Introduction to Radio Interferometry

Nathan Brunetti

Authors: Alison Peck, Jim Braatz, Toby Brown, Ashley Bemis, Sabrina Stierwalt

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Very Long Baseline Array

Protoplanetary discs like this one around HL Tauri!

A Protoplanetary Zoo!

Credit: ALMA (NRAO/ESO/NAOJ)

A Star, Sprinkled with Salt

Credit: NRAO/AUI/NSF; S. Dagnello

What can you observe? Star-forming clouds in NGC 628

Credit: NRAO/AUI/NSF; B. Saxton

We can observe a broad range of molecular lines

What can we observe?

Gravitational lensing of high-z galaxies

7 Credit: ALMA (NRAO/ESO/NAOJ); B. Saxton NRAO/AUI/NSF; NASA/ESA Hubble, T. Hunter (NRAO).

Resolution of Observations

Angular resolution for most telescopes is ~ λ/D

D is the diameter of the telescope and λ is the wavelength of observation

For the Hubble Space Telescope:

 $\lambda \sim 1 \text{ um} / \text{D} \text{ of } 2.4 \text{m} = \text{resolution} \sim 0.13$ "

To reach that resolution at $\lambda \sim Imm$, we would need a 2 km-diameter dish!

Instead, we use arrays of smaller dishes to achieve the same high angular resolution at radio frequencies

This is interferometry!

What is an interferometer?

An interferometer measures the interference pattern produced by multiple apertures, much like a 2-slit experiment

*However, the interference patterns measured by radio telescopes are produced by **multiplying** - not adding - the wave signals measured at the different telescopes (i.e. apertures)

How Do We Use Interferometry?

Signal arrives at each antenna at a different time (due to different travel lengths) depending on the location of the antenna in the array

> Signals are then combined in a correlator, where the time delay is measured and compensated for

An Interferometer In Action

Introducing the Fourier Transform

Fourier theory states that any well behaved signal (including images) can be expressed as the sum of sinusoids

The Fourier transform is the mathematical tool that decomposes a signal into its sinusoidal components

The Fourier transform contains *all* of the information of the original signal

Visibility and Sky Brightness

The van Cittert-Zernike theorem

Visibility as a function of baseline coordinates (u,v) is the Fourier transform of the sky brightness distribution as a function of the sky coordinates (x,y)

$$V(u,v) \xrightarrow{FT} T(x,y)$$

V(u,v) = the complex visibility function = $\iint T(x, y)e^{2\pi i(ux+vy)}dxdy$

T(x,y) = the sky brightness distribution = $\iint V(u, v)e^{-2\pi i(ux+vy)}dudv$

What Are Visibilities?

Each V(u,v) contains information on T(x,y) everywhere Each V(u,v) is a complex quantity Expressed as (real, imaginary) or (amplitude, phase)

Examples of 2D Fourier Transforms

Rules of the Fourier Transform: Narrow features transform to wide features (and vice versa)

Basics of Aperture Synthesis

Idea: Sample V(u,v) at an enough (u,v) points using distributed small aperture antennas to synthesize a large aperture antenna of size (u_{max}, v_{max})

One pair of antennas = one baseline For **N antennas**, we get **N(N-I) samples** at a time

How do we fill in the rest of the (u,v) plane?

I. Earth's rotation

2. Reconfigure physical layout of N antennas

One baseline = 2(u,v) points

Implications of (u,v) Coverage

What does it mean if our (u,v) coverage is not complete?

V(u,v) amplitude

V(u,v) phase

T(x,y)

Missing High Spatial Frequencies

Characteristic Angular Scales

Angular resolution of telescope array: $\sim \lambda/B_{max}$ (B_{max} = longest baseline)

Maximum angular scale:

 $\sim \lambda/B_{min}$ (B_{min} = shortest distance between antennas)

Field of view (FOV):
~ λ/D (D = antenna diameter)
*Sources more extended than the FOV can be observed using multiple pointing centers in a mosaic

An interferometer is sensitive to a range of angular sizes: $\lambda/B_{max} < \theta < \lambda/B_{min}$

Characteristic Angular Scales: MI00

ALMA 12m shows smaller spatial scales (denser, clumpier emission) ACA 7m data shows larger spatial scales (diffuse, extended emission)

To get both — you need a combined image!

Interferometry: Spatial Scales

- The **sensitivity** is given by the number of antennas times their area
- The **field of view** is given by the beam of a single antenna (corresponding to the resolution for a single dish telescope or the primary beam)
- The **resolution** is given by the largest distance between antennas (called the synthesized beam)
- The **largest angular scale** that can be imaged is given by the shortest distance between antennas

Angular Scales — A Proposal Tip!

Interferometers act as spatial filters - shorter baselines are sensitive to larger targets, so remember ...

Spatial scales larger than the smallest baseline cannot be imaged

Spatial scales smaller than the largest baseline cannot be resolved

Config	Lmax		Band 3	Band 4	Band 5	Band 6	Band 7	Band 8	Band 9	Band 10
	Lmin		100 GHz	150 GHz	183 GHz	230 GHz	345 GHz	460 GHz	650 GHz	870 GHz
7-m	45 m	AR	12.5"	8.4"	6.8"	5.4"	3.6"	2.7"	1.9"	1.4"
Array	9 m	MRS	66.7"	44.5"	36.1"	29.0"	19.3"	14.5"	10.3"	7.7"
C43-1	161 m	AR	3.4"	2.3"	1.8"	1.5"	1.0"	0.74"	0.52"	0.39"
	15 m	MRS	28.5"	19.0"	15.4"	12.4"	8.3"	6.2"	4.4"	3.3"
C43-2	314 m	AR	2.3"	1.5"	1.2"	1.0"	0.67"	0.50"	0.35"	0.26"
	15 m	MRS	22.6"	15.0"	12.2"	9.8"	6.5"	4.9"	3.5"	2.6"
C43-3	500 m	AR	1.4"	0.94"	0.77"	0.62"	0.41"	0.31"	0.22"	0.16"
	15 m	MRS	16.2"	10.8"	8.7"	7.0"	4.7"	3.5"	2.5"	1.9"
C43-4	784 m	AR	0.92"	0.61"	0.50"	0.40"	0.27"	0.20"	0.14"	0.11"
	15 m	MRS	11.2"	7.5"	6.1"	4.9"	3.3"	2.4"	1.7"	1.3"
C43-5	1.4 km	AR	0.54"	0.36"	0.30"	0.24"	0.16"	0.12"	0.084"	0.063"
	15 m	MRS	6.7"	4.5"	3.6"	2.9"	1.9"	1.5"	1.0"	0.77"
C43-6	2.5 km	AR	0.31"	0.20"	0.16"	0.13"	0.089"	0.067"	0.047"	0.035"
	15 m	MRS	4.1"	2.7"	2.2"	1.8"	1.2"	0.89"	0.63"	0.47"
C43-7	3.6 km	AR	0.21"	0.14"	0.11"	0.092"	0.061"	0.046"	0.033"	0.024"
	64 m	MRS	2.6"	1.7"	1.4"	1.1"	0.75"	0.56"	0.40"	0.30"
C43-8	8.5 km	AR	0.096"	0.064"	0.052"	0.042"	0.028"	N/A	N/A	N/A
	110 m	MRS	1.4"	0.95"	0.77"	0.62"	0.41"			
C43-9	13.9 km	AR	0.057"	0.038"	0.031"	0.025"	N/A	N/A	N/A	N/A
	368 m	MRS	0.81"	0.54"	0.44"	0.35"				
C43-10	16.2 km	AR	0.042"	0.028"	0.023"	0.018"	N/A	N/A	N/A	N/A
	244 m	MRS	0.50"	0.33"	0.27"	0.22"				

From the ALMA Cycle 6 Proposal Guide

Not only 2D In imaging, but 3D

Image slice at a single wavelength Output of interferometric observation is in the form of a "cube" of data – the third dimension is frequency.

> Spectral slice showing the spectra across the entire object

Object seen in . combined light

Calibration Process

Calibration is the effort to measure and remove the time-dependent and frequency-dependent atmospheric and instrumental variations.

Steps in calibrating interferometric data:

- I. Bandpass calibration (correct frequency-dependent telescope response)
- 2. Phase and amplitude gain calibration (remove effects of atmospheric water vapor and correct time-varying phases/amplitudes)
- 3. Set absolute flux scale

(Note: You don't have to worry about these in your observational set up!)

A Brief Word on Calibration

Calibration requirements (Handled by ALMA):

Phase calibrator

Bright quasar near science target Solves for atmospheric and instrumental variations with time

Bandpass calibrator

Bright quasar Fixes instrumental effects and variations vs frequency

Absolute flux calibrator

Solar system object or quasar Used to scale relative amplitudes to absolute value

Signed, Sealed, Delivered (Data by ALMA)

- Data delivered after passing Quality Assurance (QA)
- Download data from Archive Query and Request Handler tools on the ALMA Science Portal
- Delivered data include:
 - Fully calibrated data ("Measurement Set")
 - Calibration tables and diagnostics
 - Preliminary images (better products may be possible with more careful continuum identification & cleaning)

See Sections 11, 12, 14, and Appendix C of ALMA Technical Handbook for details

Good Future References

Thompson, A.R., Moran, J.M., Swensen, G.W. 2017 "Interferometry and Synthesis in Radio Astronomy", 3rd edition (Springer) <u>http://www.springer.com/us/book/9783319444291</u>

Perley, R.A., Schwab, F.R., Bridle, A.H. eds. 1989 ASP Conf. Series 6 "Synthesis Imaging in Radio Astronomy" (San Francisco: ASP) www.aoc.nrao.edu/events/synthesis

IRAM Interferometry School proceedings www.iram.fr/IRAMFR/IS/IS2008/archive.html

