHz 85.466279 1.84 Offline U=55486.6 UNIDENTIFIED 85.468300 GHz 85.466279 0.22 Offline U=85468.3 UNIDENTIFIED 85.468300 GHz 85.4845783 0.22 Offline U=85486.6 UNIDENTIFIED 85.492600 GHz 85.4930578 0.18 Offline CH3CCH 21()-20(1) Methyl diacetylene 85.492600 GHz 85.490578 0.18 Offline CH3CH 21()-20(0) Methyl diacetylene 85.49303 GHz 85.495311 55.32 K 58.628 D² Offline CH3CH 21()-20(0) Methyl diacetylene 85.499303 GHz 85.4995135 -0.1 Offline CH3CH 21()-20(0) Methyl diacetylene 85.499300 GHz 85.499314 47.402 K 0.15 86.699 D² Offline CH3CH 21()-20(0) Methyl diacetylene 85.500670 GHz 85.499348 1.239.893 K 0.15 D² Offline CH3CH V = 1 22(8,14)-22(6,16) INIDE
All lines Potentially selectable lines CH3CCH v=0 Offline Offline Detentially selectable lines UNIDENTIFIED 85.468300 GHz 85.466279 1.84 Offline Discont defined spws Filtering unobservable lines UNIDENTIFIED 85.48600 GHz 85.484578 0.22 Offline U-85486.6 UNIDENTIFIED 85.48600 GHz 85.485793 2424.382 K 0.675 D ² Offline U-85492.60 UNIDENTIFIED 85.492600 GHz 85.490578 0.18 Offline U-85492.61 UNIDENTIFIED 85.492600 GHz 85.495311 55.32 K 58.628 D ² Offline U-85492.61 UNIDENTIFIED 85.492600 GHz 85.495144 47.402 K 0.15 8.699 D ² Offline U-85492.61 UNIDENTIFIED 85.49316 GHz 85.495311 55.32 K 58.628 D ² Offline U-85492.61 UNIDENTIFIED 85.49316 GHz 85.495311 55.32 K 0.1 58.628 D ² Offline U-85492.61 UNIDENTIFIED 85.49316 GHz 85.495315 1239.893 K 0.15 D ² Offline U-85499.3
Potentially selectable lines CH3CCH v=0 Offline U=85468.3 UNIDENTIFIED 85.468300 GHz 85.466279 1.84 Offline U=85468.6 UNIDENTIFIED 85.486600 GHz 85.484578 0.22 Offline U=85486.6 UNIDENTIFIED 85.48600 GHz 85.485793 2424.382 K 0.675 D ² Offline U=85492.6 UNIDENTIFIED 85.49060 GHz 85.490578 0.18 Offline U=85492.6 UNIDENTIFIED 85.49060 GHz 85.490578 0.18 Offline U=85492.6 UNIDENTIFIED 85.49060 GHz 85.490578 0.18 Offline U=85492.6 UNIDENTIFIED 85.4917333 GHz 85.495311 55.32 K 58.628 D ² Offline U=85492.6 UNIDENTIFIED 85.493000 GHz 85.497333 GHz 85.495311 55.32 K 58.628 D ² Offline U=85492.3 UNIDENTIFIED 85.493000 GHz 85.497333 GHz 85.497333 GHz 85.497333 -0.1 Offline U=85499.3 UNIDENTIFIED 85.493000 GHz 85.4986144 1239.893 K 0.15 D ² Offline
United spws United spws 1.64 Offline Filtering unobservable lines U-85486.6 UNIDENTIFIED 85.486600 GHz 85.484578 0.22 Offline U-85492.6 UNIDENTIFIED 85.486600 GHz 85.487593 2424.382 K 0.675 D² Offline U-85492.6 UNIDENTIFIED 85.492600 GHz 85.490578 0.18 Offline U-85492.6 UNIDENTIFIED 85.492600 GHz 85.495311 55.32 K 58.628 D² Offline U-85492.6 UNIDENTIFIED 85.498166 GHz 85.498144 47.402 K 0.1 58.699 D² Offline U-85492.6 UNIDENTIFIED 85.499300 GHz 85.499144 47.402 K 0.1 58.628 D² Offline U-85499.3 UNIDENTIFIED 85.499166 GHz 85.499144 47.402 K 0.1 58.699 D² Offline U-85499.3 UNIDENTIFIED 85.499300 GHz 85.499135 1180.751 K 0.15 D² Offline CH3CH v11 22(8,14)-22(6,16) Methanol 85 501157 GHz 85.499135 1180.751 K 0.1 Offline UAdd to spectral window list
Filtering unobservable lines CH3CN v8= J = 65 - 65, K = 2-0 Methyl Cyanide 85.489615 GHz 85.487593 2424.382 K 0.675 D ² Offline Unite factors UNIDENTIFIED 85.492600 GHz 85.490578 0.18 Offline CH3CH 21(0)-20(1) Methyl diacetylene 85.497333 GHz 85.495311 55.32 K 58.628 D ² Offline CH3CH 21(0)-20(0) Methyl diacetylene 85.499300 GHz 85.496144 47.402 K 0.1 58.699 D ² Offline UNIDENTIFIED 85.499300 GHz 85.497278 -0.1 Offline CH3CN v8=1 = 39-39, K = 3-1 Methyl Cyanide 85.500670 GHz 85.498648 1239.893 K 0.15 D ² Offline CH3CN v8=1 = 39-39, K = 3-1 Methyl Cyanide 85.500670 GHz 85.499135 1180.751 K 0.043 D ² Offline CH3OH v t=1 22(8,14)-22(6,16) Methanol 85.506000 CH2 85.506000 CH2 85.506000 CH2 85.506000 CH2 85.506000 CH2 85.506000 CH2 0.1 Offline UNIDENTIFIED VAdd to spectral window list Add to spectral window list 0.1 Offline
U=85492.6 UNIDENTIFIED 85.492600 GHz 85.490578 0.18 Offline U=85492.6 UNIDENTIFIED 85.492600 GHz 85.495311 55.32 K 58.628 D² Offline Min 0 - Max 0 - 0.18 Offline U=85492.6 UNIDENTIFIED 85.492600 GHz 85.495311 55.32 K 58.628 D² Offline CH3CH121()-20(0) Methyl diacetylene 85.498166 GHz 85.496144 47.402 K 0.1 58.699 D² Offline U=85499.3 UNIDENTIFIED 85.499300 GHz 85.497278 -0.1 Offline CH3CN v8=1 =39-39, K = 3-1 Methyl Cyanide 85.500670 GHz 85.498648 1239.893 K 0.15 D² Offline CH3OH v t=1 22(8,14)-22(6,16) Methanol 85.501157 GHz 85.499135 1180.751 K 0.043 D² Offline U=85506 UNIDENTIFIED 85.506000 GHz 85.501157 GHz 85.50126 0.1 Offline Max 0.1 0.043 D² Offline 0.1 Offline 0.1 Max
Upper state Energy (V) UNIDENTIFIED 85.492600 GHz 85.490578 0.18 Offline Upper state Energy (V) Methyl diacetylene 85.492600 GHz 85.495311 55.32 K 58.628 D² Offline Min 0 Max 0 UNIDENTIFIED 85.49300 GHz 85.496144 47.402 K 0.1 58.699 D² Offline UNIDENTIFIED UNIDENTIFIED 85.49300 GHz 85.497278 -0.1 Offline CH3CH 21(1)-20(0) UNIDENTIFIED 85.49300 GHz 85.498648 1239.893 K 0.15 D² Offline CH3CN v8=1 =39-39, K = 3-1 Methyl Cyanide 85.500670 GHz 85.499135 1180.751 K 0.043 D² Offline CH3OH vt=1 22(8,14)-22(6,16) Methanol 85.501157 GHz 85.50128 0.1 Offline UNIDENTIFIED UNIDENTIFIED R5.506000 CH2 85.501157 GHz 85.50128 0.1 Offline CH3OH vt=1 22(8,14)-22(6,16) Methanol 85.501157 GHz 85.50128 0.1 Offline UNIDENTIFIED VAdd to spectral window list Add to spectral window list 0.1
Min 0 ^ (-) Max 0 ^ (-) 0.1 58.699 D ² Offline Min 0 ^ (-) Max 0 ^ (-) UNIDENTIFIED 85.498166 GHz 85.496144 47.402 K 0.1 58.699 D ² Offline Objecule Filter / Environment 0 ^ (-) UNIDENTIFIED 85.500670 GHz 85.498648 1239.893 K 0.15 D ² Offline Min 0 ^ (-) CH3CH 21(0)-20(0) Methyl diacetylene 85.500670 GHz 85.498648 1239.893 K 0.15 D ² Offline CH3CH V8=1 1=39-39, K = 3-1 Methyl Cyanide 85.500157 GHz 85.4998648 1239.893 K 0.15 D ² Offline CH3OH V t=1 22(8,14)-22(6,16) Methanol 85.501157 GHz 85.499135 1180.751 K 0.043 D ² Offline UNIDENTIFIED RS 5.06000 CH2 RS 5.06000 CH2 RS 5.00000
Min 0 Max 0 U-85499.3 UNIDENTIFIED 85.499300 GHz 85.497278 -0.1 Offline classes CH3CN v8=1 [=39-39, K =3-1 Methyl Cyanide 85.500670 GHz 85.498648 1239.893 K 0.15 D² Offline classes CH3CN v8=1 [=39-39, K =3-1 Methyl Cyanide 85.500670 GHz 85.498648 1239.893 K 0.15 D² Offline classes CH3CN v1=1 22(8,14)-22(6,16) Methanol 85.501157 GHz 85.499135 1180.751 K 0.043 D² Offline united atoms and molecules Add to spectral window list Add to spectral window list 0.1 Offline
Olecule Filter / Environment CH3CN v8=1 [=39-39, K =3-1 Methyl Cyanide 85.500670 GHz 85.498648 1239.893 K 0.15 D ² Offline CH3CN v8=1 [=39-39, K =3-1 Methyl Cyanide 85.50157 GHz 85.498648 1239.893 K 0.15 D ² Offline CH3CN v8=1 [=20,814)-22(6,16) Methanol 85.501157 GHz 85.499135 1180.751 K 0.043 D ² Offline UNIDENTIFIED R5.506000 CH2 R5.506000 CH2 R5.506000 CH2 R5.506000 CH2 0.1 Offline Add to spectral window list Add to spectral window list Add to spectral window list 0.1 Offline
ow all atoms and molecules Add to spectral window list
ow all atoms and molecules Add to spectral window list
all atoms and molecules
Spectral windows in this baseband (maximum of four)
in't find the transition you're looking for in
e offline pool? Find more in the online Transition A Description Rest Frequency Sky Frequency Sky Frequency
latalogue. U-85468.3 UNIDENTIFIED 85.468300 GHz 85.466279 GHz
Search Online
Reset Filters
Remove spectral window(s)

Use the spectral-line picker to find your lines

			Overlay lines			Illered I areal			
Transition Filter	Transitions matching you	r filter settings:							
CO*		double-click column header for primary sort, single-click subsequent columns for secondary sorting. Single clicks will reverse sort order of already selected columns.)							
e.g. CO*2-1* or *oxide*	(double-click column heade	i foi primary sort, single-cit	k subsequent columns for sec	undary sorting. Single cite	ks will reverse sort order of all	eauy selected columns	.,		
	Transition 🗠	Description	Rest Frequency 🛆	Sky Frequency	Upper-state Energy	Lovas Intensity	Sij µ²	Catalog	
Include description	CO v=2 1-0	Carbon Monoxide	113.172380 GHz	110.282966 GHz	6134.675 K		0.012 D ²	Offline	-
	CO v=1 1-0	Carbon Monoxide	114.221757 GHz	111.305552 GHz	3089.154 K		0.012 D ²	Offline	
Frequency Filters	CO v=0 1-0	Carbon Monoxide	115.271202 GHz	112.328203 GHz	5.532 K	60	0.012 D ²	Offline	
ALMA Band	CO v=2 2-1	Carbon Monoxide	226.340357 GHz	220.561642 GHz	6145.538 K		0.024 D ²	Offline	_
00	CO v=1 2-1	Carbon Monoxide	228.439110 GHz	222.606812 GHz	3100.118 K		0.024 D ²	Offline	_
	CO v=0 2-1	Carbon Monoxide	230.538000 GHz	224.652115 GHz	16.596 K		0.024 D ²	Offline	_
1 2 3 4 5 6 7 8 9 10	CO+ J=2-1, F=3/ -1/2	Carbon Monoxide Ion	235.789605 GHz	229.769640 GHz			0.668 D ²	Offline	
Sky Frequency (GHz)	CO+ J=2-1, F=5/ -3/2	Carbon Monoxide Ion	236.062574 GHz	230.035640 GHz		0.1	1.2 D ²	Offline	_
	CO v=2 3-2	Carbon Monoxide	339.499527 GHz	330.831736 GHz	6161.831 K		0.036 D ²	Offline	_
$\mathbb{Q}_{1}, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}$	CO v=1 3-2	Carbon Monoxide	342.647656 GHz	333.899489 GHz	3116.561 K		0.036 D ²	Offline	
	CO v=0 3-2	Carbon Monoxide	345.795990 GHz	336.967443 GHz	33.192 K		0.036 D ²	Offline	
Min 31.3 Max 950	CO+ J=3-2, F=5/ -3/2	Carbon Monoxide Ion	353.741285 GHz	344.709886 GHz			1.2 D ²	Offline	_
Dessiver (Desk Ford Configuration	CO+ J=3-2, F=7/ -5/2	Carbon Monoxide Ion	354.014254 GHz	344.975886 GHz		0.18	1.713 D ²	Offline	_
Receiver/Back End Configuration	CO v=2 4-3	Carbon Monoxide	452.645486 GHz	441.088955 GHz	6183.555 K		0.048 D ²	Offline	_
Hide unobservable lines	CO v=1 4-3	Carbon Monoxide	456.842991 GHz	445.179294 GHz	3138.486 K		0.048 D ²	Offline	_
Filtering unobservable lines	CO v=0 4-3	Carbon Monoxide	461 040769 611-	1440 360003 CU-	LEE 319 V	60	0.048 D ² 0.061 D ²	Offline	_
	CO v=2 5-4	Carbon Monoxide	🚽 🕹 🕹 🚽 🚽	Use "Add to Selected				Offline	_
Maximum Upper-state Energy (K)	CO v=1 5-4	Carbon Monoxide	Use Auu	to selected			0.061 D ²	Offline	_
maximum opper state Energy (it)	CO v=0 5-4	Carbon Monoxide	Transitions		0.061 D ²	Offline			
	CO v=2 6-5	Carbon Monoxide			0.073 D ²	Offline	_		
O 20 40 60 80 100∞	CO v=1 6-5	Carbon Monoxide	6		0.073 D ²	Offline	_		
0 20 10 00 00 100 00	CO v=0 6-5	Carbon Monoxide	6			100	0.073 D ²	Offline	_
Molecule Filter / Environment	CO v = 2 7 - 6	Carbon Monoxide	791	778 808558 СШ-	121 V		0.085 D ²	Offline	
Molecule Filter / Environment		Carbon Monovido				1	11 11 25 11-	1 Ittlino	
Show all atoms and molecules 🛛 💌	A.T.			Add to Selected Transitio	ons				
	Selected Transitions					*****			
Can't find the transition you're looking	Selected Transferrers								
for in the offline pool? Find more in the	ansitior	1 🛆	Description		Rest Frequency 🛆		Sky Freque	ency	
online Splatalogue.	CO v=0 1-0	Carbor	n Monoxide	115.271202 G	iHz	112.328203	GHz		
Search Online									
Reset Filters									
Reset filters									
						And v	ou're d	one!	
			Re	move from selected trans	itions				
	ι								
								Cancel	Ok

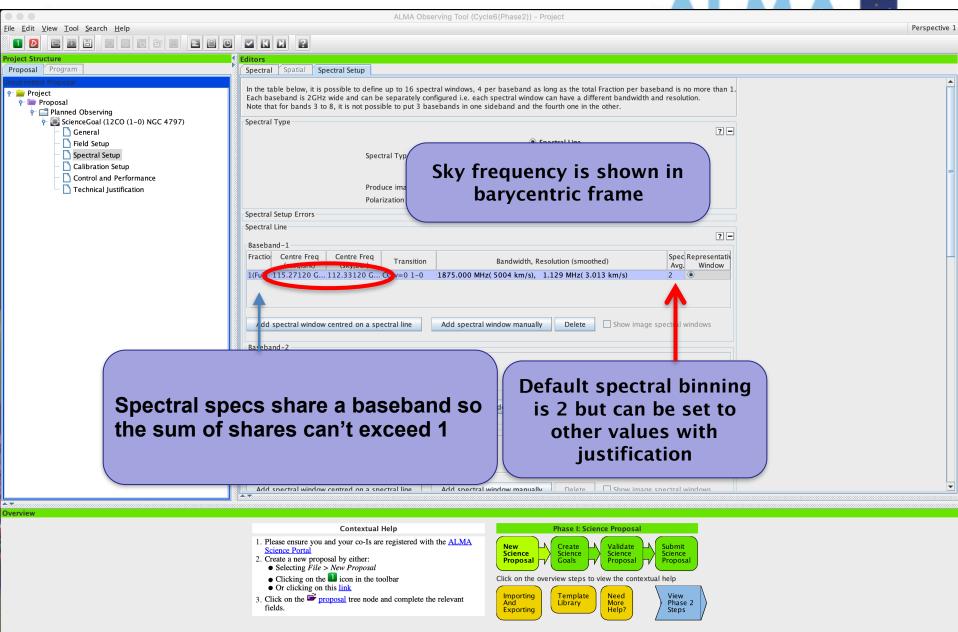
.

ALMA Observing Tool (Cycle6(Phase2)) - Project

<u>File Edit View Tool Search Help</u>

Perspective 1

	Editors Spectral Spatial Spectral Setup
	Spectral spatial spectral setup
mitted Proposal Project Proposal Propos	In the table below, it is possible to define up to 16 spectral windows, 4 per baseband as long as the total Fraction per baseband is no more than 1. Each baseband is 2GHz wide and can be separately configured i.e. each spectral window can have a different bandwidth and resolution. Note that for bands 3 to 8, it is not possible to put 3 basebands in one sideband and the fourth one in the other.
Planed Ubserving ScienceGoal (12CO (1-0) NGC 4797) General Field Setup Calibration Setup Control and Performance Technical Justification	Spectral Type
	Hattio Centre Heq Transition Bandwidth, Resolution (smoothed) Spect Representation 1(Full) 115.27120 G 112.33120 G CO v=0 1-0 1875.800 MHz(5004 km/s), 35.278 kHz(0.094 km/s) V Image: Spect Representation 1(Full) 115.27120 G 112.33120 G CO v=0 1-0 1875.800 MHz(5004 km/s), 35.278 kHz(0.094 km/s) Image: Spect Representation 24.375 MHz(1256 km/s), 35.278 kHz(0.093 km/s) 24.375 MHz(626 km/s), 141.113 kHz(0.377 km/s) Image: Spect Representation Image: Spect Representation Add spectral window centred on a spectral line 1875.000 MHz(1251 km/s), 282.227 kHz(0.753 km/s) Image: Spect Representation Image: Spect Representation Baseband-2 1875.000 MHz(5004 km/s), 1.129 MHz(3.013 km/s) Image: Spect Representation Image: Spect Representation Image: Spect Representation
	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows Baseband-3
	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows
	Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows


Contextual Help

- 1. Please ensure you and your co-Is are registered with the ALMA
- 2. Create a new proposal by either:
 Selecting *File* > <u>New Proposal</u>

 - Clicking on the link
 Or clicking on this link
- 3. Click on the proposal tree node and complete the relevant fields.

[NRAO]

	ALMA Observing Tool (Cycle6(Phase2)) - Project	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp		ective 3
Project Structure Proposal Project * Project * Proposal * Proposal * Planned Observing * ScienceGoal (12CO (1-0) NGC 4797) • General	Editors Spectral Spatial Spectral Spectral Setup Visualisation In the table below, it is possible to define up to 16 spectral windows, 4 per baseband as long as the total Fraction per baseband is no more than 1. Each baseband is 2GHz wide and can be separately configured i.e. each spectral window can have a different bandwidth and resolution. Note that for bands 3 to 8, it is not possible to put 3 basebands in one sideband and the fourth one in the other.	?
General General Field Setup Spectral Setup Calibration Setup Control and Performance Control and Performance Technical Justification	Left/right click to zoom in/out, grab silding bar to pan Note: Moving LO1 here is for experimentation only - actual setup determined by the windows	
	Water Vapour Column Density: Automatic Choice Manual Choice S.186mm (7th Octile) Viewport: Pan to Spectral Window Zoom to Band Reset 	
	Spectral Type	
	Polarization products desired O XX ® DUAL O FULL Spectral Setup Errors Spectral Line	
▲ - Overview		

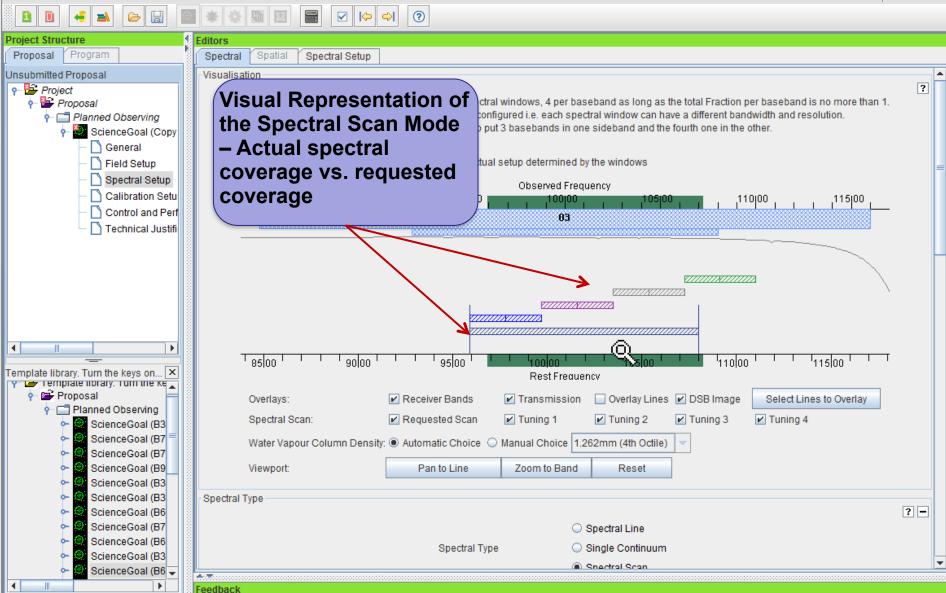
Contextual Help

- 1. Please ensure you and your co-Is are registered with the ALMA
- 2. Create a new proposal by either:
 Selecting *File > New Proposal*
- Clicking on the licon in the toolbar
 Or clicking on this link
- 3. Click on the *proposal* tree node and complete the relevant fields.
- Phase I: Science Proposal New Science Proposal Submit Science Proposal Create Science Goals Validate Science Proposal Click on the overview steps to view the contextual help Importing And Exporting Template Library Need More Help? View Phase 2 Steps

Automated spectral scan - I

Automate	d spec	tral scan	-	<u> </u>	MA	E.
AgT Project - Observing Tool for ALMA, vers	ion Cycle2Test2					
<u>File Edit View Tool Search H</u> elp						Perspective 1
🛯 🖪 🖌 🛋 🗁 🔛 🖉	**					
Project Structure	Editors					
Proposal Program	Spectral Spatial	Spectral Setup				
Unsubmitted Proposal					? -	
Project			Spectral	Line		
Proposal Proposal Planned Observing		Spectral Type	e 🔾 🔾 Single C	Continuum		
- ScienceGoal (Copy			Spectral	Scan		
- 🗋 General		Polarization r	oroducts desired 🔾 XX 🖲 🛙			
Field Setup	Spectral Setup Errors					
 Spectral Setup Calibration Setu 	Spectral Scan					
Cantrol and Perf	opeciral ocali				? -	
- D Technical Justifi						_
		Requested start frequency (sky)	95.0	GHZ Auto	mated Spectr	al 🗌
		Requested end frequency (sky)	107.0	GHZ - Scar	n mode and tu	inings
		Requested range (rest)	95.8896 GHz - 10	08.0020 GHz		
		Achieved scan range (sky)	95.0 GHz - 110.0	GHz		
		Bandwidth, Resolution (Hanning	smoothed) 1875.000 MHz, 9	76.563 kHz		
Template library. Turn the keys on 🗙		Spectral averaging	1	-		
Y 👉 remplate library. rum the Ke			400 50000		63	
Planned Observing		Representative frequency (sky)	102.50000	GHz 💌		
 ScienceGoal (B3 ScienceGoal (B7 	The representat	ive frequency defined in the observ	ed frame is used in conjunct	ion with the sensitivity entered	on	
 ► Ø ScienceGoal (B7 ► Ø ScienceGoal (B7 		Performance' page to estimate the				
► ScienceGoal (B)		al' editor. The representative freque et by the user to any frequency withi		mid-frequency of the achieved :	scan range but may be	
🗠 🧟 ScienceGoal (B3	Subsequently se	et by the user to any nequency with	n me achieveu scan range.	<u> </u>		
 ScienceGoal (B3 		Tuning (Max. 5)	SPW 1 (GHz)	SPW 2 (GHz)		
 ScienceGoal (B6 ScienceCoal (B7 		2	95.9375 GHz 99.6875 GHz	97.8125 GHz 101.5625 GHz		
∽ 🥙 ScienceGoal (B7 ∽ 🔐 ScienceGoal (B6		3	103.4375 GHz	105.3125 GHz		
ScienceGoal (B6		4	107.1875 GHz	109.0625 GHz		
 ScienceGoal (B5 ScienceGoal (B6 → 						
						

A . 3


Automated spectral scan - II

23 Search Help Perspective 1 0 ✓ $\langle \phi \rangle$ Editors Spatial Spectral Setup Spectral

An Project - Observing Tool for ALMA, version Cycle2Test2

Tool

File Edit View

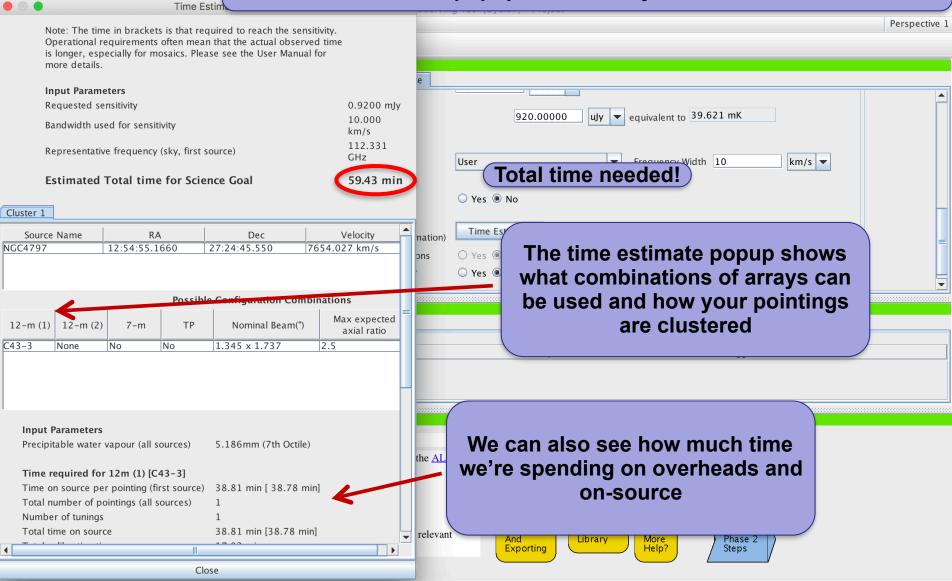
	ALMA Observing Tool (Cyc	le6(Phase2)) - Project		
File Edit View Tool Search Help				Perspective 1
	litors			
	pectral Spatial Calibration Setup			
	Select calibration strategy.			
P	Goal Calibrators			
Interfect Observing Image: Provide the serving Image: Pr	By default, calibrators will be selected automatically at runtime and a sin	ngle observation will be used to calibrate the b	? pandpass and flux scale.	
- Ceneral	System-defined calibration (recommended)			
- 🗋 Field Setup - 🗋 Spectral Setup				
		ing solar-system object)	The OT will take care	
Control and Performance	 User-defined calibration 			
- 🗋 Technical Justification			of calibration for you!	
A.T. Overview				
Weiview	Contenteral Units	Diagonal Colours D		
	Contextual Help 1. Please ensure you and your co-Is are registered with the ALMA	Phase I: Science Proposal		
	Science Portal	New Science	Submit Science	
	 2. Create a new proposal by either: Selecting <i>File > New Proposal</i> 	Proposal Goals Proposal	Proposal	
	 Clicking on the 1 icon in the toolbar 	Click on the overview steps to view the conte	textual help	
	 Or clicking on this <u>link</u> 			
	 Click on the proposal tree node and complete the relevant fields. 	Importing And Exporting Template Library Help?	View Phase 2 Steps	

[NRAO]

	ALI	MA Observing Tool (FEB20)17) - Project			
<u>File E</u> dit <u>V</u> iew <u>T</u> ool <u>S</u> earch <u>H</u> elp						
			Control and	d Performance	defines the	
Project Structure	Editors		required or	aular recolutio	n consitivity	
Proposal Program	Spectral Sparal Control and	Performance		ngular resolutio		
Unsubmitted Proposal ९- 🚞 Project	These parameters are used to co	ntrol various aspects of the	largest ang	ular scale, etc.		
👇 🖮 Proposal	Control and Performance					
Planned Observing Seisnes Cool (Conv. of Champele only on the Champele only of Champele only on the Champele only of Champele only on the Champele on the Champele only on the Champele on the Champe					?	
	- Configuration Information					
- Field Setup	Antenna Bearssize (1.13 * λ / D)) 12m 38.309 arcsec	7m 65.672 arcs	ec		
- 🗋 Spectral Setup	Number of Antennas	12m 43	7m 10	TP 3		
Calibration Setup		ACA 7m configuration	Most compact 12m co	nfiguration Most extended 12m co	nfiguration	
Technical justification	Longest baseline	0.049 km	0.161 km	16.197 km		
	Synthesized beamsize	10.103 arcsec	2.906 arcsec	0.033 arcsec		
	Shortest haseline	0.009 km	0.015 km	0.256 km		
	Maximum recoverable scale	47.725 arcsec	24.192 arcsec	0.409 arcsec		
	Desired Performance					
	Desired Angular Resolu	Array prop	erties summ	arizod		
				alizeu		
	Largest Angular Structu	ire in source	.00000 arcsec 🔻			
	Desired sensitivity per	pointing	0.00350 Jy 🔻			
	Pandwidth used for Sa		agragate Rand Width			
	Bandwidth used for Ser	nsitivity	AggregateBandWidth 🔻 Freq	uency Width 7.500000 GHz		
	Science goal integration	n time estimate	ime estimate Time Estimate			
	Override OT's sensitivit time estimate (must be		Yes 🖲 No			
	Are the observations ti	me-constrained?) Yes 🖲 No			

field for the provide section by the sectin by the section by the section by the section by the section by	•••	ALMA Observing Tool (FEB2017) - Project	
Project Sectral ************************************			Perspective 1
Forest Sector Control and Performance • Predet • Sector Control and Performance • Predet • Sector Control and Performance • Predet • Sector Control and Performance • Predet • Sector Control and Performance • Predet Stapp • Sector Control and Performance • Control and Performance • Control and Performance • Control and Performance • Control			
Proposit			
	 Project Proposal ScienceGoal (Copy of Chameleon's da General Spectral Setup Calibration Setup Control and Performance Tecmical justification 	These parameters are used to control various aspects of the observations, including the required antenna configurations and integration times. Control and Performance ? Configuration Information Antenna Beamsize (1.13 * \/ D) 12m 38.309 arcsec 7m 65.672 arcsec Number of Antennas 12m 43 7m 10 TP 3 Largest angular structure and desired angular resolution used to find which arrays are used! 0.033 arcsec 0.033 arcsec Maximum recoverable scale 47.715 arcsec 24.192 arcsec 0.409 arcsec Desired Angular Resolution (Synthesized Beam) egle Range Any @ Standalone ACA Largest Angular Structure in source 30 arcsec I.8146 mK Bandwidth used for Sensitivity AggregateBandWidth Time Estimate Frequency Width 7.500000 GHz Override OT's sensitivity-based time estimate Time Estimate Override OT's sensitivity-based time estimate	

			huin Connaithiutha Tant		
<u>File Edit View Tool Search Help</u>	ALIMA Observing	g Tool (FEB2017) - Cycle 5 Ke	win Sensitivity Test		Perspective 1
		2			
Project Structure 🔮 Editors					
Proposal Program Spectra	al Spatial Control and Pe	erformance			
Unsubmitted Proposal	parameters are used to cont	rol various aspects of the obser	vations including the require	d antenna configurations and integra	ation times
	and Performance		rations, metading the require	a antenna comgarations and megro	
- Control	and Performance				?
	juration Information				
- C General Antenn	na Beamsize (1.13 * λ / D)	12m 65.288 arcsec	7m 111.922 arcsec		
	er of Antennas	12m 43	7m 10	TP 3	
Control and Performance		ACA 7m configuration	Most compact 12m configu	uration Most extended 12m configu	Iration
	st baseline	0.049 km	0.161 km	16.197 km	
	sized beamsize	14.158 arcsec	3.882 arcsec	0.048 arcsec	
- C General - Field Setup	st baseline	0.009 km	0.015 km	0.256 km	
Seastral Satur	um recoverable scale	75.610 arcsec	33.005 arcsec	0.568 arcsec	
Calibration Setup		/ Storo aresee	55.005 aresee	0.500 arcsec	
	d Performance				
☐ Technical Justification ☐ ScienceGoal (Single at 2" las=29")	esired Angular Resolution (Sy	nthesized Beam) 🔾 Single 🖲 I	Range 🔾 Any 🔾 Standalone	ACA	
General		1.05000	arcsec 👻 to 3.00000	arcsec 👻	
- 🗋 Field Setup					
– 🗋 Spectral Setup	argest Angular Structure in so	urce 29.00000	arcsec 🔻		
- Calibration Setup	esired sensitivity per pointing	0.10000	K 🔻 equivalent to	721.13 ulv @ 1.05 "	
Control and Performance	esired sensitivity per pointing		equivalent to	721.15 Uy	
- D Technical Justification			will provide	12.316 mK @ 3.00 "	
General					
– 🗋 Field Setup	andwidth used for Sensitivity	Representativ	eWindowResolution 🝷 Fre	equency Width 0.141113 MHz	
- 🗋 Spectral Setup					
Calibration Setup	ecify the des	sired rms Jy/			
Control and Performance	am noise lev				
General Da	ndwidth ove	r which that			
- 🗋 Field Setup	ould be mea	sured			
Spectral Setup					
Calibration Setup					


File Edit View Tool Search Help		ALMA Observ	ving Tool (Cycle6(Phase2)) - P	Project		Perspective 1
Project Structure Proposal Program Project Proposal Proposal Panned Observing SeienceCoal (12CO (1-0) NGC 4797) General Spectral Setup Calibration Setup Calibration Setup Calibration Setup Control and Performance Technical Justification Let's enter in the properties we had from our science goals	These parameters are used to Control and Performance Configuration Information Antenna Beamsize (1.13 * λ / Number of Antennas Longest baseline Synthesized beamsize ortest baseline ximum recoverable scale estred Performance	D) 12m 51.839 arcsec 12m 43 ACA 7m configuration 0.049 km 13.401 arcsec 0.009 km 62.992 arcsec n (Synthesized Beam) (a) Si 1.50 in source nting ivity user the estimate the optimized of the second the second of the second of t	7m 88.866 arc 7m 10 Most compact 12m c 0.161 km 3.664 arcsec 0.015 km 30.981 arcsec 000 arcsec 920.00000 uly 920.00000 uly	TP 3 configuration Most extended 12m 16.197 km 0.047 arcsec 0.256 km 0.531 arcsec dalone ACA Check ye ruivalent to 39.623 mK Frequency Width 10.00000	our units here!	
Overview	Co	ntextual Help	ne ALMA	Phase I: Science Proposal		

- Prease ensure you and your co-is an <u>Science Portal</u>
 Create a new proposal by either:
 Selecting *File > New Proposal*
- Clicking on the licon in the toolbar
 Or clicking on this link
- Click on the proposal tree node and complete the relevant fields.

NRAO

Use the time estimate popup to see how your sources will be observed

	ALMA Observing	Tool (FEB2017) - Cycle 5 K	alvin Sensitivity Test		
<u>File Edit View Tool Search Help</u>	ALMA Observing		Sivili Ochsitivity Tost		Perspective 1
		?			
Project Structure 🔮 Edit	ors				
Proposal Program Sp	ectral Spatial Control and Pe	rformance			
Unsubmitted Proposal	and managementary are used to conti	al uprious perpects of the obse	nations, including the require	d antanna configurations and int	e seration times
	ese parameters are used to contr	or various aspects of the obse	rvations, including the require	a antenna configurations and inte	2gration times.
Proposal	ntrol and Performance				
	onfiguration Information				?
- Ceneral	itenna Beamsize (1.13 * λ / D)	12m 65 288 arcsec	7m 111.922 arcsec		
- 🗋 Field Setup	Renna Beamsize (1.15 × 7 D)	12111 03.200 ditset	7111 111.922 ditset		
– 🗋 Spectral Setup 🛛 👘 🕺	umber of Antennas	12m 43	7m 10	TP 3	
– 🗋 Calibration Setup		ACA 7m configuration	Most compact 12m configu	uration Most extended 12m cor	figuration
- 🗋 Control and Performance					ingulation
	ngest baseline	0.049 km	0.161 km	16.197 km	
	nthesized beamsize	14.158 arcsec	3.882 arcsec	0.048 arcsec	
- 🗋 Field Setup Sh	ortest baseline	0.009 km	0.015 km	0.256 km	
— 🗋 Spectral Setup 🛛 👘 🕅	aximum recoverable scale	75.610 arcsec	33.005 arcsec	0.568 arcsec	
Calibration Setup					
	esired Performance				
Technical Justification	Desired Angular Resolution (Syn	ithesized Beam) 🔘 Single 🖲	Range 🔾 Any 🔾 Standalone	ACA	
← ScienceGoal (Single at 2" las=29")		1.05000	arcsec 🗸 to 3.00000	arcsec 👻	
- Field Setup		1.05000			
- Spectral Setup	Largest Angular Structure in sou	rce 29.00000	arcsec 🔻		
- Calibration Setup		1			
Control and Performance	Desired sensitivity per pointing	0.10000	K 💌 equivalent to	721.13 uJy @ 1.05 "	
Technical Justification					
- ScienceGoal (Single at 3" las=29")			will provide	12.316 mK @ 3.00 "	
- 🗋 General					
– 🗋 Field Setup	Bandwidth used for Sensitivity	Representati	veWindowResolution - Fro	equency Width 0.141113 MHz	
– 🗋 Spectral Setup	Science goal integration time es	timate Time Estin			
- 🗋 Calibration Setup	Science goar integration time es	Time Estin	it you r	nave time con	straints
Control and Performance	Override OT's sensitivity-based		or wan	t to override t	he OT's
Technical Justification	time estimate (must be justified	0			
← ScienceGoal (Range 1.05" 2.63" → Ceneral	Are the observations time-cons	trained? 🔷 🔾 🔍 Ves 🖲 N	🛛 📕 time es	stimate, you ca	an do so
- Field Setup			here:		
- Spectral Setup			Tiere.		
- Calibration Setup					

Tech Justification

File Edit View Tool Search Help

NRA(

ALMA Observing Tool (Cycle6(Phase2)) - Project

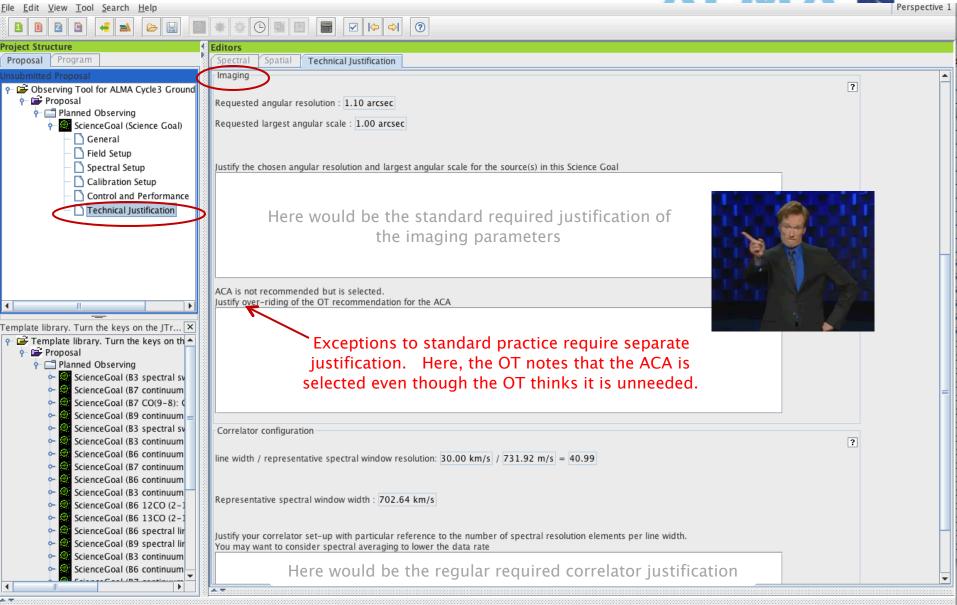
Perspective 2

KI Proposal Program Spectral Spatial Technical Justification Enter a Technical Justification for this Science Goal, paying special attention to the parameters reproduced below. 📍 🚞 Project 🛉 📄 Proposal Sensitivity - Fanned Observing ? ScienceGoal (12CO (1-0) NGC 4797) For a peak flux density of 4.60 mJy (the S/N is 5.0 Requested RMS over 10.000 km/s is 920.00 uJy 🗋 General 🗋 Field Setup Achieved RMS over the total 1.875 GHz bandwidth is 41.04 uJy For a continuum flux density of 0.00 Jy, the anieved S/N is 0.0 Spectral Setup Calibration Setup For a peak line flux of 4.60 mJy, the achieved S/N over 1/3 of the source line width (450.00 km/s / 3 = 150 00 km/s) is 19.4 Control and Perform Line width / bandwidth used for sensitivity (450.00 km/s / 10.00 km/s) = 45.00 **Technical Justification** Justify your requested RMS and resulting S/N for the spectral line and/or continuum observations. For line observations also justify the bandwidth used for the sensitivity calculation Justify your sensitivity parameters here Imaging ? Requested angular resolution 1.50 arcsec Requested Largest Angular Scale 2.00 arcsec Justify the chosen angular resolution and largest angular scale for the source(s) in this Science Goal Each technical justification requires its own 50+ word blurb. The OT kindly reminds you of your input parameters in each section, so read the prompts! Verviev **Contextual Help Phase I: Science Proposa** 1. Please ensure you and your co-Is are registered with the ALMA New Validate Submit Create Science Portal Science Science Science Science 2. Create a new proposal by either: Proposal Goals Proposa Proposa • Selecting *File* > New Proposal Clicking on the local icon in the toolbar Click on the overview steps to view the contextual help • Or clicking on this link Importing Template Need View

And

Exporting

Library

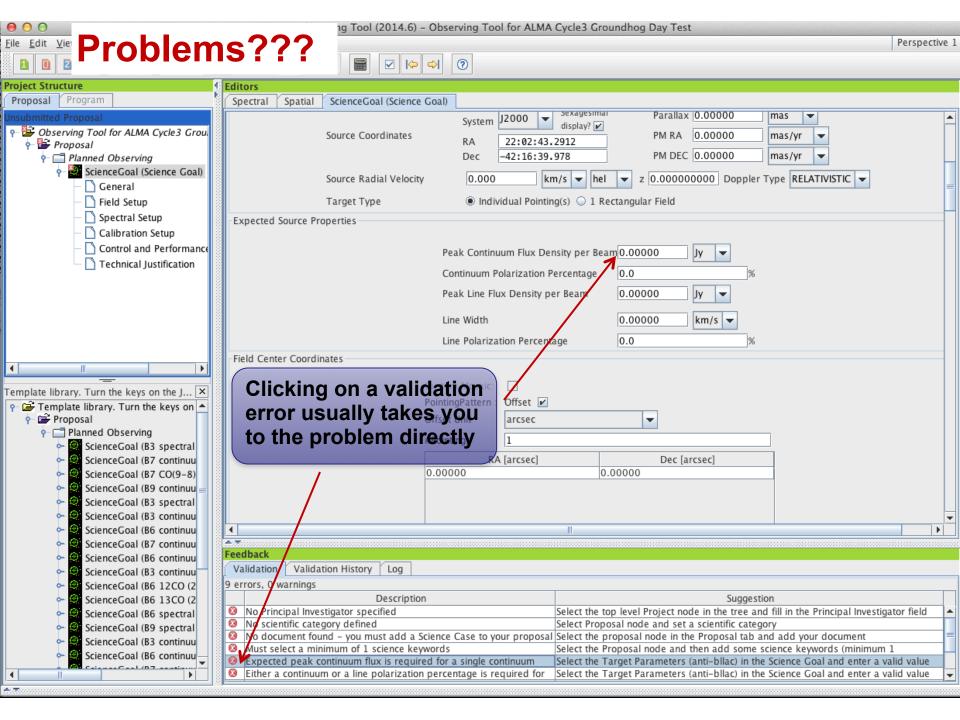

More

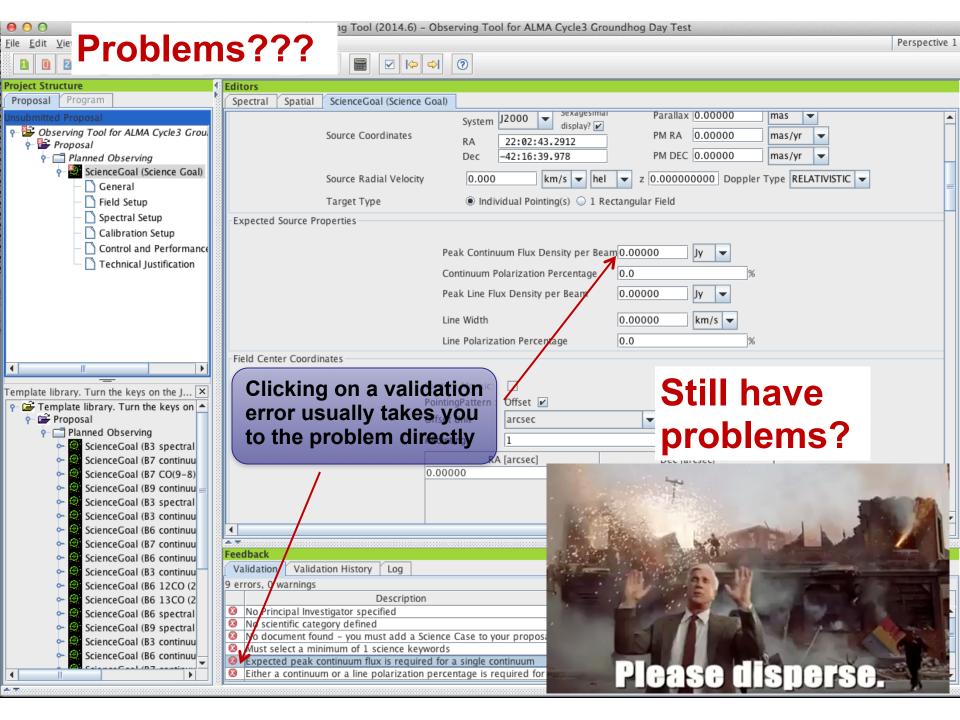
Phase 2

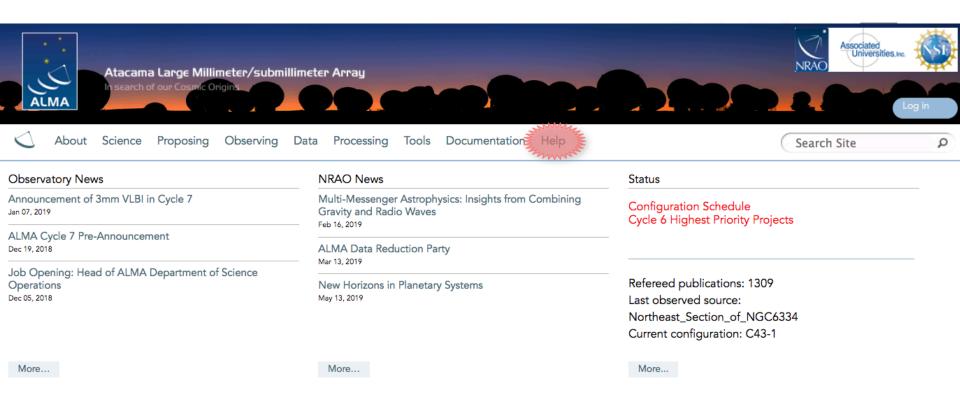
Steps

 Click on the proposal tree node and complete the relevant fields.

Tech Justification

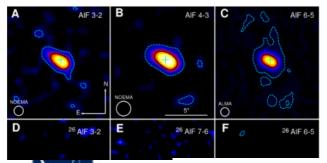

NRÃO


When the time is ripe ... validate & submit


	-					_ 0 <u>_</u> X
AgT Project - Observing Tool						
New Proposal	≋-N	2				Perspective 1
New DDT Proposa	ul ೫−D		⇔ ⇔ ⑦			
Open Project		•	Editors			
Open Project as N			Spectral Spatial	Proiect		
📇 Save	೫−S	Click I	here to make	sure that your		
Save As		projec	t can be valic	lated by the OT.	?	
Show ALMA Temp	late Library	If it do	esn't validate	the archive wil	Select Pl	
Use Project as Ter	mplate	reject	it.			
🔽 Validate 🖌	ℋ–L				?	
Submit Project			Project			
Preferences			Assigne Project	ed Priority Code None Assigned		
Save Preferences			Fiojeci	Code None Assigned		
Quit						
Quit			★ Teedback			
			Validation Validation	n History Log		
				Description	Suggestion	
•		- 12				ا -
Overview						
		Contextual Help		Phase I	I: Science Proposal	
		and your co-Is are register	red with the <u>ALMA</u>	New L Create		
	Science Portal 2. Create a new propo	ocal by either:		Science Science Proposal C Goals	e Science Science Proposal Proposal	
	 Selecting File > 					
		1 icon in the toolbar		Click on the overview steps	to view the contextual help	
	 Or clicking on t 			Importing Templa		
		oposal tree node and comp	plete the relevant	And Library Exporting	More Phase 2 Help? Steps	1
	fields.					

When the time is ripe ... validate & submit

							_ 🗆 🗙
MT Project - Observing Tool for ALMA, versi	の Cycle2Test2 第一N			-		-	
							Perspective 1
D New DDT Proposal	-D 型 団 量						
Open Project	•	Editors					
Open Project as New Proposa	ul ▶	Spectral Spatial	Project				
🛅 Save	ж-S	- Principal Investigator -				_	
Save As					?	•	
Show ALMA Template Library					Select Pl		
Use Project as Template	▶ ^L	Maia Davis et la face ati					
🔽 Validate	₩-L	-Main Project Informatio	on		?	•	
Submit Project		Projec	t ned Priority				
Preferences			t Code None As	ssigned			
Save Preferences							
Quit							
		nce your pro	oposal ca	n	}		
	Va	alidate, subn	nit it to th	е		Suggestion	
	a	rchive!					
				/			
▲. ▼							
Overview						~~~~~~	
	Contextual Help			Phase I: Scien	ce Proposal		
Science Po 2. Create a ne • Selectin	ure you and your co-Is are regised ortal ew proposal by either: ng <i>File > New Proposal</i> g on the 1 icon in the toolbar	stered with the <u>ALMA</u>	New Science Proposal Click on the ove	Create Science Goals	Science 👌 🗄	Submit Science Proposal	
Or click	king on this link the $\stackrel{\text{link}}{=}$ proposal tree node and co	mplete the relevant	Importing And Exporting	Template Library	Need More Help?	View Phase 2 Steps	



Science Highlights - An ALMA Detection of the Radioactive Molecule 26AIF in a Stellar Merger Remnant.

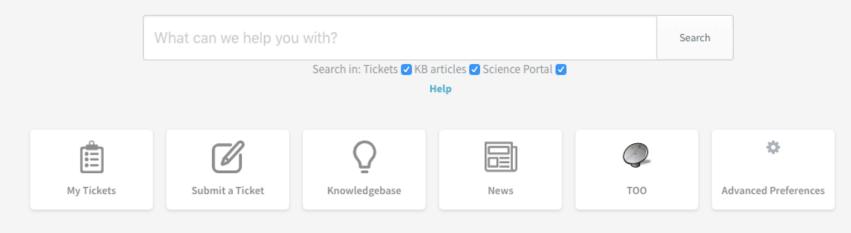
www.almascience.org

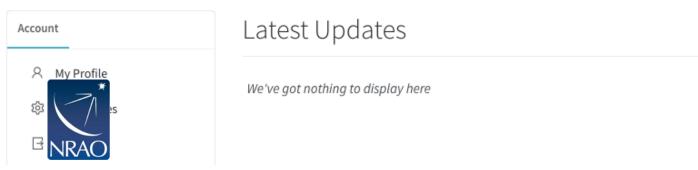
Although diffuse Galactic gamma-ray emission from the isotope of aluminum, ²⁶Al, was first detected in the 1980s, the identification of the source of emission has been hard to pinpoint due to the poor spatial resolution of gamma-ray observations. In a recent <u>Nature paper</u>, a team led by Dr. Kaminski has made use of sensitive, high-resolution observations with Band 6 and the newly commissioned Band 5 on ALMA, as well as observations with NOEMA, to detect millimeter-wave emission from an isotopologue of aluminum monofluoride (²⁶AIF) towards the stellar merger remnant CK Vul (aka *Nova* 1670; see Figure). These observations have provided information about the nature of one of the stars in the merger. I.e., in the case of CK Vul, the ²⁶Al is likely produced within a star with an initial stellar mass in the range of 0.8-2.5 M_{sun} that has already formed a condensed degenerate core. During the merger, the ²⁶Al from the outer layers of the helium core are ejected. The authors propose that unless there is significant amounts of ²⁶Al in atomic phase, in molecules other than ²⁶AlF, and in solids.

ALMA Science Portal @ NRAO

Have no fear, the ALMA Helpdesk is here ...

Home


My Tickets


Submit a Ticket Knowledgebase

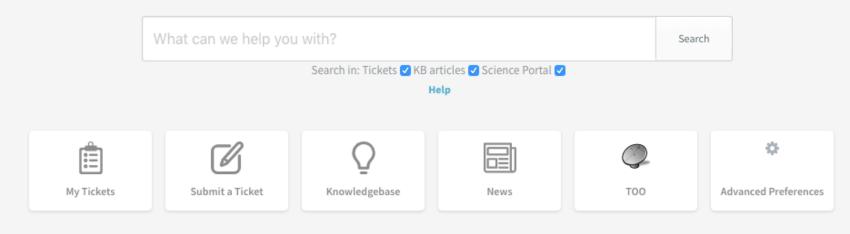
News TOO

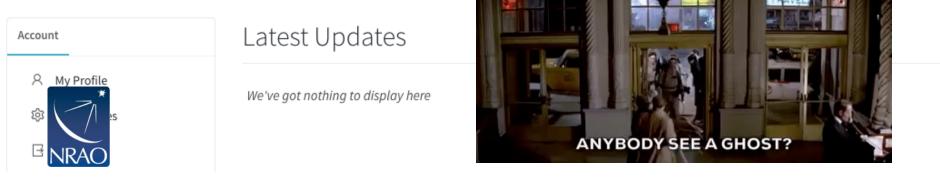
Advanced Preferences

What can we help you with?

Have no fear, the ALMA Helpdesk is here..

Home


My Tickets


Submit a Ticket Knowledgebase

base News TOO

Advanced Preferences

What can we help you with?

For more info:

https://almascience.nrao.edu/

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC), and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction and operation of ALMA.

