The ALMA Proposal Preparation Process

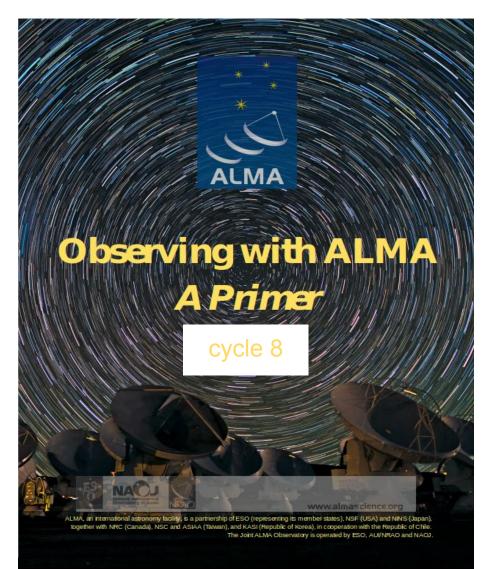
How to get started and what to expect

Danielle Lucero ALMA Ambassador Virginia Tech

This talk is for you if...

- You are new to ALMA and have not yet had experience with the relevant documentation...
- You have not downloaded the ALMA Observing Tool (OT) or even know where to get it.
- You have a fabulous science case that will be essential to follow-up with ALMA facilities.
- You are familiar with past Cycles and wonder what Cycle 8 capabilities are now available and what changes will be made before the Call for Proposals.

This talk will be available online for reference after this workshop.

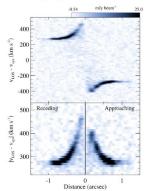

ALMA

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org).
- Download the Observing Tool (OT) & related guides.
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT.
- Make use of the Helpdesk & the Knowledgebase.

Cycle 8 Documentation & Timeline

- Call for Proposals
- Proposer's Guide
- ALMA Primer
- OT Guide
- ALMA Technical Handbook
- Timeline for Cycle 8
 - Mar. 17 Call for Proposals
 - May. 19 Proposal Deadline
 - End July Results to PIs
 - Sept. 9 Phase 2 submission
 - Oct. 2020 Start of Cycle 8
 - Sept. 2021 End of Cycle 8




- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides.
- Prepare the Science Case.
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT.
- Make use of the Helpdesk & the Knowledgebase.

www.almascience.org

Science Highlights - Measuring the Mass of the Supermassive Black Hole in NGC 3258 with ALMA

High-resolution ALMA observations hold the promise of measuring accurate dynamical masses for a wide variety of astronomical objects. In a 2019 paper, Dr. Boizelle and his collaborators make use of 0.1" resolution observations of CO(2-1) emission from the central 150 pc-radius molecular disk of NGC 3258 to estimate the galaxy's central supermassive black hole mass. The position-velocity diagram (see the Figure) of the CO(2-1) emission shows a quasi-Keplerian profile. The velocity rises from 280 km/s to > 400 km/s near the center of the disk - this rise is due to gas under the direct gravitational influence of the supermassive black hole. The velocity profile is well-fitted by a mildly warped disk, leading to a derived supermassive black hole mass of 2x10⁵ M_{sum} for this giant elliptical galaxy.

Past Science Highlights

ALMA Science Portal @ NRAO

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Check the ALMA Archive for existing data
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT
- Make use of the Helpdesk & the Knowledgebase

Downloading the ALMA OT

Observing Tool

The ALMA Observing Tool (OT) is a Java desktop application used for the preparation and submission of ALMA Phase 1 proposals and, for those which are accepted, Phase 2 materials (Scheduling Blocks). It is also used for preparing and submitting Director's Discretionary Time (DDT) proposals. The current *Cycle-8* release of the OT is configured for the present capabilities of ALMA as described in the Cycle 8 Call For Proposals. Note that in order to submit proposals you will have to register with the ALMA Science Portal beforehand.

Download & Installation

The OT should run on all common operating systems and depends on a version of Java being available. In previous releases of the OT it was the responsibility of the user to ensure that a suitable version of Java was installed, but the Cycle-8 version of the OT will come with its own version of Java 11 and thus the user need no longer worry about their local Java installation. Unfortunately, as Java 11 does not include Web Start, this version of the OT is no longer available. (Web Start remains available for the Cycle-7 OT currently used for the submission of DDT proposals.) The Cycle-8 OT can be installed in two different ways, either with a modern installer or manually with a tarball distribution.

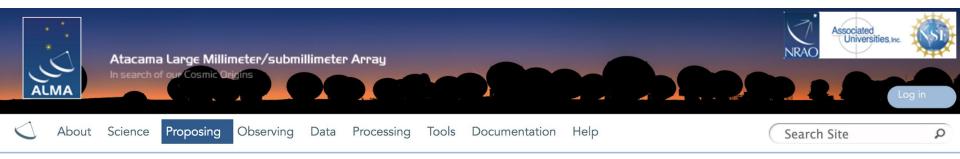
It is recommended that the OT be installed using the ALMA **OT Installer**. This uses a modern graphical interface to report the progress of the installation and allows the user to change various settings from their defaults, including the amount of memory the OT may use. The installation will produce an executable file that can be used to start the OT. With the loss of Web Start, automatic updates of the tool are no longer possible, but the OT will detect if an update is available at start-up and inform the user. If problems are encountered with the installer, then the tarball must be used. **Due to issues with recently tightened security settings, users of Mac OS 10.15 (Catalina) must use the tarball.**

The tarball version must be installed manually and the instructions for doing this have not changed.

Installer Tarball

Documentation

Extensive documentation is available to help you work with the OT and optimally prepare your proposal:


- If you are a novice OT user you should start with the OT Quickstart Guide, which takes you through the basic steps of ALMA proposal preparation.
- Audio-visual illustrations of different aspects of the OT can be found in the OT video tutorials. These are recommended for novices and advanced users alike.
- More in-depth information on the OT can be found in the User Manual, while concise explanations of all fields and menu items in the OT are given in the Reference Manual. These two documents are also available within the OT under the Help menu.

Troubleshooting

If you have problems with the installation and/or startup of the OT, please see the troubleshooting page. A list of currently known bugs, their status and possible workarounds can be found on the regularly updated known OT Issues page. A further source of information is the OT section of the ALMA Helpdesk Knowledgebase - this contains a number of articles that deal with frequently-asked questions. After exploring these resources, if confusion over some aspect of the OT remains, or if a previously unidentified bug has been uncovered, please file a Helpdesk ticket.

OT Video Tutorials

OT Video Tutorials

The OT video tutorials provide an audio-visual demonstration of different aspects of proposal preparation in the OT. Novice users should start with the first video and work their way down, while more experienced users may want to jump straight to one of the specialised videos.

OT Video Tutorial 1: Useful to Know

This video will help you get started with the OT and introduce you to some handy tips and tricks. Topics covered include navigating the OT, using the help function, the template library, time estimation, validation, opening & submitting projects including re-submissions, and the concept of non-standard modes. **Note**: this video is from Cycle 4, some things have changed slightly in Cycle 5. In particular, time constraints can now also include simultaneous 12-m and 7-m observations, and re-submissions are no longer defined by the user. Also, the time estimate interface has changed a bit.

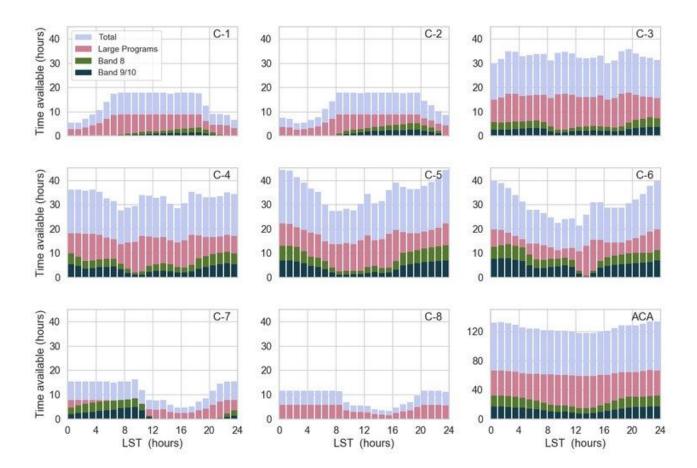
- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Check the ALMA Archive for existing data
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT
- Make use of the Helpdesk & the Knowledgebase

ALMA Archive: New Interface!

Q	Source name: N	IGC 1052																				<u>17</u> ag
Position	B Energy	5	Project		E	Publication	@ Ob	servation			02 41 4.798 -08	8 15 20.75	Molecules			Lines				Redshift	t	
irce name	Frequency	F	roject code		Publ	lication Title	Observa	ation Date			F	FoV: 3.86' 🕀		All *						0.00493		(estimated) *
GC 1052												Q	3		4	5			6		7	
radius = 10 arcmin	Band	F	roject Title		Abst	tract	Polarisa	tion Type				1 O	CS CS	8 18	CS NOR	HR N2		- Anna	h-h-	E N S	RG SIO	H20
ce name (ALMA)	All 👻							All -				0	V=0.2-1 0+ v=0	3Sigme	V=0 3-2	10-1-1-	AHM:	90 2-1	New All	140	ent of	0 4-0 1
c	Spectral resolution	F	roject abstract	ti l	First	Author	Member	ous id	_			*	1-0	V=0.3(3)-	10	J=2-1 2]-2(2,1)	+) 3(1,3)-2(0 4(0 4)-3		-03(2.1)	J=3-2 2-3	0 Q2,4)-5	32
tic	Continuum sensitiv	vity F	I Full Name		Auth	iors								2(2)	1)-1(-1,1)		2.0)	- Contraction of Cont	211.23		(1.4)	P
t List	Line sensitivity (10	km/s) F	roposal autho	rs								1.96										
et List			cience keywor	d																		
lar Resolution			cience keywor	u																		
							≡ Op															
mum Recoverable Scale								olic data only														
									nutions													
							Cal	ibration obse	rvations					V		V						V
			2	-			Cal	ibration obse	ervations			1140TT	100 GHz	125 GHz 4 5	150 GHz 6	175 GHz 7	200 GHz 8	225 GHz	250 GHz 9	275 GHz	and the second sec	325 GHz 10
Observations (17	Proj	jects (8)		Publica	ations (6)		Cal	ibration obse	ervations			3145TT	2000000		1				100000000000000000000000000000000000000	275 GHz	1	
Project code) Proj	Ra	Dec	Band C	ont. sens.	Frequency support			2)	Min. vel. res,			ale FOV		6		8	Int. Time	100000000000000000000000000000000000000	275 GHz Gal. lat.	Min. freq. res	10 Э - 😗
Project code	Source	Ra		Band C		Frequency support			2)	Min. vel. res.			3	4 5	6	7	8		9			10 Э - 😗
Project code ↔ 2015.1.01290.S	Source	Ra homos •	Dec	Band Co	ont. sens.	Frequency support 213.25.231.97GHz			Ang. res.			ic Max. reco. sc	ale FOV	4 5	6 ategory	7	8 /word	Int. Time	9		Min. freq. res	10 Э <i>1</i> 3
Project code → ↔ 2015.1.01290.S	Source NGC_1052	Ra htmts • 02:41:04.799	Dec d.m.s •	Band Comm. 6 0.	ont. sens. Jy/beam +		î Release date	Publications	Ang. res.	km/s ▼ 40.39	Array Mosai	ic Max. reco. sc arcsec ▼	ale FOV arcsec *	4 5 Scientific o	6 ategory	7 E Science key	word	Int. Time	9 Gal. Ion.	Gal. lat.	Min. freq. res	10 \Rightarrow $@$ s. Pol pro
Project code → 2015.1.01290.S → 2013.1.01225.S	Source NGC_1052 NGC_1052	Ra hm:s • 02:41:04.799 02:41:04.799	Dec dm:s * -08:15:20.752	Band Co m. 6 0. 6 0.	ont. sens. Jy/beam +	213.25231.97GHz	↑ Release date 2016-11-27	Publications	Ang. res. arcsec * 0.03	km/s ▼ 40.39	Array Mosai	ic Max, reco. sc arcsec ▼ 0.64	ale FOV arcsec * 26.16	4 5 Scientific of Active gala	6 ategory ties ties	7 Science key	8 word tic Nuclei (Int. Time 5 • 616.90 1360.80	Gal. Ion. 182.02	Gal. lat.	Min. freq. res kHz • 31251.0066	10 Pol pro XX YY
Project code → → 2015.1.01290.S → 2013.1.01225.S → 2013.1.01225.S	Source NGC_1052 NGC_1052 NGC_1052	Ra htmls • 02:41:04.799 02:41:04.799 02:41:04.799	Dec dm:3 • -08:15:20.752 -08:15:20.752	Band C m. 6 0. 7 0.	ont. sens. Jy/beam * 03 03	213.25231.97GHz 213.06231.77GHz	Release date 2016-11-27 2016-11-27	Publications	Ang. res. arcsec → 0.03 0.21	km/s • 40.39 40.42	Array Mosai 12m 12m	ic Max. reco. sc arcsec ▼ 0.64 2.06	ale FOV arcsec * 26.16 26.18	4 5 Scientific of Active gala Active gala	6 ategory ies ies	7 Science key Active Galac	word tic Nuclei (tic Nuclei (Int. Time 5 • 616.90 1360.80 4263.84	9 Gal. Ion. 182.02 182.02	Gal. lat. -57.93 -57.93	Min. freq. res kHz - 31251.0066 31248.4661	10 3
Project code → ↔ → ↔ 2015.1.01290.S → ↔ 2013.1.01225.S → ↔ 2013.1.01225.S → ↔ 2013.1.01225.S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052	Ra htms * 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dm.s • -08:15:20.752 -08:15:20.752 -08:15:20.752	Band C. m. 6 0. 6 0. 7 0. 7 0.	ont. sens. Jy/beam * 03 03 03 05	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz	Release date 2016-11-27 2016-11-27 2016-12-01	Publications 1 3 3	Ang. res. arcsec = 0.03 0.21 0.13	km/s • 40.39 40.42 26.48	Array Mosai 12m 12m 12m	ic Max. reco. sc arcsec ▼ 0.64 2.06 1.42	ale FOV arcsec - 26.16 26.18 16.84	4 5 Scientific of Active gala Active gala	6 ategory iles iles iles iles	7 Science key Active Galac Active Galac	8 word ttic Nuclei (ttic Nuclei (ttic Nuclei (Int. Time 5 ▼ 616.90 1360.80 4263.84 4052.16	9 Gal. Ion. 182.02 182.02 182.02	Gal. lat. -57.93 -57.93	Min. freq. res kHz • 31251.0066 31248.4661 31248.5705	10
Project code → ↔ → ↔ 2015.1.01290.S → ↔ 2013.1.01225.S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052	Ra hms * 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dmis * -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band C. m. 6 0. 6 0. 7 0. 7 0. 7 0.	ont. sens. Jy/beam * 03 03 03 05	213.25231.97GHz 213.06231.77GHz 337.97353.77GHz 342.25357.99GHz	Release date 2016-11-27 2016-11-27 2016-12-01 2016-12-02	Publications 1 3 3 3	Ang. res. arcsec + 0.03 0.21 0.13 0.13	km/s • 40.39 40.42 26.48 26.17	Array Mosai 12m 12m 12m 12m	ic Max. reco. sc arcsec * 0.64 2.06 1.42 1.61	ale FOV arcsec * 26.16 26.18 16.84 16.63	4 5 Scientific of Active gala Active gala Active gala	6 ategory	7 Science key Active Galac Active Galac Active Galac	8 wword ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (Int. Time 5 ▼ 616.90 1360.80 4263.84 4052.16	9 Gal. Ion. 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93	Min. freq. res Hiz - 31251.0066 31248.4661 31248.5705 31248.4870	10 Pol pro XX YY XX YY XX YY XX YY
Project code ↔ ↓ 2015.1.01290.S ↔ 2013.1.01225.S ↔ 2013.1.01225.S ↔ 2015.1.01290.S ↔ 2013.1.01225.S ↔ 2015.1.01290.S ↔ 2015.1.01290.S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 ngc_1052	Ra hm3 * 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dmis * -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band C. 6 0. 6 0. 7 0. 7 0. 7 0. 3 0.	ont. sens. Jy/beam * 03 03 03 03 05 04	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz 342.25.357.99GHz 339.85.353.77GHz	Prelease date 2016-11-27 2016-12-27 2016-12-21 2016-12-22 2017-02-05	Publications 1 3 3 1 1	Ang. res. arcsec * 0.03 0.21 0.13 0.13 0.04	40.39 40.42 26.48 26.17 26.48	Array Mosai 12m -	Max. reco. sc arcsec * 0.64 2.06 1.42 1.61 0.61	ale FOV arcsec + 26.16 26.18 16.84 16.63 16.79	4 5 Scientific of Active gala Active gala Active gala Active gala	6 ategory ies ies ies ies ies	7 C Science key Active Galac Active Galac Active Galac Active Galac	8 wword ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (Int. Time 5 * 616.90 1360.80 4263.84 4052.16 2576.45	Gal. Ion. 182.02 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93 -57.93	Min. freq. res kHz - 31251.0066 31248.4661 31248.4705 31248.4870 31252.1107	Pol pro XX YY XX YY XX YY XX YY XX YY XX YY
Project code → 2015.101290 S → 2013.10122S S → 2015.101290 S → 2015.101290 S → 2015.100989 S → 2015.1.00591 S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 ngc_1052 NGC_1052	Ra htm3 + 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dmis • -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band C 6 0. 6 0. 7 0. 7 0. 3 0.	ont. sens. Jy/team ▼ 03 03 03 05 04 03	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz 342.25.357.99GHz 339.85.353.77GHz 111.96.115.43GHz	Release date 2016-11-27 2016-12-21 2016-12-01 2016-12-02 2017-02-05 2017-08-12	Publications 1 3 3 1 2	Ang. res. arcsec * 0.03 0.21 0.13 0.13 0.04 1.20	km/s • 40.39 40.42 26.48 26.17 26.48 20.34 20.34 2.53	Array Mosai 12m -	ie Max. reco. sc arcsec = 0.64 2.06 1.42 1.61 0.61 12.17	ale FOV arcsec * 26.16 26.18 16.84 16.63 16.79 51.22	4 5 Scientific of Active gala Active gala Active gala Active gala Active gala	6 ategory ites ites ites ites ites ution	7 C Science key Active Galac Active Galac Active Galac Active Galac Active Galac	word ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (alaxies	Int. Time 5 * 616.90 1360.80 4263.84 4052.16 2576.45 997.92	Gal. Ion. 182.02 182.02 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93 -57.93 -57.93	Min. freq. res kHz - 31251.0066 31248.4661 31248.45705 31248.4870 31252.1107 7812.7271	10 Pol pro XX YY XX YY XX YY XX YY XX YY XX YY XX YY
Project code → ↔ 2015.101290 S → ↔ 2013.101225 S → ↔ 2015.101290 S → ↔ 2015.101290 S → ↔ 2015.100991 S → ↔ 2015.1.00591 S → ↔ 2015.1.00591 S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052	Ra hms - 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dm3 * -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band C m, 6 0, 7 0, 7 0, 7 0, 3 0, 3 0, 3 0,	ont. sens. Jy/beam + 03 03 03 05 04 03 02	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz 342.25.357.99GHz 339.85.353.77GHz 111.96.115.43GHz 100.11.115.65GHz	Release date 2016-11-27 2016-11-27 2016-12-01 2016-12-02 2017-02-05 2017-08-12 2017-12-15	Publications 1 1 3 3 3 1 2 2 2	Ang. res. arcsec * 0.03 0.21 0.13 0.13 0.04 1.20 0.54	km/s • 40.39 40.42 26.48 26.17 26.48 20.34 20.34 2.53	Array Mosai 12m -	ic Max. reco. sc arcsec = 0.64 2.06 1.42 1.61 0.61 12.17 12.89	ale FOV arcsec + 26.16 26.18 16.84 16.63 16.79 51.22 53.98	4 5 Scientific of Active gala Active gala Active gala Active gala Active gala Active gala Galaxy evo	6 ategory ies ies ies ies ution ution	7 C Science key Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Early-type gr	8 word ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (ttic Nuclei (alaxies alaxies	int. Time 5 ▼ 616.90 1360.80 4263.84 4052.16 2576.45 997.92 1209.60	Gal. Ion. 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93	Min. freq. res He + 31251.0066 31248.4661 31248.4670 31248.4870 31252.1107 7812.7271 976.5267	10 Pol pro XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY
Project code ↔ 2015.101290.S ↔ 2013.101225.S ↔ 2013.101225.S ↔ 2013.101225.S ↔ 2015.101290.S ↔ 2015.101290.S ↔ 2015.1.00989.S ↔ 2015.1.00591.S ↔ 2015.1.00591.S ↔ 2015.1.00575.S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052	Ra hms * 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dms * -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band Cr 6 0. 6 0. 7 0. 7 0. 3 0. 3 0. 4 0.	ont. sens. Jybeam ~ 03 00 03 00 04 00 00 02 00 01	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz 342.25.357.99GHz 339.85.353.77GHz 111.96.115.43GHz 100.11.115.65GHz 100.11.115.65GHz	Release date 2016-11-27 2016-12-21 2016-12-21 2016-12-22 2017-02-05 2017-02-15	Publications 1 1 3 3 1 2 2 2 2 2 2	Ang. res. arcsec - 0.03 0.21 0.13 0.13 0.04 1.20 0.54 2.34	km/s • 40.39 40.42 26.48 26.17 26.48 20.34 2.53 2.53	Array Mosai 12m -	ic Max. reco. sc arcsec ▼ 0.64 2.06 1.42 1.61 0.61 12.17 12.89 21.72	ale FOV arcsec + 26.16 26.18 16.84 16.63 16.79 51.22 53.98 53.98	4 5 Scientific of Active gala. Active gala. Active gala. Active gala. Active gala. Active gala. Active gala.	6 ategory ies ies ies ution ution ies	7 C Science key Active Galac Active Galac	8 word tic Nuclei (tic Nuclei (tic Nuclei (tic Nuclei (tic Nuclei (alaxies alaxies tic Nuclei (Int. Time 5* 616.90 1360.80 4263.84 4052.16 2576.45 997.92 1209.60 604.80	Gal. Ion. 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93	Min. freq. res He + 31251.0066 31248.4661 31248.4670 31252.1107 7812.7271 976.5207 976.6865	10 Pol pro XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY
→ → 2015.1.01290.S → → 2013.1.01225.S → → 2013.1.01225.S → → 2013.1.01225.S → → 2015.1.01290.S → → 2015.1.01290.S → → 2015.1.00290.S → → 2015.1.00291.S → → 2015.1.00591.S → → 2015.1.00591.S → → 2015.1.00591.S	Source NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052 NGC_1052	Ra hms* 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799 02:41:04.799	Dec dm3 • -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752 -08:15:20.752	Band Cr 6 0. 6 0. 7 0. 7 0. 3 0. 3 0. 3 0. 3 0. 3 0.	ont. sens. Jybeam ~ 03 00 03 00 04 00 00 02 00 01	213.25.231.97GHz 213.06.231.77GHz 337.97.353.77GHz 342.25.357.99GHz 339.85.353.77GHz 111.96.115.43GHz 100.11.115.65GHz 100.11.115.65GHz 126.44141.75GHz	Prelease date 2016-11-27 2016-11-27 2016-12-21 2016-12-22 2017-02-05 2017-02-15 2017-12-15 2018-09-04	Publications 1 1 3 3 1 2 2 2 2 0	Ang. res. arcsec - 0.03 0.21 0.13 0.13 0.04 1.20 0.54 2.34 0.20	km/s • 40.39 40.42 26.48 26.17 26.48 20.34 2.53 2.53 16.52	Array Mosai 12m - 12m -	ic Max. reco. sc arcsec ▼ 0.64 2.06 1.42 1.61 0.61 12.17 12.89 21.72 2.80	ale FOV arcsec - 26.16 26.18 16.84 16.63 16.79 51.22 53.98 53.98 43.42	4 5 Scientific of Active gala. Active gala. Active gala. Active gala. Active gala. Active gala. Active gala. Active gala.	6 ategory ategory ategory uses ies ies ies ies ies ies ies ies ies	7 Calac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac Active Galac	8 word tic Nuclei (tic Nuclei (Int. Time 5 * 616.90 1360.80 4263.84 4052.16 2576.45 997.92 1209.60 604.80 1663.20	Gal. Ion. 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02 182.02	Gal. lat. -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93 -57.93	Min. freq. res Hit - 31251.0066 31248.4661 31248.4670 31252.1107 7812.7271 976.5207 976.6205 7812.1134	10 Pol pro XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY XX YY

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Check the ALMA Archive for existing data
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT
- Make use of the Helpdesk & the Knowledgebase

ALMA Array Configuration Schedule (Cycle 8)


- Antenna configurations for the main 12-m array will use a new nomenclature in Cycle 8.
 - Configurations will be called C-1, C-2, and so on up to C-10, with C-1 having similar characteristics to the C43-1 configuration of Cycle 7, and likewise for the others.
 - Cycle 8 will NOT include the two longest baseline 12-m array configurations, C-9 and C-10.
- Maximum baselines in Cycle 8 will therefore be 8.5 km in configuration C-8.
- Configurations C-9 and C-10 with maximum baselines of 13.9 km and 16.2 km, respectively, will again be available in Cycle 9.
- NOTE: No PI observing takes place in Feb!
- The forward-looking configuration schedule (through Cycle 9) can be found at:

https://almascience.nrao.edu/observing/obs erving-configuration-schedule/long-term-c onfiguration-schedule

Start date	Configuration	Longest baseline	LST for best observing conditions			
2020 October 1	C-8	8.5 km	~ 22h – 10h			
2020 October 20	C-7	3.6 km	~ 23h – 11h			
2020 November 10	C-6	2.5 km	~ 1h – 13h			
2020 December 01	C-5	1.4 km	~ 2h – 14h			
2020 December 20	C-4	0.78 km	~ 4h – 15h			
2021 January 10	C-3	0.50 km	~ 5h – 17h			
2021 February 1-28	No observations due to February Maintenance					
2021 March 1	C-1	0.16 km	~ 8h-21h			
2021 March 26	C-2	0.31 km	~ 9h – 23h			
2021 April 20	C-3	0.50 km	~ 11h-1h			
2021 May 10	C-4	0.78 km	~ 13h – 3h			
2021 May 31	C-5	1.4 km	~ 15h – 5h			
2021 June 23	C-6	2.5 km	~ 16h – 6h			
2021 July 28	C-5	1.4 km	~ 17h – 7h			
2021 August 18	C-4	0.78 km	~ 19h – 8h			
2021 September 10	C-3	0.5 km	~ 20h – 9h			

ALMA Observing Strategies (Cycle 8)

• Effective observing time available per configuration for executing PI projects. As an example, up to 36 hours are expected to be available in C-4 at LST=00 h for all observations and up to 18 h may be allocated to Large Programs. The total number of hours excludes time spent on observatory calibration, maintenance, reconfigurations, and other activities. The time available for Large Programs is shown in pink and time for high-frequency observations in green and dark blue. The configuration schedule and, consequently, the total number of hours available per configuration may change in response to proposal pressure. The data

files containing these histograms are available here.

Science Justification

• Must include:

- Astronomical Importance
- Estimated intensity, S/N
- May include:
 - Figures
 - Tables
 - References
- Free-form PDF document
 - 12+ font, English only ** new: the OT will check font size and give an ERROR!
 - 20 MB file size
 - 4 pages (6 for Large Projects)

Tips for writing successful proposals

- Make sure ALMA is the best telescope to achieve your science goal and explicitly mention it.
- Justify your target selection well (this is always the weakest point in a proposal and the first thing reviewers use to take down your proposal in ranking).
- Explain the need for the setup you chose (e.g., Band, angular and spectral resolution, SNR targeted (is it enough?), etc.) from a scientific perspective.
- Make sure your figures are readable and captions are self-explanatory and clear.
- If you have done an archive search, show you have done your homework.
- DO NOT SQUEEZE TEXT! This annoys your reviewer and you don't want that.
 - Stay within the guidelines outlined in the proposers guide
 - Use the provided template.
- Keep in mind your reviewers have to read ~100 proposals so make yours easy to read and clear.

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Check the ALMA Archive for existing data
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT
- Make use of the Helpdesk & the Knowledgebase

Cycle 8 Capabilities

- Antennas: At least 43 antennas in the 12-m Array, ten 7-m antennas (for short baselines) and three 12-m antennas (for single dish maps).
- Receiver bands: 3, 4, 5, 6, 7, 8, 9, & 10 (wavelengths of about 3.1, 2.1, 1.5, 1.3, 0.87, 0.74, 0.44, and 0.35 mm, respectively).
- **Baselines:** Maximum baselines for the antenna configurations will vary from 0.16 km to 8.5 km. Configurations C-9 and C-10 will not be offered in Cycle 8. Maximum baselines of 3.6 km for Bands 8, 9 and 10. Maximum baselines of 8.5 km for Bands 3 to 7.
- Spectral line, continuum, and mosaic observations.

New Capabilities

- Solar observations in Band 5
- VLBI observations of faint science targets (correlated flux density <500 mJy within an unresolved core on ALMA baselines up to 1 km). These observations will be done in passive phasing mode, where it is recommended to have a bright calibrator within 5 deg of the science target.
- High-frequency observations (Bands 9 and 10) with the stand-alone 7-m Array
- Mosaicking of continuum linear polarization observations (Bands 3 to 7)
- Spectral scans with the 7-m Array

Large Projects (started in Cycle 4)

- Any project >50 hours, or standalone ACA > 150 hours
- Limited observing modes
- Automatic 'A' grade
- +2 pages for Science Case
 - Data/Project Mgmt. Plans
 - Enhanced Data Products
- For best results WORK WITH YOUR ARC FOR SUPPORT!!

ALMA Capabilities – NEW!!!

Dual-Anonymous Proposal Review

- Proposals in Cycle 8 will implement a dual-anonymous process for proposal reviews. While proposers will still enter their names and affiliations in the Observing Tool, their identities will be concealed from the reviewers.
- It will be the responsibility of the investigators to write their proposals such that anonymity is preserved.
- Guidelines on how to prepare such proposals will be presented in a forthcoming ALMA news item and, later, in the CfP.

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Check the ALMA Archive for existing data
- Prepare the Science Case
 - New capabilities for Cycle 8!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT.
- Make use of the Helpdesk & the Knowledgebase

File	Edit	View	Tool	Search	Help
------	------	------	------	--------	------

Project Structure	Editors			
Proposal Program	Spectral Spatial Field Sector	etup		
Unsubmitted Proposal	Source Name	NGC3256		Resol
Project	Choose a Solar System Object	t? 🗌 Name	of object Unspecified	-
Planned Observing ScienceGoal (Copy of B6 12CO (2-1): N(System J2000 - Sexages	r dialiax 0.00000	mas 🔻
- General	Source Coordinates	RA 10:27:51.6000		mas/yr 💌
Field Setup Spectral Setup		Dec -43:54:18.000	PM DEC 0.00000	mas/yr 💌
Calibration Setup	Source Radial Velocity	0.000 km/s 💌	hel 🔻 z 0.00000000 Doppler Typ	
Control and Performance Technical Justification	Target Type	Individual Pointing(s)	1 Rectangular Field	
	Expected Source Properties			5
		k Continuum Flux Density per B		C
Template library. Turn the keys on the JTree below & r X remplate library. Turn the keys on the JTree below remplate library. Turn the keys on the JTree below	Pea	k Line Flux Density per Beam	0.00000 Jy 🔽	
P I Planned Observing ScienceGoal (B3 spectral sweep CO)		Width	0.00000 km/s 💌	
🗠 🧟 ScienceGoal (B7 continuum: COSMO		Polarization Percentage	0.0 %	
 ScienceGoal (B7 CO(9-8): Cosmic Ey ScienceGoal (B9 continuum: Cosmic = 	Rectangle	Occurto Trace		C
 ScienceGoal (B3 spectral sweep: PK) ScienceGoal (B3 continuum: GRB To 		System	ABSOLUTE RELATIVE J2000	
 ScienceGoal (B6 continuum: GRB To ScienceGoal (B7 continuum: GRB To 	Field Ce Coordina	nter	e)0.00000 arcsec 💌	
🗠 🧟 ScienceGoal (B6 continuum: GRB To-		Offset(Latitude)		
 ScienceGoal (B3 continuum: GRB To ScienceGoal (B6 12CO (2-1): NGC32 				
	n n ≜₹			
	Feedback			
🗠 🚳 ScienceGoal (B9 spectral line: Massiv	Validation Validation Histor	ry Log		
ScienceGoal (B3 continuum: Protoste	Des	cription	Suggestio	n

File	Edit	View	Tool	Search	Help
------	------	------	------	--------	------

Project Structure	Editors			
Proposal Program	Spectral Spatial Field Se	etup		
Unsubmitted Proposal	Source Name	NGC3256		Resol
ዮ 😅 Project				Reson
🕈 🚰 Proposal	Choose a Solar System Object	t? 🔲 Name	of object Unspecified	-
Planned Observing		Sexage	simal Parallax 0.00000	mas 💌
🕈 🌌 ScienceGoal (Copy of B6 12CO (2-1): N		System J2000 Sexage		indo 🔹
General	Source Coordinates	RA 10:27:51.6000	PM RA 0.00000	mas/yr 💌
 Field Setup 		Dec -43:54:18.000	PM DEC 0.00000	mas/yr 💌
- 🗋 Spectral Setup		Dec -43.34.18.000		
- 🗋 Calibration Setup	Source Radial Velocity			er Type RELATIVISTIC
— Control and Performance	Target Type	Individual Pointing(a) Individual Pointing(a)	1 Rectany ular Field	
Technical Justification	raigertype	C mainadari omanas) C		
	Expected Source Properties	tl	011	
		ntau		Ľ
	Pea	k Contigue Cal x Density per B	eam 0.17400 Jy 🔻	
		Relatization Percentage	0.0 %	
Template library. Turn the keys on the JTree below & r × remplate library. Turn the keys on the JTree below & r × Proposal Planned Observing ScienceGoal (B3 spectral sweet) ScienceGoal (B7 co(9-8): Cosmic Ey		Wall Polandation Percentage		
Template library. Turn the keys on the JTree below & r ×		KLine Flux Density per Beam	0.00000 Jy 🔻	
🕈 🖼 Proposal	the			
Planned Observing	Line	Width	0.00000 km/s 💌	
🗢 🎕 ScienceGoal (B3 spectral sweep) 🔍	Line	Polarization Percentage	0.0 %	,
🗢 🧟 ScienceGoal (B7 continuum: COSMO	Portongle		1222	
 ScienceGoal (B7 CO(9-8): Cosmic Ey 	Rectangle			B
🗢 🌌 ScienceGoal (B9 continuum: Cosmic 🚍 👔		Coorde Tupo	O ABSOLUTE RELATIVE	
 ScienceGoal (B3 spectral sweep: PK) 				
ScienceGoal (B3 continuum: GRB To	Field Ce	System	J2000 👻	
CienceGoal (B6 continuum: GRB To	Coordina		e)0.00000 arcsec -	
 ScienceGoal (B7 continuum: GRB To ScienceCoal (B6 continuum: GRB To 	overail			
 ScienceGoal (B6 continuum: GRB To ScienceGoal (B3 continuum: GRB To 		Offset(Latitude)	0.00000 arcsec 💌	
 ScienceGoal (B5 12CO (2-1): NGC32 		· · · · · · · · · · · · · · · · · · ·		
 ScienceGoal (B6 13CO (2-1): NGC32 ScienceGoal (B6 13CO (2-1): NGC32 	 ▲ .			
	Feedback			
← ② ScienceGoal (B9 spectral line: Massiv	Validation Validation Histor	ry Log		
 ScienceGoal (B3 continuum: Protoste) 				
ScienceGoal (B6 continuum: Protoste	Daa	cription	Sugg	action
	Des	cription	Sugge	esuon

- Read relevant documentation (CfP, Guide, Primer, etc.)
- Create an ALMA account by registering at the Science Portal (almascience.org)
- Download the Observing Tool (OT) & related guides
- Prepare the Science Case
 - New capabilities for Cycle 7!
- Prepare Science Goals (sources, frequency & correlator setup, integration times) within the OT
- Make use of the Helpdesk & the Knowledgebase

www.almascience.org

Atacama Large Millimeter/submil In search of our Cosmit Origins	Data Processing Tools Documentation	Associated Universities, Inc.	g in
Observatory News Announcement of 3mm VLBI in Cycle 7 Jan 07, 2019 ALMA Cycle 7 Pre-Announcement	NRAO News Multi-Messenger Astrophysics: Insights from Combining Gravity and Radio Waves Feb 16, 2019	Status Configuration Schedule Cycle 6 Highest Priority Projects	
Dec 19, 2018 Job Opening: Head of ALMA Department of Science Operations Dec 05, 2018	ALMA Data Reduction Party Mar 13, 2019 New Horizons in Planetary Systems May 13, 2019	Refereed publications: 1300 Last observed source: Northeast_Section_of_NGC6334 Current configuration: C43-1	

Science Highlights - An ALMA Detection of the Radioactive Molecule 26AIF in a Stellar Merger Remnant.

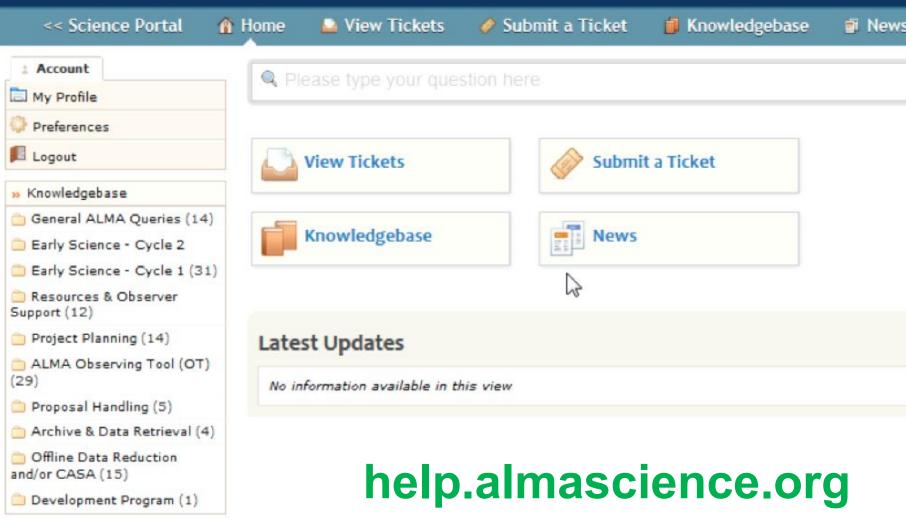
Although diffuse Galactic gamma-ray emission from the isotope of aluminum, ²⁶Al, was first detected in the 1980s, the identification of the source of emission has been hard to pinpoint due to the poor spatial resolution of gamma-ray observations. In a recent Nature paper, a team led by Dr. Kaminski has made use of sensitive high-

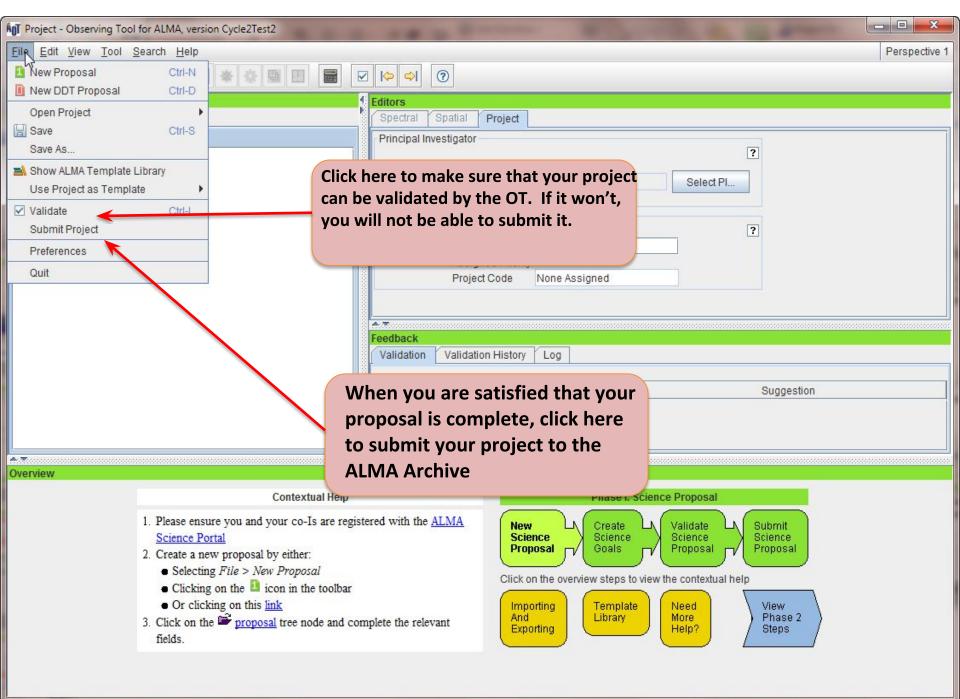
ALMA Science Portal @ NRAO

ALMA

Have no fear, the ALMA Helpdesk is here...

26 NRAO


<< Science Portal 🛛 👸	Home 🗃 Knowledgebase 🗊	News	English (U.S.)
Login Remember me Lost password Login	Riease type your search que	ery here	SEARCH O
» Knowledgebase	General ALMA Queries (13)	Early Science - Cycle 1 (31)	Resources & Observer
 General ALMA Queries (13) Early Science - Cycle 1 (31) Resources & Observer Support (12) Project Planning (14) ALMA Observing Tool (OT) (29) Proposal Handling (5) 	 Can I submit a ticket in Japanese? How close can ALMA observe to the Sun? 	 Can I use "breakpoints" in ALMA cycle 1? The Cycle 1 Technical Handbook has some gaps in its discussion of ALMA receivers (SSB, 2SB, DSB). What else can you tell me about them? 	Support (12) How do I arrange a visit to one of the ARCs? Where can I find ALMA documentation and manuals?
🚞 Archive & Data Retrieval (4)	Project Planning (14)	ALMA Observing Tool (OT)	Proposal Handling (5)
 Offline Data Reduction and/or CASA (14) Development Program (1) Live Chat Software by Kayako 	 What should I include for the content of the Technical Justification and in what format should I submit it? Where can I find the online ALMA observing simulator developed by the University of Manchester? 	 (29) What do I do if I can't get the OT to work? How do I deal with targets with unspecified coordinates in the OT? 	 May I submit an identical proposal to more than one category, e.g. submitting a proposal on distant galaxies both to cosmology and to galaxy categories? Which category should I submit a proposal on distant galaxies: "cosmology/high-z" or "Galaxies/Nuclei"?



Atacama Large Millimeter/submillimeter Array

In search of our Cosmic Origins

ALMA Helpdesk @ NRAO (logged in view)

After submission

- Remember, you can re-submit as often as needed, but keep in mind that the server is quite busy right before the deadline
- Standard and ToO proposals will be reviewed by the ALMA Proposal Review Committee (APRC) and the ALMA Review Panels (ARP).
- All proposals will be subject to Technical Assessment by a selected group of JAO and ARC experts.
- Proposals will be assessed on the basis of the overall scientific merit of the proposed investigation and its potential contribution to the advancement of scientific knowledge.
- Following approval by the Directors Council, the outcome of the Proposal Review Process will be communicated to the PIs of all valid submitted proposals, expected at the end of July 2020.

Systematics in the ALMA Proposal Review Rankings

https://arxiv.org/abs/1908.09639

DRAFT VERSION AUGUST 27, 2019 Typeset using IMTEX preprint style in AASTeX63

Systematics in the ALMA Proposal Review Rankings

JOHN CARPENTER,1

¹Joint ALMA Observatory, Avenida Alonso de Córdova 3107, Vitacura, Santiago, Chile

ABSTRACT

The results from the ALMA proposal peer review process in Cycles 0-6 are analyzed to identify any systematics in the scientific rankings that may signify bias. Proposal rankings are analyzed with respect to the experience level of a Principal Investigator (PI) in submitting ALMA proposals, regional affiliation (Chile, East Asia, Europe, North America, or Other), and gender. The analysis was conducted for both the Stage 1 rankings, which are based on the preliminary scores from the reviewers, and the Stage 2 rankings, which are based on the final scores from the reviewers after participating in a face-to-face panel discussion. Analysis of the Stage 1 results shows that PIs who submit an ALMA proposal in multiple cycles have systematically better proposal ranks than PIs who have submitted proposals for the first time. In terms of regional affiliation, PIs from Europe and North America have better Stage 1 rankings than PIs from Chile and East Asia. Consistent with Lonsdale et al. (2016), proposals led by men have better Stage 1 rankings than women when averaged over all cycles. This trend was most noticeably present in Cycle 3, but no discernible differences in the Stage 1 rankings are present in recent cycles. Nonetheless, in each cycle to date, women have had a lower proposal acceptance rate than men even after differences in demographics are considered. Comparison of the Stage 1 and Stage 2 rankings reveal no significant changes in the distribution of proposal ranks by experience level, regional affiliation, or gender as a result of the panel discussions, although the proposal ranks for East Asian PIs show a marginally significant improvement from Stage 1 to Stage 2 when averaged over all cycles. Thus any systematics in the proposal rankings are introduced primarily in the Stage 1 process and not from the face-to-face discussions. These results are discussed in the context of potential language and cultural biases, but any conclusions on the origin of the observed systematics remain speculative.

1. INTRODUCTION

The Atacama Large Millimeter/Submillimeter Array (ALMA) is an international astronomical facility operated in a partnership of the European Organisation for Astronomical Research in the

4/3/2020-ALMA proposal Workshop

arXiv:1908.09639v1 [astro-ph.IM] 21 Aug 2019

After submission

- Phase II (Creating and Queuing Scheduling Blocks)
 - PIs *review* their scheduling blocks by Sept. 9, 2020!
 - PIs review their scheduling blocks by Sept. 9. Rayzbangel dates mayzbangel
 - PIs *review* their scheduling blocks by Sept. 9, 2020!!!
 - You don't submit your SGs, your proposal will be downgraded!
 - Any change requests need to go to the Helpdesk, and possibly a formal change request
 - Being prompt helps ensure your project can be observed!
- Then wait dynamic scheduling means your Contact Scientist doesn't know when your project will run. As observations are made, updates are shown in the SnooPI tool on the Science Portal:

https://almascience.nrao.edu/observing/snoopi

For more info: https://almascience.nrao.edu/

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC), and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction and operation of ALMA.

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

