#### **National Radio Astronomy Observatory**









#### Jim Braatz and the NRAO staff



Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array













Robert C. Byrd Green Bank Telescope: world's largest fully steerable radio telescope, in West Virginia

NRAC





. . .

#### **Broad Science Topics with NRAO Telescopes**

- Sun coronal mass ejections, magnetic field activity
- Solar system, KBOs atmospheres, astrometry, composition
- Star-forming regions dust and gas environment, kinematics (infall, outflows, jets), proto-planetary disks, cores, chemistry, feedback, and natal cloud / star interactions
- Exoplanets direct imaging, gaps in disks, kinematics
- Pulsars neutron star physics, pulse morphology, gravity, ISM probe
- Galactic structure spiral arms, bars, global atomic and molecular gas properties
- Nearby galaxies molecular / atomic gas content and kinematics, dynamics of galaxies at high resolution, star formation, obscured SF, gas flow, astrochemistry
- Galaxy groups and clusters atomic and molecular gas across systems, star formation efficiency, kinematics, dynamical mass measurements
- Black holes mass measurements, kinematics
- High redshift galaxies extragalactic background light, source counts, star formation history and efficiency, evolution of gas content (atomic and molecular)
- Cosmology H<sub>0</sub> measurement, SZE



#### **ALMA Overview**

- A global partnership to deliver a revolutionary millimeter/submillimeter telescope array
  - North America (US, Canada, Taiwan)
  - Europe (ESO)
  - East Asia (Japan, Taiwan)
  - In collaboration with Chile
- 5000 m (16,500 ft) site in Chilean Atacama desert
- 66 telescopes in full operation
  - Main Array: 50 x 12m antennas
  - Total Power Array: 4 x 12m antennas
  - Atacama Compact Array (ACA): 12 x 7m antennas









#### ALMA in a Nutshell...

- Angular resolution down to 0.015" (at 300 GHz)
- Sensitive, precision imaging 84 to 950 GHz (3 mm to 315 μm)
- State-of-the-art low-noise, wide-band receivers (8 GHz bandwidth)
- Flexible correlator with high spectral resolution at wide bandwidth
- Full polarization capabilities
- Estimated I TB/day data rate
- All science data archived
- Pipeline processing





ALMA is a telescope for

all astronomers

#### ALMA in a Nutshell...

- Angular resolution down to 0.015" (at 300 GHz)
- Sensitive, precision imaging 84 to 950 GHz (3 mm to 315 μm)
- State-of-the-art low-noise, wide-band receivers (8 GHz bandwidth)
- Flexible correlator with high spectral resolution at wide bandwidth
- Full polarization capabilities
- Estimated I TB/day data rate
- All science data archived
- Pipeline processing

ALMA will be 10-100 times more sensitive and have 10-100 times better angular resolution than current mm interferometers





#### **ALMA**

An array of **66 antennas**, using <u>aperture</u> synthesis as a "zoom telescope" over the *entire accessible mm/submm* wavelength range up to 1 THz



## **ALMA Current Status**

- Construction Project ended in September 2014
- Routine science observing has been limited to 1.5 km baselines (C34-7), but observations out to 15 km have been proven successful (thanks to the Long Baseline Campaign, ended December 2, 2014)

#### • All 66 antennas accepted

- Currently 64 antennas are at the high site (AOS), of which ~47 on average (up to max ~54) are being used for Cycle 2 observations
- Some construction and verification items remain to be finished (e.g., Bands 4, 8, 10; various observing modes)
- The ACA (Atacama Compact Array) or Morita-san Array up to 12x7m antennas and 4x12m antennas for TP observations – has been accepted and is being used for Cycle 2 observations



### **ALMA Receivers: Current Status**

- Receiver bands currently installed on all antennas
  - Band 3, 3mm (84-116 GHz)
  - Band 6, Imm (211-275 GHz)
  - Band 7, 850  $\mu m$  (275-370 GHz)
  - Band 9, 450 μm (602-720 GHz)
- Receiver bands partially installed and currently undergoing verification
  - Band 4, 2mm (125-163 GHz)
  - Band 8, 650 μm (385-500 GHz)
  - Band 10, 350 μm (787-950 GHz)

- 56/66 antennas
- 53/66 antennas
- 43/66 antennas



# -ALMA

## Formation of Planetary Systems

- Remarkably thin, sharp-edged
  Fomalhaut debris disk: 13-19 AU wide
- Two shepherding planets likely corral the disk on either side
- Each exoplanet < 3 Earth masses
- Data acquired with only 15 ALMA antennas



Boley et al. 2012



#### **ALMA Measures Stellar Feedback**



ALMA's high sensitivity high resolution CO image measures the mass (0.003 M<sub>sun</sub> and timescale (200 years) of feedback to the interstellar medium from the AGB star R Sculptoris and reveals the star to be a binary





#### **Resolving High-z Submm Galaxies**



Hodge et al. 2013

- 126 submm sources observed with ALMA at 870  $\,\mu$  m
- 2x deeper, 10x higher angular resolution than previous surveys
- 99 sources detected in 88 fields, integration time ~120 sec
- Significant multiplicity (35-50%) found at 0.2" resolution



# -ALMA

#### **ALMA Images Nearby Galaxies**

Science verification imaging of M100







# ALMA Long Baseline Campaign





#### The Green Bank Telescope in 2015



#### Next GBT, VLA, VLBA/HSA/VLBI proposal deadline is August 03, 2015 at 5pm EST which is for semester "16A" (Feb 2016 – Aug 2016 observations)



#### GBT Studies of faint HI -- unequalled sensitivity

GBT offers ability to detect HI to  $N_{HI}\,{\sim}10^{17}\,cm^{-2}$ 

- Interactions
- Outflows from winds and fountains
- Cool gas accretion









# The GBT remains the world's premier pulsar observatory

(Quiet Zone, collecting area, receivers, detectors, sky coverage)

#### The Pulsar Renaissance:

- Fastest Pulsar
- Most Massive Pulsar
- Pulsars in Globular Clusters
- Tests of General Relativity
- Relativistic Spin Precession
- Pulsar in a three-body system
- Coolest white dwarf star (a diamond as big as the Ritz)





#### GBT Bi-static radar studies with Arecibo

#### Campbell, B.A. et al. 2014 JGR-P



#### Optical

NRAC

#### 70cm radar

"The 70 cm backscatter differences provide a view of mare flow-unit boundaries, channels, and lobes unseen by other remote sensing methods."

-- Campbell, B.A. et al. JGR-P 2014





#### News for Semester 15B

#### The Proposer's Guide for the Green Bank Telescope

GBT Support Staff

December 19, 2013

- VEGAS has replaced the GBT spectrometer and spectral processor
- C-band upgrade to cover 3.95-8 GHz frequency range (shared-risk)
- Mustang-1.5, a 90 GHz bolometer array (shared-risk)
- ARGUS 16 element array 75-115.5 GHz (shared-risk)



This guide provides essential information for the preparation of observing proposals on the Green Bank Telescope (GBT). The information covers the facilities that will be offered in **Semester 14B**.



#### 9″ MUSTANG-1.5 Bolometer Array (UPenn) Dicker et al. (2014)



## **ARGUS -- 8**<sup>"</sup> **GBT** spectroscopy at



<sup>29</sup> 

#### GBT HI mapping of the Smith Cloud, a "failed" galaxy?

Nichols et al. (2014)



NRAO



#### FLAG

19-element phased-array feed [PAF] (7beams) at 21cm (NSF grant to BYU/WVU) Planned future 20 beam PAF

30

## The GBT in 2015

- The GBT is a powerful instrument singledish flexibility, filled-aperture sensitivity, wide-frequency coverage, accessible for a vast range of science
- NSF-supported development ongoing to enhance the capabilities of the GBT well into the future (higher frequency coverage, multipixel receivers, ... )
- VEGAS new versatile spectrometer
- New receivers coming for 3mm: MUSTANG-1.5, ARGUS, W-PAF



# The GBT is just beginning to realize its scientific potential at high frequencies

## The Karl G. Jansky Very Large Array





Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array



## The (Jansky) VLA

- 27x25m antennas (antennas in the shape of a Y) reconfigurable on baselines 35m to 36km
- located in New Mexico at 2100m altitude



#### **Angular Resolution**

- With reconfiguration of the antennas, the array can vary its spatial resolution by a factor of ~40.
- Configuration sequence: D ( $B_{max} \sim I \ km$ )  $\rightarrow C \rightarrow B \rightarrow A (B_{max} \sim 36 \ km)$ .
- Reconfiguration every ~4 months.
- Hybrid configurations (DnC, CnB, BnA) extend for about 2 weeks in between regular configurations.
- The August 2015 deadline is for the C, CnB, and B configurations.

| Configuration                       | Α                                                     | В    | С                  | D     |
|-------------------------------------|-------------------------------------------------------|------|--------------------|-------|
| B <sub>max</sub> (km <sup>1</sup> ) | 36.4                                                  | 11.1 | 3.4                | 1.03  |
| B <sub>min</sub> (km <sup>1</sup> ) | 0.68                                                  | 0.21 | 0.035 <sup>5</sup> | 0.035 |
|                                     | Synthesized Beamwidth $\theta_{HPBW}(arcsec)^{1,2,3}$ |      |                    |       |
| 74 MHz (4 band)                     | 24                                                    | 80   | 260                | 850   |
| 1.5 GHz (L)                         | 1.3                                                   | 4.3  | 14                 | 46    |
| 3.0 GHz (S) <sup>6</sup>            | 0.65                                                  | 2.1  | 7.0                | 23    |
| 6.0 GHz (C)                         | 0.33                                                  | 1.0  | 3.5                | 12    |
| 8.5 GHz (X) <sup>7</sup>            | 0.23                                                  | 0.73 | 2.5                | 8.1   |
| 15 GHz (Ku) <sup>6</sup>            | 0.13                                                  | 0.42 | 1.4                | 4.6   |
| 22 GHz (K)                          | 0.089                                                 | 0.28 | 0.95               | 3.1   |
| 33 GHz (Ka)                         | 0.059                                                 | 0.19 | 0.63               | 2.1   |
| 45 GHz (Q)                          | 0.043                                                 | 0.14 | 0.47               | 1.5   |



## The VLA

- Nine Frequency Bands ۲
  - Eight cryogenic bands, covering I = 50 GHz. Utilizes cassegrain subreflector.
  - One uncooled, prime-focus band, covering 50 450 MHz.
- Up to 8 GHz instantaneous bandwidth •
  - Provided by two independent dual-polarization frequency pairs, each of up to 4 GHz bandwidth per polarization.
  - All digital design to maximize instrumental stability and repeatability.
- Full polarization correlator with 8 GHz instantaneous BW ullet
  - Provides 64 independent 'sub-correlators', and 16384 spectral channels.
  - Many specialized operations modes (burst, pulsar binning, phased arrays ...)



#### Full Frequency Coverage with Outstanding Performance

There are eight cassegrain focus systems, and one prime focus system.

| Band<br>(GHz) |    | SEFD (Jy)<br>(27<br>antennas) |
|---------------|----|-------------------------------|
| .0545         | Р  | ~60                           |
| 1-2           | L  | 13                            |
| 2-4           | S  | 9.5                           |
| 4-8           | С  | 8.5                           |
| 8-12          | X  | 8.1                           |
| 12-18         | Ku | 8.1                           |
| 18-26.5       | К  | 13                            |
| 26.5-40       | Ka | 22                            |
| 40-50         | Q  | 45                            |

Eight feeds around the cassegrain secondary focus ring.





#### The 'WIDAR' Correlator

The VLA's correlator was built to NRAO's requirements by the DRAO correlator group, located at the NRC-Herzberg facility near Penticton, BC.

This 'WIDAR=Wideband Interferometric Digital ARchitecture' correlator was paid for by the Canadian government, as part of an agreement between NRC and NSF.







## **Basic Features of the 'WIDAR' Correlator**

The correlator's basic features (not all implemented yet):

- 64 independent full-polarization subbands
  - Each can be tuned to its own frequency, with its own bandwidth (128 MHz to 31.25 kHz) and spectral resolution (from 2 MHz to .12 Hz)
- 100 msec dump times with 16384 channels and full polarization
  - Faster if spectral resolution, BW, or number of antennas is decreased.
- **Up to 8 sub-arrays**. Maximum to date is three.
- **Phased array capability** with full bandwidth for pulsar and VLBI applications. Two different subarrays can be simultaneously phased.
- Special pulsar modes: 2 banks of 1000 time bins, and 200 μsec time resolution (all spectral channels), or 15 μsec (64 channels/sp.window). Undergoing testing; See RSRO.



## **Two Telescopes in One**

#### VLITE (VLA Ionospheric and Transient Experiment)



Credit: Radio (blue) from VLITE on the NRAO VLA. Optical (red and green) from the Sloan Digital Sky Survey. U.S. Naval Research Laboratory/Dr. Tracy Clarke



1314

## **Time-Domain Astronomy**

A multiwavelength study of the Orion nebula searches for young stellar variability



Credit: Red: VLA 6 cm continuum, J. Forbrich et al. Green: Optical data, Hubble Space Telescope, Robberto et al. 2013 Blue: X-rays, Chandra, Getman et al. 2005



## A Sensitive view of the Invisible Universe

Ionized and molecular gas around the supermassive black hole in the center of our Galaxy



Red: 7mm radio VLA observations Green: 3.8 um adaptive optics image from the VLT (Yusef-Zadeh et al. 2014)





#### Capabilities of Interest (for 2015B) General Observing (GO)

- Full 8 GHz bandwidth with 16384 spectral channels 2 MHz spectral resolution (full pol), 1 MHz resolution (Stokes I)
- All 64 subband pairs can be separately tuned, and set to any of 128, 64, 32, 16, ..., 0.03125 MHz widths.
- Up to 16384 spectral channels (no recirculation), or up to 65536 (with recirculation)
- Three simultaneous, fully independent subarrays.
- Mix 3-bit and 8-bit modes.
- Phased Array (for VLBI).



## Capabilities of Interest (for 2015B) <u>Resident Shared Risk Observing (RSRO)</u>

- Access to extended capabilities that require more testing
  - In exchange for a period of residence
- Correlator dump times < 50 msec
  - Including as short as 5 msec for transient detection
- Pulsar observations
- Data rates above 60 MB/s
- Recirculation beyond a factor of 64
- P-band (230-470 MHz) polarimetry and spectroscopy
- 4-band (58-84 MHz) commissioning and testing
- More than 3 subarrays with the 8-bit samplers
- Subarrays with the 3-bit samplers
- Complex VLBI observing modes with the phased array



#### **Next Generation Very Large Array**

**Killer Gap**: Thermal imaging on milliarcsecond scales at  $\lambda \sim 0.3$  cm to 3 cm

Notional Specifications

- Collecting area: spec =  $5 \times VLA$ ; goal =  $10 \times VLA$
- Frequency range: I 50 GHz + 70–115 GHz
- Configuration: 50% to 3km; 40% to 200km; 10%? to 3000km



# Killer Gap: Opening parameter space

Order of magnitude improvements

- Resolution ~ I5mas @ Icm (I80km)
- Sensitivity ~ 0.2uJy (1cm, 10hr, 8GHz)
- T<sub>B</sub> ~ IK @ I5mas, Icm

NRAC



#### **The Very Long Baseline Array**





Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array



## The VLBA

- A dedicated VLBI array
- 10 identical 25-m antennas.
- Spanning Mauna Kea to St. Croix
- Baselines 200 to 8600 km
- Frequencies 310 MHz to 90 GHz
- Sensitive to compact structures with  $T_b > 10^5 \text{ K}$
- Software correlator, DiFX

NRAC



47

## **Resolution!**

- > 25 milli arcsecond at 330 MHz.
- > 80 micro arcsec at 90 GHz.
  - 1 mas is
    - 0.1 AU at 100 pc (Galactic)
    - 10 AU at 10 kpc
    - 1000 AU at 1 Mpc (Extragal)
    - 5 pc at 1 Gpc



## The Megamaser Cosmology Project (Braatz et al.)

Mapping  $\rm H_2O$  maser disks in AGNs to measure  $\rm H_0$  and determine SMBH masses



## The H<sub>2</sub>O Megamaser in UGC 3789



49

## Fast Response & Monitoring

- Dedicated array
- Targets of Opportunity
- Monitoring



AGN 1222+216

Example: The MOJAVE project (Lister et al.)

Examining the evolution of AGN jets and their magnetic fields, and the medium into which the jets are expanding



#### Astrometry

- Astrometry: parallax and proper motions.
  - Instrumental stability with long baselines
  - < 0.1 mas positions are routine
  - 0.01 mas demonstrated in some cases
  - Allows 1% distance measurements at 1 kpc

Example: Distance to Pleiades (Melis et al. 2014)

 $d = 136.2 \pm 1.2 \text{ pc} (1\%)$ 





#### Astrometry

- Astrometry: parallax and proper motions.
  - Instrumental stability with long baselines
  - < 0.1 mas positions are routine
  - 0.01 mas demonstrated in some cases
  - Allows 1% distance measurements at 1 kpc

Example: BeSSeL (Reid et al. 2014)

Mapping Galactic structure and measuring fundamental parameters by measuring parallaxes and proper motions of SF regions

 $R_0 = 8.4 \pm 0.6 \text{ kpc}$  $\Theta_0 = 254 \pm 16 \text{ km/s}$ 





## **VLBA Frequency bands and Sensitivity**

| λ(cm)          | v(GHz)        | σ(μJy/beam) in 8<br>hrs at 2Gbps |
|----------------|---------------|----------------------------------|
| 90 cm          | 0.312 - 0.342 | 266*                             |
| 50 cm          | 0.596 - 0.626 | 681*                             |
| 21 cm          | 1.35 - 1.75   | 10-12                            |
| I3 cm          | 2.15 - 2.35   | 12                               |
| 6 cm (upgrade) | 3.9 - 7.9     | 6-9                              |
| 4 cm           | 8.0 - 8.8     | 11-15                            |
| 2 cm           | 12.0 - 15.4   | 18                               |
| l cm           | 21.7 - 24.1   | 18-22                            |
| 7 mm           | 41.0 - 45.0   | 40                               |
| 3 mm           | 80.0 - 90.0   | <b>I 80</b> †                    |

- 2 Gbps recording delivers a bandwidth of 256 MHz with two polarizations.
- 90 cm band assumes 32 MHz of bandwidth.
- 50 cm band assumes 4 MHz of bandwidth.

\* Narrower bandwidths† 8 stations



#### The High Sensitivity Array (HSA): To boost the sensitivity of the VLBA by an order of magnitude





NRAO

#### The High Sensitivity Array at 3mm <u>VLBA+LMT</u>+GBT offered under the VLBA RSRO program





NRAO



## **Important Links**

#### NRAO Help Desk

https://help.nrao.edu

#### VLA Observational Status Summary

https://science.nrao.edu/facilities/vla/docs/manuals/oss

#### VLA Exposure Calculator

https://obs.vla.nrao.edu/ect/

#### **Proposal Submission Tool**

<u>my.nrao.edu</u>

CASA- data reduction software

http://casa.nrao.edu/

#### VLA Calibration Pipeline



https://science.nrao.edu/facilities/vla/data-processing/pipeline

SS433 at 26 GHz (0.095"; 520 AU resolution) Credit: Miodusweski & Miller-Jones, EVLA demo science





#### **ALMA Cycle 3 Preparations**



## **Timeline for Cycle 3**

- Call for proposals: March 24, 2015
- Deadline for submission: April 23, 2015
- Proposal Review meetings: June 22-26, 2015
- Communication of Outcome of Review Process: August 2015
- Start of Cycle 3: October 1, 2015 12 months



# **Capabilities for Cycle 3**

- At least 36x12m antennas in the main array, and 10x7m antennas (for ۲ short baselines) and 2x12m antennas (for making single-dish maps) in the Morita-san Array (ACA)
- Receiver bands 3, 4, 6, 7, 8, 9, & 10 ۲
- Baselines up to 10 km for Bands 3, 4 and 6 •
- Baselines up to 5 km for Band 7 ٠
- Baselines up to 2 km for Bands 8, 9, and 10 ٠
- Both single-field interferometry and mosaics ٠
- Spectral-line observations with all Arrays and continuum observations with the I2m Array and the 7m Array (except in Bands 9 and 10)
- Polarization at PI-specified frequencies (on-axis, continuum in Bands 3, 6 ۲ and 7 - no ACA, no mosaics, no spectral line, no circular polarization)
- Mixed correlator modes (both high and low frequency resolution in the ۲ same observation)



## In Cycle 3 we expect:

- 75% of the time awarded will go to "standard modes": projects using mature capabilities with an established reduction path using the pipeline
- 25% of the time awarded will go to "non-standard modes": newly offered capabilities or modes not yet incorporated in the pipeline
  - Projects that require manual data processing by ALMA staff at this time
  - All observations in Bands 8, 9 & 10 and narrow (< 100 MHz) spectral window observations in Band 7
  - Long baselines (> 2km)
  - Polarization
  - Spectral Scans
  - External ephemeris observations
  - Non-standard calibrations





www.nrao.edu science.nrao.edu

. .

۰.

